MATH 8590 — HOMEWORK 1 SOLUTIONS

1. Let u € USC(R") and define
A= {x € R" : Jp € C®(R"), u — ¢ has a local max at :U}
Show that A is dense in R".
Solution. Let g € R™ and € > 0. Define
pla) = Zlo w0l

Since u — ¢ is upper semicontinuous on B(xg, 1), u — ¢ attains its maximum over the
closed ball at some z. € B(xg, 1). Since u is upper semicontinuous, u is bounded above
on B(zp,1). Let K = suppy, 1) and note that

1
u(ze) — —|ze — a;0|2 > u(xp).
€

xp,1

Therefore ]
g|x8 —z0]? < ulx.) —u(zo) < K — u(xo),

and so x. — g as € — 0F. For ¢ > 0 sufficiently small, z. € B%(zg, 1), and so u — ¢ has
a local maximum at x.. Since ¢ is smooth, we have that x. € A for € > 0 sufficiently
small, which establishes the density of A. O

2. Show that u(z) = x is a viscosity solution of /' = 1 on the interval (0, 1], but is not a
viscosity solution of ' = 1 on the interval [0, 1).

Solution. If ¢ € C*°(R) touches from above or below at = € (0,1), then clearly ¢'(x) =
u'(x) = 1. Suppose that u — ¢ has a local max at = = 1 relative to (0, 1]. Then for some
e>0
u(z) — () <u(l) — (1) foralll —e <z <1.

Setting x = 1 — h for h > 0 we have

p(1) —p—h) _ul)—ul-h) _,

h - h ’

and so /(1) < 1, which verifies the subsolution property. For the supersolution property,
suppose u — ¢ has a local minimum at x = 1 relative to (0,1]. Then for some £ > 0

u(x) —@(x) >u(l) —p(l) foralll—e <z <1.
Setting x = 1 — h for h > 0 we have
u(l) —u(l —h)

()= p(1—h) _ »
h - h ’

and hence ¢/(1) > 1.

To see that w is not a viscosity solution of v’ =1 on [0, 1), note that u —mz = (1 —m)x
has a local max at x = 0 relative to [0, 1) for all m > 1, which violates the subsolution
property. Drawing a picture can be helpful. O



3. Let u: (0,1) — R be continuous.

(a) Show that u is nondecreasing on (0, 1) if and only if w is a viscosity solution of
' >0on (0,1).

Solution. The proof is split into two steps.

1. Suppose that u is nondecreasing on (0,1). Let « € (0,1) and ¢ € C*°(R) such
that u — ¢ has a local minimum at z. Then for A > 0 sufficiently small

p(x) — (e —h) > u() —u(z —h) =0,

as u is nondecreasing. Dividing by h > 0 and sending h — 0" we find that
#(x) > 0.

2. Suppose that v/ > 0 in the viscosity sense on (0, 1), but u is not nondecreasing
on (0,1). Then there exists 0 < 27 < x3 < 1 such that u(z;) > u(x3). Since u is
continuous, there exists zo € (1, 23) such that

u(zs) < u(xe) < u(xy).

Define f : R — R by piecing together lines interpolating between (x1,u(x1)),
(z2,u(z2)), and (x3,u(xs3)) as follows:

() u(ze) + my(x — z2), if 2 < o
€T =
u(xe) + ma(x — xe), if x> x9,
where
my = W) —ulz) e ul@s) —u(w)
To — X1 T3 — X2

Let § = —max{mi, ms} > 0 and note that f'(z) < —6 for all x # 5. Let € > 0
and define

Je == ne * f,

where 7). is the standard mollifier. Then
fl@) =% f)(z) <=6 <0 forallz € R.
Furthermore, f. € C*°(R) and f. — f uniformly on R as ¢ — 0. Define

4]

p(z) = f() — m(m — x9)%.
Then
o) = ) -5 (22 ) <=5+ 5 = -2 <o
for all € > 0 and = € (21, x3). Notice also that
1
) = o) > o — )



i )(ws — x9)?,

u(zs) — p(x3) = m

and
u(xe) — p(x2) = 0

as € — 07. