MATH 8385 — HOMEWORK 1 SOLUTIONS

1. Find and solve the Euler-Lagrange equation for the functional
log(2)
I(u) = / u(z)? 4+ o' (2)? dx
0

subject to boundary conditions u(0) = 0 and u(log(2)) = 1, where log is the natural
logarithm.

Solution. We use the form
L,(z,u,u') — —Ly(x,u,u’) =0
z s Uy ZI' p\Ly Uy

of the Euler-Lagrange equations. We have L(z, z,p) = 22 + p? so L, = 2z and L, = 2p.
Therefore

0= L,(z,u,u’) — di:ler(x’ u,u') = 2u(r) — %(21/@)) = 2u(z) — 2u" (x).

Therefore the Euler-Lagrange equation is u”(z) = u(z) and the general solution is
u(x) = Ae” + Be ™.

Using the boundary conditions yields
1
0=u(0)=A+B and 1=u(log(2)) =24+ iB.

Therefore A =2/3 and B = —2/3, and

subject to boundary conditions u(0) = u(w) = 0. Then find all solutions of the Euler-
Lagrange equation (as a one-parameter family) and evaluate I on all solutions.

Solution. As in problem 1 the Euler-Lagrange equation is u”(x) = —u(z), and the
general solution is
u(z) = Asin(z) + B cos(z).

The boundary conditions u(0) = u(w) = 0 imply that B = 0 but A can be arbitrary. So
there is a family of solutions
ua(z) = Asin(x),



for every real number A. Since each u 4 satisfies the Euler-Lagrange equation we have

%’AZII(A sin(z)) = %’tzof(sin(x) + tsin(z)) = 0.

On the other hand I(Asin(z)) = A%I(sin(x)) and so
d

dA ‘A:l
Therefore I(sin(z)) = 0 and

I(Asin(x)) = 21 (sin(x)).

I(Asin(z)) = A*I(sin(z)) =0 for all A.

You can also directly compute I(sin(x)) to show this. O

. Let 1 < p < o0. The p-Laplacian is defined by
Apu = div (|VuP"2Vu)

for 1 <p < o0, and

1 n n
AOOU = |vu|2 E E U:(;,-:cjuaciuxj‘

i=1 j=1

Notice that Agu = Au. A function u is called p-harmonic if Apu = 0.

(a) Show that the Euler-Lagrange equation for the functional

I(u) = /U ;Ivu(w)lp ~ u(a) () de

is the p-Laplace equation
—Apu=f inU.

Solution. Here .
L(z,z,q) = Z;\QIP —zf().

[It was a bad choice of notation to use p for the power in the p-Laplace equation

when we also use p for Vu|. Therefore L,(x, z,q) = —f(x) and as in problem 3
_1 9 _
VoL(z,2,q) = |qf 1@ = |q["?q.

Therefore the Euler-Lagrange equation is
—f(z) —div (\Vu|p_2Vu) =0.
Using the definition of the p-Laplace equation we have

—Apu = f. O



(b) Show that
Apu = [VulP~? (Au+ (p — 2)Asour) .

Solution. By the product rule we have

Apu = |Vu]p_2diV(Vu) + V(|Vu]p_2) -Vu
= |VulP2Au + V(|Vu[P~?) - Vu.

Hence, all we need to show is that
V(|VulP~2) - Vu = |[VuP~2(p — 2) Asou.
To compute this, note that

VulP™ = (uz, +- +ug,) T

Therefore
0 _ 0 p—2
6$'|Vu|p 2= %(Uil +otug)
(A 1
pP—2, 5 9 =21 0 4 2
p—2 p—4
I (uil et Uin) 2 (2Ugy Ugyz; + 2Ugy Uy, + -
=(p— 2)‘vu|p74(uxlu$1$i + Uy Uy + A+ U, U,y ;)
n
=(p— 2)|Vu|p_4 Z Uy Uz ;-
j=1
Therefore

v(vaP?) - Vu= Y (o Tur

=1

n n
= Z(p - 2)|Vul" Z Ug U ja; U
i=1 j=1

n n
SR I ) STRS

i=1 j=1
= (p—2)|VulP 2 Asou.

This completes the proof.

(c) Show that

1
Asu = lim ~|Vu[* PAu.
p—00 P

“t 2ug, Uy, 0, )



Solution. By part (a) we have
1 1 -2
2 Vul*PAu = ~Au+ 22 A
p p p

Sendig p — oo we have

1
lim —

1 -2
|Vu|2_pApu = lim —Au + lim LAOOU/ = Aou. O
p—00 P p—00

p p—oo P
4. Let u,w € C*(U) where U C R" is open and bounded. Show that for 1 < p < oo
0w -2
uApwdr = w|VwlP™*—dS — | |Vw|P™*Vu- Vwdz.
U oU ov U

[Hint: Use one of the integration by parts formulas in the appendix of the course notes.|

Solution. Recall that
Apu = div (|Vu|p_2Vu) .

