Math 8385 - Homework 1 Solutions

1. Find and solve the Euler-Lagrange equation for the functional

$$
I(u)=\int_{0}^{\log (2)} u(x)^{2}+u^{\prime}(x)^{2} d x
$$

subject to boundary conditions $u(0)=0$ and $u(\log (2))=1$, where \log is the natural logarithm.

Solution. We use the form

$$
L_{z}\left(x, u, u^{\prime}\right)-\frac{d}{d x} L_{p}\left(x, u, u^{\prime}\right)=0
$$

of the Euler-Lagrange equations. We have $L(x, z, p)=z^{2}+p^{2}$ so $L_{z}=2 z$ and $L_{p}=2 p$. Therefore

$$
0=L_{z}\left(x, u, u^{\prime}\right)-\frac{d}{d x} L_{p}\left(x, u, u^{\prime}\right)=2 u(x)-\frac{d}{d x}\left(2 u^{\prime}(x)\right)=2 u(x)-2 u^{\prime \prime}(x) .
$$

Therefore the Euler-Lagrange equation is $u^{\prime \prime}(x)=u(x)$ and the general solution is

$$
u(x)=A e^{x}+B e^{-x}
$$

Using the boundary conditions yields

$$
0=u(0)=A+B \quad \text { and } \quad 1=u(\log (2))=2 A+\frac{1}{2} B .
$$

Therefore $A=2 / 3$ and $B=-2 / 3$, and

$$
u(x)=\frac{2}{3}\left(e^{x}-e^{-x}\right)=\frac{4}{3} \sinh (x) .
$$

2. Find the Euler-Lagrange equation for the functional

$$
I(u)=\int_{0}^{\pi} u(x)^{2}-\left(u^{\prime}(x)\right)^{2} d x
$$

subject to boundary conditions $u(0)=u(\pi)=0$. Then find all solutions of the EulerLagrange equation (as a one-parameter family) and evaluate I on all solutions.

Solution. As in problem 1 the Euler-Lagrange equation is $u^{\prime \prime}(x)=-u(x)$, and the general solution is

$$
u(x)=A \sin (x)+B \cos (x) .
$$

The boundary conditions $u(0)=u(\pi)=0$ imply that $B=0$ but A can be arbitrary. So there is a family of solutions

$$
u_{A}(x)=A \sin (x),
$$

for every real number A. Since each u_{A} satisfies the Euler-Lagrange equation we have

$$
\left.\frac{d}{d A}\right|_{A=1} I(A \sin (x))=\left.\frac{d}{d t}\right|_{t=0} I(\sin (x)+t \sin (x))=0 .
$$

On the other hand $I(A \sin (x))=A^{2} I(\sin (x))$ and so

$$
\left.\frac{d}{d A}\right|_{A=1} I(A \sin (x))=2 I(\sin (x))
$$

Therefore $I(\sin (x))=0$ and

$$
I(A \sin (x))=A^{2} I(\sin (x))=0 \quad \text { for all } A .
$$

You can also directly compute $I(\sin (x))$ to show this.
3. Let $1 \leq p \leq \infty$. The p-Laplacian is defined by

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)
$$

for $1 \leq p<\infty$, and

$$
\Delta_{\infty} u:=\frac{1}{|\nabla u|^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} u_{x_{i} x_{j}} u_{x_{i}} u_{x_{j}}
$$

Notice that $\Delta_{2} u=\Delta u$. A function u is called p-harmonic if $\Delta_{p} u=0$.
(a) Show that the Euler-Lagrange equation for the functional

$$
I(u)=\int_{U} \frac{1}{p}|\nabla u(x)|^{p}-u(x) f(x) d x
$$

is the p-Laplace equation

$$
-\Delta_{p} u=f \text { in } U
$$

Solution. Here

$$
L(x, z, q)=\frac{1}{p}|q|^{p}-z f(x) .
$$

[It was a bad choice of notation to use p for the power in the p-Laplace equation when we also use p for ∇u]. Therefore $L_{z}(x, z, q)=-f(x)$ and as in problem 3

$$
\nabla_{q} L(x, z, q)=|q|^{p-1} \frac{q}{|q|}=|q|^{p-2} q .
$$

Therefore the Euler-Lagrange equation is

$$
-f(x)-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0 .
$$

Using the definition of the p-Laplace equation we have

$$
-\Delta_{p} u=f
$$

(b) Show that

$$
\Delta_{p} u=|\nabla u|^{p-2}\left(\Delta u+(p-2) \Delta_{\infty} u\right) .
$$

