Math 8590 - Homework 1 Solutions

1. Let $u \in \operatorname{USC}\left(\mathbb{R}^{n}\right)$ and define

$$
A=\left\{x \in \mathbb{R}^{n}: \exists \varphi \in C^{\infty}\left(\mathbb{R}^{n}\right), u-\varphi \text { has a local max at } x\right\} .
$$

Show that A is dense in \mathbb{R}^{n}.
Solution. Let $x_{0} \in \mathbb{R}^{n}$ and $\varepsilon>0$. Define

$$
\varphi(x)=\frac{1}{\varepsilon}\left|x-x_{0}\right|^{2} .
$$

Since $u-\varphi$ is upper semicontinuous on $B\left(x_{0}, 1\right), u-\varphi$ attains its maximum over the closed ball at some $x_{\varepsilon} \in B\left(x_{0}, 1\right)$. Since u is upper semicontinuous, u is bounded above on $B\left(x_{0}, 1\right)$. Let $K=\sup _{B\left(x_{0}, 1\right)} u$ and note that

$$
u\left(x_{\varepsilon}\right)-\frac{1}{\varepsilon}\left|x_{\varepsilon}-x_{0}\right|^{2} \geq u\left(x_{0}\right) .
$$

Therefore

$$
\frac{1}{\varepsilon}\left|x_{\varepsilon}-x_{0}\right|^{2} \leq u\left(x_{\varepsilon}\right)-u\left(x_{0}\right) \leq K-u\left(x_{0}\right)
$$

and so $x_{\varepsilon} \rightarrow x_{0}$ as $\varepsilon \rightarrow 0^{+}$. For $\varepsilon>0$ sufficiently small, $x_{\varepsilon} \in B^{0}\left(x_{0}, 1\right)$, and so $u-\varphi$ has a local maximum at x_{ε}. Since φ is smooth, we have that $x_{\varepsilon} \in A$ for $\varepsilon>0$ sufficiently small, which establishes the density of A.
2. Show that $u(x)=x$ is a viscosity solution of $u^{\prime}=1$ on the interval $(0,1]$, but is not a viscosity solution of $u^{\prime}=1$ on the interval $[0,1)$.

Solution. If $\varphi \in C^{\infty}(\mathbb{R})$ touches from above or below at $x \in(0,1)$, then clearly $\varphi^{\prime}(x)=$ $u^{\prime}(x)=1$. Suppose that $u-\varphi$ has a local max at $x=1$ relative to $(0,1]$. Then for some $\varepsilon>0$

$$
u(x)-\varphi(x) \leq u(1)-\varphi(1) \text { for all } 1-\varepsilon \leq x \leq 1 .
$$

Setting $x=1-h$ for $h>0$ we have

$$
\frac{\varphi(1)-\varphi(1-h)}{h} \leq \frac{u(1)-u(1-h)}{h}=1,
$$

and so $\varphi^{\prime}(1) \leq 1$, which verifies the subsolution property. For the supersolution property, suppose $u-\varphi$ has a local minimum at $x=1$ relative to (0,1$]$. Then for some $\varepsilon>0$

$$
u(x)-\varphi(x) \geq u(1)-\varphi(1) \text { for all } 1-\varepsilon \leq x \leq 1
$$

Setting $x=1-h$ for $h>0$ we have

$$
\frac{\varphi(1)-\varphi(1-h)}{h} \geq \frac{u(1)-u(1-h)}{h}=1,
$$

and hence $\varphi^{\prime}(1) \geq 1$.
To see that u is not a viscosity solution of $u^{\prime}=1$ on $[0,1)$, note that $u-m x=(1-m) x$ has a local max at $x=0$ relative to $[0,1)$ for all $m \geq 1$, which violates the subsolution property. Drawing a picture can be helpful.
3. Let $u:(0,1) \rightarrow \mathbb{R}$ be continuous.
(a) Show that u is nondecreasing on $(0,1)$ if and only if u is a viscosity solution of $u^{\prime} \geq 0$ on $(0,1)$.

Solution. The proof is split into two steps.

