Math 8385 - Homework 1 (Due Oct 11)

1. Find and solve the Euler-Lagrange equation for the functional

$$
I(u)=\int_{0}^{\log (2)} u(x)^{2}+u^{\prime}(x)^{2} d x
$$

subject to boundary conditions $u(0)=0$ and $u(\log (2))=1$, where \log is the natural logarithm.
2. Find the Euler-Lagrange equation for the functional

$$
I(u)=\int_{0}^{\pi} u(x)^{2}-\left(u^{\prime}(x)\right)^{2} d x
$$

subject to boundary conditions $u(0)=u(\pi)=0$. Then find all solutions of the EulerLagrange equation (as a one-parameter family) and evaluate I on all solutions.
3. Let $1 \leq p \leq \infty$. The p-Laplacian is defined by

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)
$$

for $1 \leq p<\infty$, and

$$
\Delta_{\infty} u:=\frac{1}{|\nabla u|^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} u_{x_{i} x_{j}} u_{x_{i}} u_{x_{j}} .
$$

Notice that $\Delta_{2} u=\Delta u$. A function u is called p-harmonic if $\Delta_{p} u=0$.
(a) Show that the Euler-Lagrange equation for the functional

$$
I(u)=\int_{U} \frac{1}{p}|\nabla u(x)|^{p}-u(x) f(x) d x
$$

is the p-Laplace equation

$$
-\Delta_{p} u=f \text { in } U
$$

(b) Show that

$$
\Delta_{p} u=|\nabla u|^{p-2}\left(\Delta u+(p-2) \Delta_{\infty} u\right)
$$

(c) Show that

$$
\Delta_{\infty} u=\lim _{p \rightarrow \infty} \frac{1}{p}|\nabla u|^{2-p} \Delta_{p} u
$$

4. Let $u, w \in C^{2}(\bar{U})$ where $U \subseteq \mathbb{R}^{n}$ is open and bounded. Show that for $1 \leq p<\infty$

$$
\int_{U} u \Delta_{p} w d x=\int_{\partial U} u|\nabla w|^{p-2} \frac{\partial w}{\partial \nu} d S-\int_{U}|\nabla w|^{p-2} \nabla u \cdot \nabla w d x .
$$

[Hint: Use one of the integration by parts formulas in the appendix of the course notes.]
5. Find the Euler-Lagrange equation for the functional

$$
I(u)=\int_{U}(\Delta u(x))^{2} d x
$$

[Hint: Proceed as in the proof of the Euler-Lagrange equation from class. That is, let φ be smooth with compact support in U and compute

$$
\left.\frac{d}{d t}\right|_{t=0} I(u+t \varphi)=0 .
$$

Use integration by parts and the vanishing lemma to find the Euler-Lagrange equation.]
6. Consider the constrained problem

$$
\min _{\substack{u: U \rightarrow \mathbb{R} \\ u=0 \text { on } \partial U}} \int_{U}|\nabla u|^{2} d x \text { subject to } \int_{U} u^{2} d x=1 .
$$

Show that any minimizer is a solution of the eigenvalue problem

$$
\left\{\begin{align*}
&-\Delta u=\lambda u \text { in } U \tag{1}\\
& u=0 \\
& \text { on } \partial U,
\end{align*}\right.
$$

where $\lambda>0$ is given by

$$
\lambda=\int_{U}|\nabla u|^{2} d x
$$

[Hint: This does not require a Lagrange multiplier. Let u be a minimizer of the constrained problem, let $\varphi \in C_{c}^{\infty}(U)$, and consider the variation

$$
t \mapsto w(x, t):=\frac{u(x)+t \varphi(x)}{\|u+t \varphi\|_{L^{2}(U)}} .
$$

Since $\int_{U} w(x, t)^{2} d x=1$, we have $\left.\frac{d}{d t}\right|_{t=0} \int_{U}|\nabla w(x, t)|^{2} d x=0$. Complete the argument from here.]
7. Recall the minimal surface equation

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 \quad \text { in } U .
$$

(a) Show that the plane

$$
u(x)=a \cdot x+b
$$

solves the minimal surface equation on $U=\mathbb{R}^{n}$, where $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.
(b) Show that for $n=2$ the Scherk surface

$$
u(x)=\log \left(\frac{\cos \left(x_{1}\right)}{\cos \left(x_{2}\right)}\right)
$$

solves the minimal surface equation on the box $U=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^{2}$.

