
Math 8590 – Homework 1 Solutions

1. Let u ∈ USC(Rn) and define

A =
{
x ∈ Rn : ∃ϕ ∈ C∞(Rn), u− ϕ has a local max at x

}
.

Show that A is dense in Rn.

Solution. Let x0 ∈ Rn and ε > 0. Define

ϕ(x) =
1

ε
|x− x0|2.

Since u − ϕ is upper semicontinuous on B(x0, 1), u − ϕ attains its maximum over the
closed ball at some xε ∈ B(x0, 1). Since u is upper semicontinuous, u is bounded above
on B(x0, 1). Let K = supB(x0,1) u and note that

u(xε)−
1

ε
|xε − x0|2 ≥ u(x0).

Therefore
1

ε
|xε − x0|2 ≤ u(xε)− u(x0) ≤ K − u(x0),

and so xε → x0 as ε→ 0+. For ε > 0 sufficiently small, xε ∈ B0(x0, 1), and so u−ϕ has
a local maximum at xε. Since ϕ is smooth, we have that xε ∈ A for ε > 0 sufficiently
small, which establishes the density of A.

2. Show that u(x) = x is a viscosity solution of u′ = 1 on the interval (0, 1], but is not a
viscosity solution of u′ = 1 on the interval [0, 1).

Solution. If ϕ ∈ C∞(R) touches from above or below at x ∈ (0, 1), then clearly ϕ′(x) =
u′(x) = 1. Suppose that u−ϕ has a local max at x = 1 relative to (0, 1]. Then for some
ε > 0

u(x)− ϕ(x) ≤ u(1)− ϕ(1) for all 1− ε ≤ x ≤ 1.

Setting x = 1− h for h > 0 we have

ϕ(1)− ϕ(1− h)

h
≤ u(1)− u(1− h)

h
= 1,

and so ϕ′(1) ≤ 1, which verifies the subsolution property. For the supersolution property,
suppose u− ϕ has a local minimum at x = 1 relative to (0, 1]. Then for some ε > 0

u(x)− ϕ(x) ≥ u(1)− ϕ(1) for all 1− ε ≤ x ≤ 1.

Setting x = 1− h for h > 0 we have

ϕ(1)− ϕ(1− h)

h
≥ u(1)− u(1− h)

h
= 1,

and hence ϕ′(1) ≥ 1.

To see that u is not a viscosity solution of u′ = 1 on [0, 1), note that u−mx = (1−m)x
has a local max at x = 0 relative to [0, 1) for all m ≥ 1, which violates the subsolution
property. Drawing a picture can be helpful.



3. Let u : (0, 1)→ R be continuous.

(a) Show that u is nondecreasing on (0, 1) if and only if u is a viscosity solution of
u′ ≥ 0 on (0, 1).

Solution. The proof is split into two steps.
1. Suppose that u is nondecreasing on (0, 1). Let x ∈ (0, 1) and ϕ ∈ C∞(R) such
that u− ϕ has a local minimum at x. Then for h > 0 sufficiently small

ϕ(x)− ϕ(x− h) ≥ u(x)− u(x− h) ≥ 0,

as u is nondecreasing. Dividing by h > 0 and sending h → 0+ we find that
ϕ′(x) ≥ 0.
2. Suppose that u′ ≥ 0 in the viscosity sense on (0, 1), but u is not nondecreasing
on (0, 1). Then there exists 0 < x1 < x3 < 1 such that u(x1) > u(x3). Since u is
continuous, there exists x2 ∈ (x1, x3) such that

u(x3) < u(x2) < u(x1).

Define f : R → R by piecing together lines interpolating between (x1, u(x1)),
(x2, u(x2)), and (x3, u(x3)) as follows:

f(x) =

{
u(x2) +m1(x− x2), if x ≤ x2
u(x2) +m2(x− x2), if x > x2,

where
m1 =

u(x2)− u(x1)

x2 − x1
and m2 =

u(x3)− u(x2)

x3 − x2
.