1. Suppose that u is nondecreasing on $(0,1)$. Let $x \in(0,1)$ and $\varphi \in C^{\infty}(\mathbb{R})$ such that $u-\varphi$ has a local minimum at x. Then for $h>0$ sufficiently small

$$
\varphi(x)-\varphi(x-h) \geq u(x)-u(x-h) \geq 0
$$

as u is nondecreasing. Dividing by $h>0$ and sending $h \rightarrow 0^{+}$we find that $\varphi^{\prime}(x) \geq 0$.
2. Suppose that $u^{\prime} \geq 0$ in the viscosity sense on (0,1), but u is not nondecreasing on $(0,1)$. Then there exists $0<x_{1}<x_{3}<1$ such that $u\left(x_{1}\right)>u\left(x_{3}\right)$. Since u is continuous, there exists $x_{2} \in\left(x_{1}, x_{3}\right)$ such that

$$
u\left(x_{3}\right)<u\left(x_{2}\right)<u\left(x_{1}\right) .
$$

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by piecing together lines interpolating between $\left(x_{1}, u\left(x_{1}\right)\right)$, $\left(x_{2}, u\left(x_{2}\right)\right)$, and ($\left.x_{3}, u\left(x_{3}\right)\right)$ as follows:

$$
f(x)= \begin{cases}u\left(x_{2}\right)+m_{1}\left(x-x_{2}\right), & \text { if } x \leq x_{2} \\ u\left(x_{2}\right)+m_{2}\left(x-x_{2}\right), & \text { if } x>x_{2},\end{cases}
$$

where

$$
m_{1}=\frac{u\left(x_{2}\right)-u\left(x_{1}\right)}{x_{2}-x_{1}} \quad \text { and } \quad m_{2}=\frac{u\left(x_{3}\right)-u\left(x_{2}\right)}{x_{3}-x_{2}} .
$$

Let $\delta=-\max \left\{m_{1}, m_{2}\right\}>0$ and note that $f^{\prime}(x) \leq-\delta$ for all $x \neq x_{2}$. Let $\varepsilon>0$ and define

$$
f_{\varepsilon}:=\eta_{\varepsilon} * f
$$

where η_{ε} is the standard mollifier. Then

$$
f_{\varepsilon}^{\prime}(x)=\left(\eta_{\varepsilon} * f^{\prime}\right)(x) \leq-\delta<0 \quad \text { for all } x \in \mathbb{R}
$$

Furthermore, $f_{\varepsilon} \in C^{\infty}(\mathbb{R})$ and $f_{\varepsilon} \rightarrow f$ uniformly on \mathbb{R} as $\varepsilon \rightarrow 0$. Define

$$
\varphi(x)=f_{\varepsilon}(x)-\frac{\delta}{4\left(x_{3}-x_{1}\right)}\left(x-x_{2}\right)^{2} .
$$

Then

$$
\varphi_{\varepsilon}^{\prime}(x)=f_{\varepsilon}^{\prime}(x)-\frac{\delta}{2}\left(\frac{x-x_{2}}{x_{3}-x_{1}}\right) \leq-\delta+\frac{\delta}{2}=-\frac{\delta}{2}<0
$$

for all $\varepsilon>0$ and $x \in\left(x_{1}, x_{3}\right)$. Notice also that

$$
u\left(x_{1}\right)-\varphi\left(x_{1}\right) \rightarrow \frac{\delta}{4\left(x_{3}-x_{1}\right)}\left(x_{1}-x_{2}\right)^{2},
$$

$$
u\left(x_{3}\right)-\varphi\left(x_{3}\right) \rightarrow \frac{\delta}{4\left(x_{3}-x_{1}\right)}\left(x_{3}-x_{2}\right)^{2}
$$

and

$$
u\left(x_{2}\right)-\varphi\left(x_{2}\right) \rightarrow 0
$$

as $\varepsilon \rightarrow 0^{+}$. Therefore, for small enough $\varepsilon>0$

$$
u\left(x_{2}\right)-\varphi\left(x_{2}\right)<\min \left\{u\left(x_{1}\right)-\varphi\left(x_{1}\right), u\left(x_{3}\right)-\varphi\left(x_{3}\right)\right\}
$$

It follows that for such an $\varepsilon>0, u-\varphi$ has a local minimum at some $x \in\left(x_{1}, x_{3}\right)$, at which $\varphi^{\prime}(x) \leq-\frac{\delta}{2}<0$, which is a contradiction.
(b) Show that u is convex on $(0,1)$ if and only if u is a viscosity solution of $-u^{\prime \prime} \leq 0$ on $(0,1)$. Show that in general, convex functions are not viscosity solutions of $u^{\prime \prime} \geq 0$.

Solution. The proof is split into two steps.

