MATH 8385 – HOMEWORK 2A (DUE FRIDAY NOVEMBER 22)

Let $u \in H^1(U)$ be a weak solution of

$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} (a^{ij} u_{x_i}) = 0 \quad \text{in } U_{x_i}$$

That is, for every $v \in H_0^1(U)$ we have

$$\int_U \sum_{i,j=1}^n a^{ij} u_{x_i} v_{x_j} \, dx = 0$$

Assume the $a^{ij}: U \to \mathbb{R}$ are bounded and measurable, and satisfy the ellipticity condition

$$\theta|\eta|^2 \le \sum_{i,j=1}^n a^{ij}(x)\eta_i\eta_j \le \Theta|\eta|^2 \qquad (\forall x \in U, \eta \in \mathbb{R}^n),$$

where $0 < \theta \leq \Theta$. In this homework, you will show that for n = 2 we have $u \in C_{loc}^{0,\gamma}(U)$ for some $\gamma > 0$. This is the interior version of the de Giorgi-Nash-Moser theory.

- 1. Let $x_0 \in U$ and r > 0 such that $B(x_0, 2r) \subset U$.
 - (a) Show that there exists a constant C > 0, depending only on θ and Θ , such that

$$\int_{B(x_0,r)} |Du|^2 \, dx \le \frac{C}{r^2} \int_{B(x_0,2r)\setminus B(x_0,r)} |u-a|^2 \, dx, \tag{0.1}$$

where a is any real number. [Hint: Let $\zeta \in C^{\infty}(\mathbb{R}^n)$ be a smooth cutoff function satisfying $\zeta \equiv 1$ on $B(x_0, r)$, $\zeta \equiv 0$ on $\mathbb{R}^n \setminus B(x_0, 2r)$, $0 \leq \zeta \leq 1$, and $|D\zeta| \leq \frac{2}{r}$. Substitute $v = (u - a)\zeta^2$ into the definition of weak solution.]

(b) Verify the Poincaré inequality

$$\int_{B(x_0,2r)\setminus B(x_0,r)} |u-a|^2 \, dx \le Cr^2 \int_{B(x_0,2r)\setminus B(x_0,r)} |Du|^2 \, dx$$

holds for

$$a = \oint_{B(x_0,2r)\setminus B(x_0,r)} u\,dx.$$

(c) Combine parts (a) and (b) to deduce

$$\int_{B(x_0,r)} |Du|^2 \, dx \le \frac{C}{C+1} \int_{B(x_0,2r)} |Du|^2 \, dx,$$

where C > 0 depends only on θ and Θ . [Hint: After applying Poincaré's inequality, add $C \int_{B(x_0,r)} |Du|^2 dx$ to both sides the equation. This is known as the "hole-filling" trick.]

2. Define

$$\varphi(r) := \int_{B(x_0,r)} |Du|^2 \, dx.$$

By Part 1, there exists $0 < \eta < 1$, depending only on θ and Θ , such that

$$\varphi\left(\frac{r}{2}\right) \le \eta\varphi(r) \quad \text{for all } 0 < r < r_0,$$
 (0.2)

where $r_0 = \operatorname{dist}(x_0, \partial U)$.

(a) Show that there exists $0 < \lambda \leq 1$, depending only on η , such that

$$\varphi(r) \le \frac{\varphi(r_0)}{\eta} \left(\frac{r}{r_0}\right)^{\lambda} \quad \text{for all } 0 < r < r_0.$$
 (0.3)

(b) Use (a) and Poincaré's inequality for a ball to show that

$$\oint_{B(x_0,r)} |u - (u)_{x_0,r}|^2 \, dx \le Cr^{\lambda + 2 - n} \tag{0.4}$$

for all $0 < r < r_0$, where C depends on θ , Θ , and $r_0 = \text{dist}(x_0, \partial U)$. Recall $(u)_{x_0,r} = \int_{B(x_0,r)} u \, dx$.

- 3. Assume n = 2. Use Part 2 to prove that $u \in C_{loc}^{0,\gamma}(U)$ for $\gamma = \lambda/2$. This establishes the local Hölder continuity portion of the de Giorgi-Nash-Moser theory in dimension n = 2. **Hint:** Follow the steps below.
 - (a) Fix $\varepsilon > 0$ and define

$$U_{\varepsilon} = \{ x \in U : \operatorname{dist}(x, \partial U) > \varepsilon \}.$$

Show that for any $x_0 \in U_{\varepsilon}$ and $0 < s < t < \varepsilon$

$$s^{2}|(u)_{x_{0},s}-(u)_{x_{0},t}|^{2} \leq C(s^{\lambda+2}+t^{\lambda+2}).$$

(b) Let $x_0 \in U_{\varepsilon}$, $r < \varepsilon$, and define $r_j = r2^{-j}$ and $a_j = (u)_{x_0, r_j}$. Use part (a) to show that

$$|u(x_0) - (u)_{x_0,r}| \le \sum_{j=0}^{\infty} |a_{j+1} - a_j| \le Cr^{\gamma},$$

for almost every $x_0 \in U_{\varepsilon}$, where $\gamma = \lambda/2$.

- (c) Conclude from part (b) that $u \in C(\overline{U_{\varepsilon}})$ (provided we identify u with its continuous version). [Hint: $(u)_{x,r}$ is a continuous function of x for every r > 0.]
- (d) Show that $u \in C^{0,\gamma}(\overline{U_{\varepsilon}})$. [Hint: Let $x, y \in U_{\varepsilon}$ with $r := |x y| < \varepsilon$. Write

$$|u(x) - u(y)| \le |u(x) - (u)_{x,r}| + |(u)_{x,r} - (u)_{y,r}| + |u(y) - (u)_{y,r}|.$$

Estimate the 1st and 3rd terms with part (b). For the second term, mimic the argument used at the end of the proof of Morrey's inequality (Theorem 4 in Evans Section 5.6.2).]