Let δ = −max{m1,m2} > 0 and note that f ′(x) ≤ −δ for all x 6= x2. Let ε > 0
and define

fε := ηε ∗ f,

where ηε is the standard mollifier. Then

f ′ε(x) = (ηε ∗ f ′)(x) ≤ −δ < 0 for all x ∈ R.

Furthermore, fε ∈ C∞(R) and fε → f uniformly on R as ε→ 0. Define

ϕ(x) = fε(x)− δ

4(x3 − x1)
(x− x2)2.

Then
ϕ′ε(x) = f ′ε(x)− δ

2

(
x− x2
x3 − x1

)
≤ −δ +

δ

2
= −δ

2
< 0

for all ε > 0 and x ∈ (x1, x3). Notice also that

u(x1)− ϕ(x1)→
δ

4(x3 − x1)
(x1 − x2)2,
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u(x3)− ϕ(x3)→
δ

4(x3 − x1)
(x3 − x2)2,

and
u(x2)− ϕ(x2)→ 0

as ε→ 0+. Therefore, for small enough ε > 0

u(x2)− ϕ(x2) < min{u(x1)− ϕ(x1), u(x3)− ϕ(x3)}.

It follows that for such an ε > 0, u− ϕ has a local minimum at some x ∈ (x1, x3),
at which ϕ′(x) ≤ − δ

2 < 0, which is a contradiction.

(b) Show that u is convex on (0, 1) if and only if u is a viscosity solution of −u′′ ≤ 0 on
(0, 1). Show that in general, convex functions are not viscosity solutions of u′′ ≥ 0.

Solution. The proof is split into two steps.
1. Suppose that u is convex on (0, 1). Let x ∈ (0, 1) and ϕ ∈ C∞(R) such that
u− ϕ has a local maximum at x. Then

ϕ(x)− ϕ(x+ h) ≤ u(x)− u(x+ h)

for |h| sufficiently small. Therefore

2ϕ(x)− ϕ(x+ h)− ϕ(x− h)

h2
≤ 2u(x)− u(x+ h)− u(x− h)

h2
≤ 0

due to the convexity of u. Since the left hand side converges to −ϕ′′(x) as h→ 0,
we deduce that −ϕ′′(x) ≤ 0.
2. Suppose now that u is a viscosity solution of −u′′ ≤ 0 on (0, 1), but u is not
convex on (0, 1). Then there exists 0 < x1 < x3 < 1 and λ ∈ (0, 1) such that

u(λx1 + (1− λ)x3) > λu(x1) + (1− λ)u(x3).

Let us write x2 := λx1 + (1− λ)x3. Define f : R → R to be the line interpolating
between (x1, u(x1)) and (x3, u(x3)) as follows:

f(x) = u(x1) +m(x− x1),

where
m =

u(x3)− u(x1)

x3 − x1
.

By definition, u(x1) = f(x1), u(x2) > f(x2), and u(x3) = f(x3). Now define

ϕ(x) = f(x)− ε(x− x2)2.

Note that
u(x2)− ϕ(x2) = u(x2)− f(x2) > 0,

u(x1)− ϕ(x1) = ε(x1 − x2)2, and u(x3)− ϕ(x3) = ε(x3 − x2)2.
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Thus, for ε > 0 sufficiently small

u(x2)− ϕ(x2) > max{u(x1)− ϕ(x1), u(x3)− ϕ(x3)}.

For such an ε > 0, u− ϕ has a local maximum at some x ∈ (x1, x3) and

ϕ′′(x) = f ′′(x)− 2ε = −2ε < 0.

