
Math 8385 – Homework 1 Solutions

1. Find and solve the Euler-Lagrange equation for the functional

I(u) =

∫ log(2)

0
u(x)2 + u′(x)2 dx

subject to boundary conditions u(0) = 0 and u(log(2)) = 1, where log is the natural
logarithm.

Solution. We use the form

Lz(x, u, u
′)− d

dx
Lp(x, u, u

′) = 0

of the Euler-Lagrange equations. We have L(x, z, p) = z2 + p2 so Lz = 2z and Lp = 2p.
Therefore

0 = Lz(x, u, u
′)− d

dx
Lp(x, u, u

′) = 2u(x)− d

dx
(2u′(x)) = 2u(x)− 2u′′(x).

Therefore the Euler-Lagrange equation is u′′(x) = u(x) and the general solution is

u(x) = Aex +Be−x.

Using the boundary conditions yields

0 = u(0) = A+B and 1 = u(log(2)) = 2A+
1

2
B.

Therefore A = 2/3 and B = −2/3, and

u(x) =
2

3
(ex − e−x) =

4

3
sinh(x).

2. Find the Euler-Lagrange equation for the functional

I(u) =

∫ π

0
u(x)2 − (u′(x))2 dx

subject to boundary conditions u(0) = u(π) = 0. Then find all solutions of the Euler-
Lagrange equation (as a one-parameter family) and evaluate I on all solutions.

Solution. As in problem 1 the Euler-Lagrange equation is u′′(x) = −u(x), and the
general solution is

u(x) = A sin(x) +B cos(x).

The boundary conditions u(0) = u(π) = 0 imply that B = 0 but A can be arbitrary. So
there is a family of solutions

uA(x) = A sin(x),



for every real number A. Since each uA satisfies the Euler-Lagrange equation we have

d

dA

∣∣∣
A=1

I(A sin(x)) =
d

dt

∣∣∣
t=0

I(sin(x) + t sin(x)) = 0.

On the other hand I(A sin(x)) = A2I(sin(x)) and so

d

dA

∣∣∣
A=1

I(A sin(x)) = 2I(sin(x)).

Therefore I(sin(x)) = 0 and

I(A sin(x)) = A2I(sin(x)) = 0 for all A.

You can also directly compute I(sin(x)) to show this.

3. Let 1 ≤ p ≤ ∞. The p-Laplacian is defined by

∆pu := div
(
|∇u|p−2∇u

)
for 1 ≤ p <∞, and

∆∞u :=
1

|∇u|2
n∑
i=1

n∑
j=1

uxixjuxiuxj .

Notice that ∆2u = ∆u. A function u is called p-harmonic if ∆pu = 0.

(a) Show that the Euler-Lagrange equation for the functional

I(u) =

∫
U

1

p
|∇u(x)|p − u(x)f(x) dx

is the p-Laplace equation
−∆pu = f in U.

Solution. Here
L(x, z, q) =

1

p
|q|p − zf(x).

[It was a bad choice of notation to use p for the power in the p-Laplace equation
when we also use p for ∇u]. Therefore Lz(x, z, q) = −f(x) and as in problem 3

∇qL(x, z, q) = |q|p−1 q
|q|

= |q|p−2q.

Therefore the Euler-Lagrange equation is

−f(x)− div
(
|∇u|p−2∇u

)
= 0.

Using the definition of the p-Laplace equation we have

−∆pu = f.
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(b) Show that
∆pu = |∇u|p−2 (∆u+ (p− 2)∆∞u) .

Solution. By the product rule we have

∆pu = |∇u|p−2div(∇u) +∇(|∇u|p−2) · ∇u
= |∇u|p−2∆u+∇(|∇u|p−2) · ∇u.

Hence, all we need to show is that

∇(|∇u|p−2) · ∇u = |∇u|p−2(p− 2)∆∞u.

To compute this, note that

|∇u|p−2 = (u2x1 + · · ·+ u2xn)
p−2
2 .

