Math 8385 - Homework 2b (Due November 22)

1. Find $L=L(x, z, p)$ so that the PDE

$$
-\Delta u+\nabla \varphi \cdot \nabla u=f \quad \text { in } U
$$

is the Euler-Lagrange equation associated with the functional $I(u)=\int_{U} L(x, u, \nabla u) d x$. [Hint: Look for a Lagrangian with an exponential term.]
2. Let $u, v \in H_{0}^{1}(U)$ be minimizers of the Dirichlet energy

$$
I(w)=\int_{U}|\nabla w|^{2}, d x
$$

Suppose also that $u, v>0$ within U. Use the hints below to give a new proof that $u=v$ almost everywhere in U. [Hint: Define $w:=\left(\frac{u^{2}+v^{2}}{2}\right)^{1 / 2}, s:=\frac{u^{2}}{u^{2}+v^{2}}$ and $\eta=\frac{u^{2}+v^{2}}{2}$. Show that

$$
|\nabla w|^{2}=\eta\left|s \frac{\nabla u}{u}+(1-s) \frac{\nabla v}{v}\right|^{2} .
$$

Deduce that

$$
|\nabla w|^{2} \leq \eta\left(s\left|\frac{\nabla u}{u}\right|^{2}+(1-s)\left|\frac{\nabla v}{v}\right|^{2}\right)=\frac{1}{2}|\nabla u|^{2}+\frac{1}{2}|\nabla v|^{2}
$$

and therefore $\frac{\nabla u}{u}=\frac{\nabla v}{v}$ a.e. in $\left.U.\right]$
3. (Pointwise gradient constraint)
(a) Show there exists a unique minimizer $u \in \mathcal{A}$ of

$$
I(w):=\int_{U} \frac{1}{2}|\nabla w|^{2}-f w d x
$$

where

$$
\mathcal{A}=\left\{w \in H_{0}^{1}(U)| | \nabla w \mid \leq 1 \text { a.e. }\right\} .
$$

(b) Prove that

$$
\int_{U} \nabla u \cdot \nabla(w-u) d x \geq \int_{U} f(w-u) d x
$$

for all $w \in \mathcal{A}$.