Solution. By the product rule we have

$$
\begin{aligned}
\Delta_{p} u & =|\nabla u|^{p-2} \operatorname{div}(\nabla u)+\nabla\left(|\nabla u|^{p-2}\right) \cdot \nabla u \\
& =|\nabla u|^{p-2} \Delta u+\nabla\left(|\nabla u|^{p-2}\right) \cdot \nabla u .
\end{aligned}
$$

Hence, all we need to show is that

$$
\nabla\left(|\nabla u|^{p-2}\right) \cdot \nabla u=|\nabla u|^{p-2}(p-2) \Delta_{\infty} u
$$

To compute this, note that

$$
|\nabla u|^{p-2}=\left(u_{x_{1}}^{2}+\cdots+u_{x_{n}}^{2}\right)^{\frac{p-2}{2}} .
$$

Therefore

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}}|\nabla u|^{p-2} & =\frac{\partial}{\partial x_{i}}\left(u_{x_{1}}^{2}+\cdots+u_{x_{n}}^{2}\right)^{\frac{p-2}{2}} \\
& =\frac{p-2}{2}\left(u_{x_{1}}^{2}+\cdots+u_{x_{n}}^{2}\right)^{\frac{p-2}{2}-1} \frac{\partial}{\partial x_{i}}\left(u_{x_{1}}^{2}+\cdots+u_{x_{n}}^{2}\right) \\
& =\frac{p-2}{2}\left(u_{x_{1}}^{2}+\cdots+u_{x_{n}}^{2}\right)^{\frac{p-4}{2}}\left(2 u_{x_{1}} u_{x_{1} x_{i}}+2 u_{x_{2}} u_{x_{2} x_{i}}+\cdots+2 u_{x_{n}} u_{x_{n} x_{i}}\right) \\
& =(p-2)|\nabla u|^{p-4}\left(u_{x_{1}} u_{x_{1} x_{i}}+u_{x_{2}} u_{x_{2} x_{i}}+\cdots+u_{x_{n}} u_{x_{n} x_{i}}\right) \\
& =(p-2)|\nabla u|^{p-4} \sum_{j=1}^{n} u_{x_{j}} u_{x_{j} x_{i}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\nabla\left(|\nabla u|^{p-2}\right) \cdot \nabla u & =\sum_{i=1}^{n}\left(\frac{\partial}{\partial x_{i}}|\nabla u|^{p-2}\right) u_{x_{i}} \\
& =\sum_{i=1}^{n}(p-2)|\nabla u|^{p-4} \sum_{j=1}^{n} u_{x_{j}} u_{x_{j} x_{i}} u_{x_{i}} \\
& =(p-2)|\nabla u|^{p-4} \sum_{i=1}^{n} \sum_{j=1}^{n} u_{x_{i} x_{j}} u_{x_{i}} u_{x_{j}} \\
& =(p-2)|\nabla u|^{p-2} \Delta_{\infty} u .
\end{aligned}
$$

This completes the proof.
(c) Show that

$$
\Delta_{\infty} u=\lim _{p \rightarrow \infty} \frac{1}{p}|\nabla u|^{2-p} \Delta_{p} u
$$

Solution. By part (a) we have

$$
\frac{1}{p}|\nabla u|^{2-p} \Delta_{p} u=\frac{1}{p} \Delta u+\frac{p-2}{p} \Delta_{\infty} u .
$$

Sendig $p \rightarrow \infty$ we have

$$
\lim _{p \rightarrow \infty} \frac{1}{p}|\nabla u|^{2-p} \Delta_{p} u=\lim _{p \rightarrow \infty} \frac{1}{p} \Delta u+\lim _{p \rightarrow \infty} \frac{p-2}{p} \Delta_{\infty} u=\Delta_{\infty} u
$$

4. Let $u, w \in C^{2}(\bar{U})$ where $U \subseteq \mathbb{R}^{n}$ is open and bounded. Show that for $1 \leq p<\infty$

$$
\int_{U} u \Delta_{p} w d x=\int_{\partial U} u|\nabla w|^{p-2} \frac{\partial w}{\partial \nu} d S-\int_{U}|\nabla w|^{p-2} \nabla u \cdot \nabla w d x .
$$

[Hint: Use one of the integration by parts formulas in the appendix of the course notes.]