1. Suppose that u is convex on $(0,1)$. Let $x \in(0,1)$ and $\varphi \in C^{\infty}(\mathbb{R})$ such that $u-\varphi$ has a local maximum at x. Then

$$
\varphi(x)-\varphi(x+h) \leq u(x)-u(x+h)
$$

for $|h|$ sufficiently small. Therefore

$$
\frac{2 \varphi(x)-\varphi(x+h)-\varphi(x-h)}{h^{2}} \leq \frac{2 u(x)-u(x+h)-u(x-h)}{h^{2}} \leq 0
$$

due to the convexity of u. Since the left hand side converges to $-\varphi^{\prime \prime}(x)$ as $h \rightarrow 0$, we deduce that $-\varphi^{\prime \prime}(x) \leq 0$.
2. Suppose now that u is a viscosity solution of $-u^{\prime \prime} \leq 0$ on $(0,1)$, but u is not convex on $(0,1)$. Then there exists $0<x_{1}<x_{3}<1$ and $\lambda \in(0,1)$ such that

$$
u\left(\lambda x_{1}+(1-\lambda) x_{3}\right)>\lambda u\left(x_{1}\right)+(1-\lambda) u\left(x_{3}\right)
$$

Let us write $x_{2}:=\lambda x_{1}+(1-\lambda) x_{3}$. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ to be the line interpolating between $\left(x_{1}, u\left(x_{1}\right)\right)$ and $\left(x_{3}, u\left(x_{3}\right)\right)$ as follows:

$$
f(x)=u\left(x_{1}\right)+m\left(x-x_{1}\right)
$$

where

$$
m=\frac{u\left(x_{3}\right)-u\left(x_{1}\right)}{x_{3}-x_{1}}
$$

By definition, $u\left(x_{1}\right)=f\left(x_{1}\right), u\left(x_{2}\right)>f\left(x_{2}\right)$, and $u\left(x_{3}\right)=f\left(x_{3}\right)$. Now define

$$
\varphi(x)=f(x)-\varepsilon\left(x-x_{2}\right)^{2}
$$

Note that

$$
\begin{gathered}
u\left(x_{2}\right)-\varphi\left(x_{2}\right)=u\left(x_{2}\right)-f\left(x_{2}\right)>0 \\
u\left(x_{1}\right)-\varphi\left(x_{1}\right)=\varepsilon\left(x_{1}-x_{2}\right)^{2}, \quad \text { and } u\left(x_{3}\right)-\varphi\left(x_{3}\right)=\varepsilon\left(x_{3}-x_{2}\right)^{2}
\end{gathered}
$$

Thus, for $\varepsilon>0$ sufficiently small

$$
u\left(x_{2}\right)-\varphi\left(x_{2}\right)>\max \left\{u\left(x_{1}\right)-\varphi\left(x_{1}\right), u\left(x_{3}\right)-\varphi\left(x_{3}\right)\right\} .
$$

For such an $\varepsilon>0, u-\varphi$ has a local maximum at some $x \in\left(x_{1}, x_{3}\right)$ and

$$
\varphi^{\prime \prime}(x)=f^{\prime \prime}(x)-2 \varepsilon=-2 \varepsilon<0
$$

This contradicts the fact that u is a viscosity solution of $-u^{\prime \prime} \leq 0$ on $(0,1)$.
Finally, convex functions are not viscosity solutions of $u^{\prime \prime} \geq 0$ because the second derivative of functions that touch from below can be arbitrarily negative, even if u is smooth and convex. For example, let $u(x)=x^{2}$ and $\varphi(x)=-C x^{2}$. Then $u-\varphi$ has a local minimum at $x=0$ for every $C \geq-1$. Since $\varphi^{\prime \prime}(0)=-2 C, u$ is clearly not a viscosity solution of $u^{\prime \prime} \geq 0$. Notice that the PDE $u^{\prime \prime} \geq 0$ is not even degenerate elliptic (whereas $-u^{\prime \prime} \leq 0$ is degenerate elliptic). Notice also that these issues are not observed in first order equations. For example, part (a) remains true if $u^{\prime} \geq 0$ is replaced by $-u^{\prime} \leq 0$.
4. Let $U \subset \mathbb{R}^{n}$ be open. Suppose that $u \in C(U)$ satisfies

$$
u(x)=f_{B(x, \varepsilon)} u d y+o\left(\varepsilon^{2}\right) \text { as } \varepsilon \rightarrow 0^{+}
$$

for every $x \in U$. Show that u is a viscosity solution of

$$
-\Delta u=0 \text { in } U .
$$

Solution. Let $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$. Then we can expand φ in a second order Taylor series

$$
\varphi(y)=\varphi(x)+D \varphi(x) \cdot(y-x)+\frac{1}{2}(y-x)^{T} D^{2} \varphi(x)(y-x)+o\left(|y-x|^{2}\right) .
$$

