Math 8385 - Homework 2A (Due Friday November 22)

Let $u \in H^{1}(U)$ be a weak solution of

$$
\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a^{i j} u_{x_{i}}\right)=0 \quad \text { in } U .
$$

That is, for every $v \in H_{0}^{1}(U)$ we have

$$
\int_{U} \sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}} d x=0
$$

Assume the $a^{i j}: U \rightarrow \mathbb{R}$ are bounded and measurable, and satisfy the ellipticity condition

$$
\theta|\eta|^{2} \leq \sum_{i, j=1}^{n} a^{i j}(x) \eta_{i} \eta_{j} \leq \Theta|\eta|^{2} \quad\left(\forall x \in U, \eta \in \mathbb{R}^{n}\right)
$$

where $0<\theta \leq \Theta$. In this homework, you will show that for $n=2$ we have $u \in C_{l o c}^{0, \gamma}(U)$ for some $\gamma>0$. This is the interior version of the de Giorgi-Nash-Moser theory.

1. Let $x_{0} \in U$ and $r>0$ such that $B\left(x_{0}, 2 r\right) \subset U$.
(a) Show that there exists a constant $C>0$, depending only on θ and Θ, such that

$$
\begin{equation*}
\int_{B\left(x_{0}, r\right)}|D u|^{2} d x \leq \frac{C}{r^{2}} \int_{B\left(x_{0}, 2 r\right) \backslash B\left(x_{0}, r\right)}|u-a|^{2} d x, \tag{0.1}
\end{equation*}
$$

where a is any real number. [Hint: Let $\zeta \in C^{\infty}\left(\mathbb{R}^{n}\right)$ be a smooth cutoff function satisfying $\zeta \equiv 1$ on $B\left(x_{0}, r\right), \zeta \equiv 0$ on $\mathbb{R}^{n} \backslash B\left(x_{0}, 2 r\right), 0 \leq \zeta \leq 1$, and $|D \zeta| \leq \frac{2}{r}$. Substitute $v=(u-a) \zeta^{2}$ into the definition of weak solution.]
(b) Verify the Poincaré inequality

$$
\int_{B\left(x_{0}, 2 r\right) \backslash B\left(x_{0}, r\right)}|u-a|^{2} d x \leq C r^{2} \int_{B\left(x_{0}, 2 r\right) \backslash B\left(x_{0}, r\right)}|D u|^{2} d x
$$

holds for

$$
a=f_{B\left(x_{0}, 2 r\right) \backslash B\left(x_{0}, r\right)} u d x .
$$

(c) Combine parts (a) and (b) to deduce

$$
\int_{B\left(x_{0}, r\right)}|D u|^{2} d x \leq \frac{C}{C+1} \int_{B\left(x_{0}, 2 r\right)}|D u|^{2} d x,
$$

where $C>0$ depends only on θ and Θ. [Hint: After applying Poincaré's inequality, add $C \int_{B\left(x_{0}, r\right)}|D u|^{2} d x$ to both sides the equation. This is known as the "hole-filling" trick.]
2. Define

$$
\varphi(r):=\int_{B\left(x_{0}, r\right)}|D u|^{2} d x
$$

By Part 1, there exists $0<\eta<1$, depending only on θ and Θ, such that

$$
\begin{equation*}
\varphi\left(\frac{r}{2}\right) \leq \eta \varphi(r) \quad \text { for all } 0<r<r_{0} \tag{0.2}
\end{equation*}
$$

where $r_{0}=\operatorname{dist}\left(x_{0}, \partial U\right)$.
(a) Show that there exists $0<\lambda \leq 1$, depending only on η, such that

$$
\begin{equation*}
\varphi(r) \leq \frac{\varphi\left(r_{0}\right)}{\eta}\left(\frac{r}{r_{0}}\right)^{\lambda} \quad \text { for all } 0<r<r_{0} \tag{0.3}
\end{equation*}
$$

(b) Use (a) and Poincaré's inequality for a ball to show that

$$
\begin{equation*}
f_{B\left(x_{0}, r\right)}\left|u-(u)_{x_{0}, r}\right|^{2} d x \leq C r^{\lambda+2-n} \tag{0.4}
\end{equation*}
$$

for all $0<r<r_{0}$, where C depends on θ, Θ, and $r_{0}=\operatorname{dist}\left(x_{0}, \partial U\right)$. Recall $(u)_{x_{0}, r}=f_{B\left(x_{0}, r\right)} u d x$.
3. Assume $n=2$. Use Part 2 to prove that $u \in C_{l o c}^{0, \gamma}(U)$ for $\gamma=\lambda / 2$. This establishes the local Hölder continuity portion of the de Giorgi-Nash-Moser theory in dimension $n=2$. Hint: Follow the steps below.
(a) Fix $\varepsilon>0$ and define

$$
U_{\varepsilon}=\{x \in U: \operatorname{dist}(x, \partial U)>\varepsilon\} .
$$

Show that for any $x_{0} \in U_{\varepsilon}$ and $0<s<t<\varepsilon$

$$
s^{2}\left|(u)_{x_{0}, s}-(u)_{x_{0}, t}\right|^{2} \leq C\left(s^{\lambda+2}+t^{\lambda+2}\right) .
$$

(b) Let $x_{0} \in U_{\varepsilon}, r<\varepsilon$, and define $r_{j}=r 2^{-j}$ and $a_{j}=(u)_{x_{0}, r_{j}}$. Use part (a) to show that

$$
\left|u\left(x_{0}\right)-(u)_{x_{0}, r}\right| \leq \sum_{j=0}^{\infty}\left|a_{j+1}-a_{j}\right| \leq C r^{\gamma}
$$

for almost every $x_{0} \in U_{\varepsilon}$, where $\gamma=\lambda / 2$.
(c) Conclude from part (b) that $u \in C\left(\overline{U_{\varepsilon}}\right)$ (provided we identify u with its continuous version). [Hint: $(u)_{x, r}$ is a continuous function of x for every $r>0$.]
(d) Show that $u \in C^{0, \gamma}\left(\overline{U_{\varepsilon}}\right)$. [Hint: Let $x, y \in U_{\varepsilon}$ with $r:=|x-y|<\varepsilon$. Write

$$
|u(x)-u(y)| \leq\left|u(x)-(u)_{x, r}\right|+\left|(u)_{x, r}-(u)_{y, r}\right|+\left|u(y)-(u)_{y, r}\right| .
$$

Estimate the 1st and 3rd terms with part (b). For the second term, mimic the argument used at the end of the proof of Morrey's inequality (Theorem 4 in Evans Section 5.6.2).]