Solution. Recall that

$$
\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) .
$$

By the divergence theorem, or integration by parts, we have

$$
\begin{aligned}
\int_{U} u \Delta_{p} w d x & =\int_{U} u \operatorname{div}\left(|\nabla w|^{p-2} \nabla w\right) d x \\
& =\int_{\partial U} u|\nabla w|^{p-2} \nabla w \cdot \nu d S-\int_{U} \nabla u \cdot|\nabla w|^{p-2} \nabla w d x \\
& =\int_{\partial U} u|\nabla w|^{p-2} \frac{\partial w}{\partial \nu} d S-\int_{U}|\nabla w|^{p-2} \nabla u \cdot \nabla w d x .
\end{aligned}
$$

5. Find the Euler-Lagrange equation for the functional

$$
I(u)=\int_{U}(\Delta u(x))^{2} d x .
$$

[Hint: Proceed as in the proof of the Euler-Lagrange equation from class. That is, let φ be smooth with compact support in U and compute

$$
\left.\frac{d}{d t}\right|_{t=0} I(u+t \varphi)=0
$$

Use integration by parts and the vanishing lemma to find the Euler-Lagrange equation.]

Solution. Suppose u is a min or max of I subject to any boundary conditions (our compactly supported test function ignores the boundary conditions). Let φ be smooth with compact support and compute

$$
\begin{aligned}
0 & =\left.\frac{d}{d t}\right|_{t=0} I(u+t \varphi) \\
& =\left.\int_{U} \frac{d}{d t}\right|_{t=0}(\Delta u+t \Delta \varphi)^{2} d x \\
& =\int_{U} 2 \Delta u \Delta \varphi d x .
\end{aligned}
$$

Therefore

$$
\int_{U} \Delta u \Delta \varphi d x=0
$$

for all test functions φ with compact support in U. Using Green's second identity (or integration by parts) we have

$$
0=\int_{U} \Delta u \Delta \varphi d x=\int_{U}(\Delta \Delta u) \varphi d x
$$

due to the fact that φ and $\nabla \varphi$ vanish on the boundary ∂U. By the vanishing lemma

$$
\Delta^{2} u=0 \text { in } U
$$

where $\Delta^{2} u=\Delta \Delta u$. This is called the bi-harmonic equation, and is the Euler-Lagrange equation for the functional in question. Written out the operator is

$$
\Delta^{2} u=\sum_{i=1}^{n} \sum_{j=1}^{n} u_{x_{i} x_{i} x_{j} x_{j}}=0
$$

which is a fourth order partial differential equation.
6. Consider the constrained problem

$$
\min _{\substack{u: U \rightarrow \mathbb{R} \\ u=0 \text { on } \partial U}} \int_{U}|\nabla u|^{2} d x \text { subject to } \int_{U} u^{2} d x=1 \text {. }
$$

Show that any minimizer is a solution of the eigenvalue problem

$$
\left\{\begin{align*}
-\Delta u=\lambda u & \text { in } U \tag{1}\\
u=0 & \text { on } \partial U
\end{align*}\right.
$$

where $\lambda>0$ is given by

$$
\lambda=\int_{U}|\nabla u|^{2} d x
$$

[Hint: This does not require a Lagrange multiplier. Let u be a minimizer of the constrained problem, let $\varphi \in C_{c}^{\infty}(U)$, and consider the variation

$$
t \mapsto w(x, t):=\frac{u(x)+t \varphi(x)}{\|u+t \varphi\|_{L^{2}(U)}} .
$$

Since $\int_{U} w(x, t)^{2} d x=1$, we have $\left.\frac{d}{d t}\right|_{t=0} \int_{U}|\nabla w(x, t)|^{2} d x=0$. Complete the argument from here.]

Solution. We are minimizing $I(u)=\int_{U}|\nabla u|^{2} d x$ subject to $J(u)=\int_{U} u^{2} d x-1=0$, and we have

$$
\nabla I(u)=-2 \Delta u \quad \text { and } \quad \nabla J(u)=2 u
$$

The Euler-Lagrange equations for the constrained problem are therefore

$$
-2 \Delta u+\bar{\lambda} 2 u=0
$$

for some Lagrange multiplier $\bar{\lambda}$. Setting $\lambda=-\bar{\lambda}$ we have

$$
-\Delta u=\lambda u .
$$

Multiplying by u and integrating over U we have

$$
-\int_{U} u \Delta u d x=\lambda \int_{U} u^{2} d x
$$

Since u satisfies $u=0$ on ∂U and $\int_{U} u^{2}=1$ we can integrate by parts to obtain

$$
\int_{U}|\nabla u|^{2} d x=-\int_{U} u \Delta u d x=\lambda \int_{U} u^{2} d x=\lambda .
$$