Therefore

∂

∂xi
|∇u|p−2 =

∂

∂xi
(u2x1 + · · ·+ u2xn)

p−2
2

=
p− 2

2
(u2x1 + · · ·+ u2xn)

p−2
2
−1 ∂

∂xi
(u2x1 + · · ·+ u2xn)

=
p− 2

2
(u2x1 + · · ·+ u2xn)

p−4
2 (2ux1ux1xi + 2ux2ux2xi + · · ·+ 2uxnuxnxi)

= (p− 2)|∇u|p−4(ux1ux1xi + ux2ux2xi + · · ·+ uxnuxnxi)

= (p− 2)|∇u|p−4
n∑
j=1

uxjuxjxi .

Therefore

∇(|∇u|p−2) · ∇u =
n∑
i=1

(
∂

∂xi
|∇u|p−2

)
uxi

=
n∑
i=1

(p− 2)|∇u|p−4
n∑
j=1

uxjuxjxiuxi

= (p− 2)|∇u|p−4
n∑
i=1

n∑
j=1

uxixjuxiuxj

= (p− 2)|∇u|p−2∆∞u.

This completes the proof.

(c) Show that

∆∞u = lim
p→∞

1

p
|∇u|2−p∆pu.
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Solution. By part (a) we have

1

p
|∇u|2−p∆pu =

1

p
∆u+

p− 2

p
∆∞u.

Sendig p→∞ we have

lim
p→∞

1

p
|∇u|2−p∆pu = lim

p→∞

1

p
∆u+ lim

p→∞

p− 2

p
∆∞u = ∆∞u.

4. Let u,w ∈ C2(U) where U ⊆ Rn is open and bounded. Show that for 1 ≤ p <∞∫
U
u∆pw dx =

∫
∂U
u |∇w|p−2∂w

∂ν
dS −

∫
U
|∇w|p−2∇u · ∇w dx.

[Hint: Use one of the integration by parts formulas in the appendix of the course notes.]

Solution. Recall that
∆pu = div

(
|∇u|p−2∇u

)
.

By the divergence theorem, or integration by parts, we have∫
U
u∆pw dx =

∫
U
u div

(
|∇w|p−2∇w

)
dx

=

∫
∂U
u|∇w|p−2∇w · ν dS −

∫
U
∇u · |∇w|p−2∇w dx

=

∫
∂U
u|∇w|p−2∂w

∂ν
dS −

∫
U
|∇w|p−2∇u · ∇w dx.

5. Find the Euler-Lagrange equation for the functional

I(u) =

∫
U

(∆u(x))2 dx.

[Hint: Proceed as in the proof of the Euler-Lagrange equation from class. That is, let ϕ
be smooth with compact support in U and compute

d

dt

∣∣∣
t=0

I(u+ tϕ) = 0.

Use integration by parts and the vanishing lemma to find the Euler-Lagrange equation.]
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Solution. Suppose u is a min or max of I subject to any boundary conditions (our
compactly supported test function ignores the boundary conditions). Let ϕ be smooth
with compact support and compute

0 =
d

dt

∣∣∣
t=0

I(u+ tϕ)

=

∫
U

d

dt

∣∣∣
t=0

(∆u+ t∆ϕ)2 dx

=

∫
U

2∆u∆ϕdx.

Therefore ∫
U

∆u∆ϕdx = 0

for all test functions ϕ with compact support in U . Using Green’s second identity (or
integration by parts) we have

0 =

∫
U

∆u∆ϕdx =

∫
U

(∆∆u)ϕdx

due to the fact that ϕ and ∇ϕ vanish on the boundary ∂U . By the vanishing lemma

∆2u = 0 in U

where ∆2u = ∆∆u. This is called the bi-harmonic equation, and is the Euler-Lagrange
equation for the functional in question. Written out the operator is

∆2u =
n∑
i=1

n∑
j=1

uxixixjxj = 0

which is a fourth order partial differential equation.

6. Consider the constrained problem

min
u:U→R

u=0 on ∂U

∫
U
|∇u|2 dx subject to

∫
U
u2 dx = 1.