By the divergence theorem, or integration by parts, we have
/ uAywdr = / udiv (|Vw|p_2Vw) dx
U U
= / u|VwP2Vw - vdS — / Vu - |[Vw[P~*Vw dz
ou U

:/ u|Vw|p28wdS—/ \VwP~2Vu - Vw dz.
ou o U

5. Find the Euler-Lagrange equation for the functional

I(w) = /U (Au(2))? dz.

[Hint: Proceed as in the proof of the Euler-Lagrange equation from class. That is, let ¢
be smooth with compact support in U and compute

d
—| I tp) =0.
dt‘t:O (utto) =0

Use integration by parts and the vanishing lemma to find the Euler-Lagrange equation.|



Solution. Suppose u is a min or max of I subject to any boundary conditions (our
compactly supported test function ignores the boundary conditions). Let ¢ be smooth
with compact support and compute

d
= — I
0 dt‘t:() (u+t)

d 2
—/UdtLO(Au+tAg0) dz
:/ 2AuAp dx.

U

Therefore
/ AuApdr =0
U

for all test functions ¢ with compact support in U. Using Green’s second identity (or
integration by parts) we have

0= / AulApdr = / (AAu)p dx
U U
due to the fact that ¢ and V¢ vanish on the boundary 0U. By the vanishing lemma
A’u=0 inU

where A%y = AAu. This is called the bi-harmonic equation, and is the Euler-Lagrange
equation for the functional in question. Written out the operator is

n o n
2
Aty = E E ua:ixq;a:j:vj =0
i=1 j=1

which is a fourth order partial differential equation. O

. Consider the constrained problem

min / |Vu|?dz subject to / w?dr = 1.
u:U—R U U
u=0 on U

Show that any minimizer is a solution of the eigenvalue problem

—Au=Mu inU
u=0 on dU,

where A > 0 is given by

)\:/ |Vu|? dz.
U

[Hint: This does not require a Lagrange multiplier. Let u be a minimizer of the con-
strained problem, let ¢ € C2°(U), and consider the variation

t— w(z,t) = —u(ac) +tp()
T uttellewy

5



d
Since / w(z,t)*de = 1, we have 7l 0/ |Vw(z,t)|? dz = 0. Complete the argument
U =vJU
from here.]
Solution. We are minimizing I(u) = [, |[Vu|* dz subject to J(u) = [, u?dz —1 =0,

and we have
VI(u) = —2Au and VJ(u)=2u.

The Euler-Lagrange equations for the constrained problem are therefore

—2Au+ X2u =0
for some Lagrange multiplier A. Setting A = —\ we have
—Au = \u.

Multiplying by u and integrating over U we have

—/uAud:c:/\/UQd:U.
U U

Since u satisfies u = 0 on QU and fU u? = 1 we can integrate by parts to obtain

/|Vu\2dx:—/uAudx:)\/Ude:)\.
U U U

This verifies that A > 0 (since u cannot be constant), and A = [}, [Vu|? dx. O

7. Recall the minimal surface equation

div Y ) _o mu
V14 [Vul|?

(a) Show that the plane
ulx)=a-z+b

solves the minimal surface equation on U = R"™, where a € R” and b € R.

Solution. This is obvious. O

(b) Show that for n = 2 the Scherk surface
B cos(x1)
u(z) = log (cos(x2)>

solves the minimal surface equation on the box U = (-7,

2.

B



Solution. Notice that
u(x) = log(cos(z1)) — log(cos(z2)) = f(z1) — f(x2)

where f(x) = log(cos(z)). Let’s just look for a solution in the form

u(z) = fx1) = flz2),
and see what we get. Note that uz,z, = 0, uy, = f/(21), Uz, = —f'(22), Uz z, =
(1), and ugy,, = f”(x2). Plugging this into the minimal surface equation

(1 + u?@)umm - 2u961562uw1u$2 + (1 + uil)u’mm =0
we get
(L4 f(22)) f" (1) = (L4 [/ (1)) f" (x2) = 0.

Separating variables we have

fla) )

L fi(1)? 1+ f(a2)*

Since the left side depends only on x1 and the right side only on xo, both sides
must be equal to the same constant A, hence

f"(x)

L+ f/(x)?

Therefore
arctan(f’(z)) = Az + B,

and f'(x) = tan(Axz 4+ B). Note we must restrict A and B so that

™ 7T

_l cAr+ B< =~

5 <Ar+ b < 5
for all x € (—7/2,7/2). We can assume without loss of generality that A < 0 (or
else we can consider — f), so we need

7T T
Ta+B<I
2 * 2

and - .
—A+B>——.
2 th= 2
Together these imply that —1 < A <0 and |B| < §(A + 1) (so once we choose A
we have a obtain a range of choices for B.)
Integrating f/(z) = tan(Az + B) we have
1
f(z) = 1 log(cos(Ax + B)).
So in general we have the minimal surface
1 1
u(z) = 3 log(cos(Az1 + B)) + 1 log(cos(Ax2 + B)),
subject to =1 < A <0 and B| < 5(A +1). Note we can write
1 cos(Azy + B)
= g (LT
u(@) A8 (Cos(Aafg + B)
The Scherk surface is obtained by selecting A = —1 and B = 0. O