This contradicts the fact that u is a viscosity solution of −u′′ ≤ 0 on (0, 1).
Finally, convex functions are not viscosity solutions of u′′ ≥ 0 because the second
derivative of functions that touch from below can be arbitrarily negative, even if
u is smooth and convex. For example, let u(x) = x2 and ϕ(x) = −Cx2. Then
u − ϕ has a local minimum at x = 0 for every C ≥ −1. Since ϕ′′(0) = −2C, u is
clearly not a viscosity solution of u′′ ≥ 0. Notice that the PDE u′′ ≥ 0 is not even
degenerate elliptic (whereas −u′′ ≤ 0 is degenerate elliptic). Notice also that these
issues are not observed in first order equations. For example, part (a) remains true
if u′ ≥ 0 is replaced by −u′ ≤ 0.

4. Let U ⊂ Rn be open. Suppose that u ∈ C(U) satisfies

u(x) = −
∫
B(x,ε)

u dy + o(ε2) as ε→ 0+

for every x ∈ U . Show that u is a viscosity solution of

−∆u = 0 in U.

Solution. Let ϕ ∈ C∞(Rn) and x ∈ Rn. Then we can expand ϕ in a second order Taylor
series

ϕ(y) = ϕ(x) +Dϕ(x) · (y − x) +
1

2
(y − x)TD2ϕ(x)(y − x) + o(|y − x|2).

Take the average of both sides over the ball B(x, ε) to find that

−
∫
B(x,ε)

ϕdy = ϕ(x) +
1

2
−
∫
B(x,ε)

(y − x)TD2ϕ(x)(y − x) dy + o(ε2),

where we used the fact that the first order terms in the Taylor expansion are affine,
hence harmonic, and their average is ϕ(x) by the mean value property. Set z = y−x

ε in
the second integral to find that

−
∫
B(x,ε)

ϕ(x)− ϕ(y) dy + o(ε2) = −ε
2

2
−
∫
B(0,1)

zTD2ϕ(x)z dz. (1)

Let us work on the right hand side. We have

−
∫
B(0,1)

zTD2ϕ(x)z dz =

n∑
i,j=1

ϕxixj (x)−
∫
B(0,1)

zizj dz.
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Since zizj for i 6= j is harmonic, we can again use the mean value property to obtain

−
∫
B(0,1)

zTD2ϕ(x)z dz =
n∑
i=1

ϕxixi(x)−
∫
B(0,1)

z2i dz =
∆ϕ(x)

n
−
∫
B(0,1)

|z|2 dz.

Switching to polar coordinates we have

−
∫
B(0,1)

|z|2 dz =
1

α(n)

∫ 1

0

∫
∂B(0,r)

r2 dS(y) dr =
n

n+ 2
.

Plugging this into (1) we have

−∆ϕ(x) = 2(n+ 2)−
∫
B(x,ε)

ϕ(x)− ϕ(y)

ε2
dy + o(1) as ε→ 0+. (2)

Similarly, the assumption on u can be written as

−
∫
B(x,ε)

u(x)− u(y)

ε2
dy = o(1) as ε→ 0+. (3)

Now let x ∈ Rn and ϕ ∈ C∞(Rn) such that u− ϕ has a local maximum at x. Then

ϕ(x)− ϕ(y) ≤ u(x)− u(y) for all y near x.

Therefore

−
∫
B(x,ε)

ϕ(x)− ϕ(y)

ε2
dy ≤ −

∫
B(x,ε)

u(x)− u(y)

ε2
dy = o(1) as ε→ 0+.

Combining this with (2) we have

−∆ϕ(x) ≤ o(1) as ε→ 0+,

and so −∆ϕ(x) ≤ 0. Therefore u is a viscosity subsolution of

−∆u = 0 in U.

Now suppose u− ϕ has a local minimum at x. Then

ϕ(x)− ϕ(y) ≥ u(x)− u(y) for all y near x,

and so

−
∫
B(x,ε)

ϕ(x)− ϕ(y)

ε2
dy ≥ −

∫
B(x,ε)

u(x)− u(y)

ε2
dy = o(1) as ε→ 0+.

Combining this with (2) we have

−∆ϕ(x) ≥ o(1) as ε→ 0+,

which verifies the supersolution property.
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