Show that any minimizer is a solution of the eigenvalue problem{
−∆u = λu in U

u = 0 on ∂U,
(1)

where λ > 0 is given by

λ =

∫
U
|∇u|2 dx.

[Hint: This does not require a Lagrange multiplier. Let u be a minimizer of the con-
strained problem, let ϕ ∈ C∞c (U), and consider the variation

t 7→ w(x, t) :=
u(x) + tϕ(x)

‖u+ tϕ‖L2(U)
.
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Since
∫
U
w(x, t)2 dx = 1, we have

d

dt

∣∣∣
t=0

∫
U
|∇w(x, t)|2 dx = 0. Complete the argument

from here.]

Solution. We are minimizing I(u) =
∫
U |∇u|

2 dx subject to J(u) =
∫
U u

2 dx − 1 = 0,
and we have

∇I(u) = −2∆u and ∇J(u) = 2u.

The Euler-Lagrange equations for the constrained problem are therefore

−2∆u+ λ2u = 0

for some Lagrange multiplier λ. Setting λ = −λ we have

−∆u = λu.

Multiplying by u and integrating over U we have

−
∫
U
u∆u dx = λ

∫
U
u2 dx.

Since u satisfies u = 0 on ∂U and
∫
U u

2 = 1 we can integrate by parts to obtain∫
U
|∇u|2 dx = −

∫
U
u∆u dx = λ

∫
U
u2 dx = λ.

This verifies that λ > 0 (since u cannot be constant), and λ =
∫
U |∇u|

2 dx.

7. Recall the minimal surface equation

div

(
∇u√

1 + |∇u|2

)
= 0 in U.

(a) Show that the plane
u(x) = a · x+ b

solves the minimal surface equation on U = Rn, where a ∈ Rn and b ∈ R.

Solution. This is obvious.

(b) Show that for n = 2 the Scherk surface

u(x) = log

(
cos(x1)

cos(x2)

)
solves the minimal surface equation on the box U = (−π

2 ,
π
2 )2.
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Solution. Notice that

u(x) = log(cos(x1))− log(cos(x2)) = f(x1)− f(x2)

where f(x) = log(cos(x)). Let’s just look for a solution in the form

u(x) = f(x1)− f(x2),

and see what we get. Note that ux1x2 = 0, ux1 = f ′(x1), ux2 = −f ′(x2), ux1x1 =
f ′′(x1), and ux2x2 = f ′′(x2). Plugging this into the minimal surface equation

(1 + u2x2)ux1x1 − 2ux1x2ux1ux2 + (1 + u2x1)ux2x2 = 0

we get
(1 + f ′(x2)

2)f ′′(x1)− (1 + f ′(x1)
2)f ′′(x2) = 0.

Separating variables we have
f ′′(x1)

1 + f ′(x1)2
=

f ′′(x2)

1 + f ′(x2)2
.

Since the left side depends only on x1 and the right side only on x2, both sides
must be equal to the same constant A, hence

f ′′(x)

1 + f ′(x)2
= A.

Therefore
arctan(f ′(x)) = Ax+B,

and f ′(x) = tan(Ax+B). Note we must restrict A and B so that

−π
2
< Ax+B <

π

2

for all x ∈ (−π/2, π/2). We can assume without loss of generality that A < 0 (or
else we can consider −f), so we need

−π
2
A+B ≤ π

2

and
π

2
A+B ≥ −π

2
.

Together these imply that −1 ≤ A ≤ 0 and |B| ≤ π
2 (A + 1) (so once we choose A

we have a obtain a range of choices for B.)
Integrating f ′(x) = tan(Ax+B) we have

f(x) = − 1

A
log(cos(Ax+B)).

So in general we have the minimal surface

u(x) = − 1

A
log(cos(Ax1 +B)) +

1

A
log(cos(Ax2 +B)),

subject to −1 ≤ A ≤ 0 and B| ≤ π
2 (A+ 1). Note we can write

u(x) = − 1

A
log

(
cos(Ax1 +B)

cos(Ax2 +B)

)
.

The Scherk surface is obtained by selecting A = −1 and B = 0.
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