This verifies that $\lambda>0$ (since u cannot be constant), and $\lambda=\int_{U}|\nabla u|^{2} d x$.
7. Recall the minimal surface equation

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 \quad \text { in } U .
$$

(a) Show that the plane

$$
u(x)=a \cdot x+b
$$

solves the minimal surface equation on $U=\mathbb{R}^{n}$, where $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.
Solution. This is obvious.
(b) Show that for $n=2$ the Scherk surface

$$
u(x)=\log \left(\frac{\cos \left(x_{1}\right)}{\cos \left(x_{2}\right)}\right)
$$

solves the minimal surface equation on the box $U=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^{2}$.

Solution. Notice that

$$
u(x)=\log \left(\cos \left(x_{1}\right)\right)-\log \left(\cos \left(x_{2}\right)\right)=f\left(x_{1}\right)-f\left(x_{2}\right)
$$

where $f(x)=\log (\cos (x))$. Let's just look for a solution in the form

$$
u(x)=f\left(x_{1}\right)-f\left(x_{2}\right),
$$

and see what we get. Note that $u_{x_{1} x_{2}}=0, u_{x_{1}}=f^{\prime}\left(x_{1}\right), u_{x_{2}}=-f^{\prime}\left(x_{2}\right), u_{x_{1} x_{1}}=$ $f^{\prime \prime}\left(x_{1}\right)$, and $u_{x_{2} x_{2}}=f^{\prime \prime}\left(x_{2}\right)$. Plugging this into the minimal surface equation

$$
\left(1+u_{x_{2}}^{2}\right) u_{x_{1} x_{1}}-2 u_{x_{1} x_{2}} u_{x_{1}} u_{x_{2}}+\left(1+u_{x_{1}}^{2}\right) u_{x_{2} x_{2}}=0
$$

we get

$$
\left(1+f^{\prime}\left(x_{2}\right)^{2}\right) f^{\prime \prime}\left(x_{1}\right)-\left(1+f^{\prime}\left(x_{1}\right)^{2}\right) f^{\prime \prime}\left(x_{2}\right)=0
$$

Separating variables we have

$$
\frac{f^{\prime \prime}\left(x_{1}\right)}{1+f^{\prime}\left(x_{1}\right)^{2}}=\frac{f^{\prime \prime}\left(x_{2}\right)}{1+f^{\prime}\left(x_{2}\right)^{2}} .
$$

Since the left side depends only on x_{1} and the right side only on x_{2}, both sides must be equal to the same constant A, hence

$$
\frac{f^{\prime \prime}(x)}{1+f^{\prime}(x)^{2}}=A
$$

Therefore

$$
\arctan \left(f^{\prime}(x)\right)=A x+B,
$$

and $f^{\prime}(x)=\tan (A x+B)$. Note we must restrict A and B so that

$$
-\frac{\pi}{2}<A x+B<\frac{\pi}{2}
$$

for all $x \in(-\pi / 2, \pi / 2)$. We can assume without loss of generality that $A<0$ (or else we can consider $-f$), so we need

$$
-\frac{\pi}{2} A+B \leq \frac{\pi}{2}
$$

and

$$
\frac{\pi}{2} A+B \geq-\frac{\pi}{2}
$$

Together these imply that $-1 \leq A \leq 0$ and $|B| \leq \frac{\pi}{2}(A+1)$ (so once we choose A we have a obtain a range of choices for B.)
Integrating $f^{\prime}(x)=\tan (A x+B)$ we have

$$
f(x)=-\frac{1}{A} \log (\cos (A x+B))
$$

So in general we have the minimal surface

$$
u(x)=-\frac{1}{A} \log \left(\cos \left(A x_{1}+B\right)\right)+\frac{1}{A} \log \left(\cos \left(A x_{2}+B\right)\right),
$$

subject to $-1 \leq A \leq 0$ and $B \left\lvert\, \leq \frac{\pi}{2}(A+1)\right.$. Note we can write

$$
u(x)=-\frac{1}{A} \log \left(\frac{\cos \left(A x_{1}+B\right)}{\cos \left(A x_{2}+B\right)}\right) .
$$

The Scherk surface is obtained by selecting $A=-1$ and $B=0$.