Take the average of both sides over the ball $B(x, \varepsilon)$ to find that

$$
f_{B(x, \varepsilon)} \varphi d y=\varphi(x)+\frac{1}{2} f_{B(x, \varepsilon)}(y-x)^{T} D^{2} \varphi(x)(y-x) d y+o\left(\varepsilon^{2}\right)
$$

where we used the fact that the first order terms in the Taylor expansion are affine, hence harmonic, and their average is $\varphi(x)$ by the mean value property. Set $z=\frac{y-x}{\varepsilon}$ in the second integral to find that

$$
\begin{equation*}
f_{B(x, \varepsilon)} \varphi(x)-\varphi(y) d y+o\left(\varepsilon^{2}\right)=-\frac{\varepsilon^{2}}{2} f_{B(0,1)} z^{T} D^{2} \varphi(x) z d z . \tag{1}
\end{equation*}
$$

Let us work on the right hand side. We have

$$
f_{B(0,1)} z^{T} D^{2} \varphi(x) z d z=\sum_{i, j=1}^{n} \varphi_{x_{i} x_{j}}(x) f_{B(0,1)} z_{i} z_{j} d z
$$

Since $z_{i} z_{j}$ for $i \neq j$ is harmonic, we can again use the mean value property to obtain

$$
f_{B(0,1)} z^{T} D^{2} \varphi(x) z d z=\sum_{i=1}^{n} \varphi_{x_{i} x_{i}}(x) f_{B(0,1)} z_{i}^{2} d z=\frac{\Delta \varphi(x)}{n} f_{B(0,1)}|z|^{2} d z
$$

Switching to polar coordinates we have

$$
f_{B(0,1)}|z|^{2} d z=\frac{1}{\alpha(n)} \int_{0}^{1} \int_{\partial B(0, r)} r^{2} d S(y) d r=\frac{n}{n+2}
$$

Plugging this into (1) we have

$$
\begin{equation*}
-\Delta \varphi(x)=2(n+2) f_{B(x, \varepsilon)} \frac{\varphi(x)-\varphi(y)}{\varepsilon^{2}} d y+o(1) \quad \text { as } \varepsilon \rightarrow 0^{+} . \tag{2}
\end{equation*}
$$

Similarly, the assumption on u can be written as

$$
\begin{equation*}
f_{B(x, \varepsilon)} \frac{u(x)-u(y)}{\varepsilon^{2}} d y=o(1) \text { as } \varepsilon \rightarrow 0^{+} . \tag{3}
\end{equation*}
$$

Now let $x \in \mathbb{R}^{n}$ and $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $u-\varphi$ has a local maximum at x. Then

$$
\varphi(x)-\varphi(y) \leq u(x)-u(y) \quad \text { for all } y \text { near } x
$$

Therefore

$$
f_{B(x, \varepsilon)} \frac{\varphi(x)-\varphi(y)}{\varepsilon^{2}} d y \leq f_{B(x, \varepsilon)} \frac{u(x)-u(y)}{\varepsilon^{2}} d y=o(1) \text { as } \varepsilon \rightarrow 0^{+} .
$$

Combining this with (2) we have

$$
-\Delta \varphi(x) \leq o(1) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

and so $-\Delta \varphi(x) \leq 0$. Therefore u is a viscosity subsolution of

$$
-\Delta u=0 \text { in } U .
$$

Now suppose $u-\varphi$ has a local minimum at x. Then

$$
\varphi(x)-\varphi(y) \geq u(x)-u(y) \quad \text { for all } y \text { near } x
$$

and so

$$
f_{B(x, \varepsilon)} \frac{\varphi(x)-\varphi(y)}{\varepsilon^{2}} d y \geq f_{B(x, \varepsilon)} \frac{u(x)-u(y)}{\varepsilon^{2}} d y=o(1) \text { as } \varepsilon \rightarrow 0^{+} .
$$

Combining this with (2) we have

$$
-\Delta \varphi(x) \geq o(1) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

which verifies the supersolution property.

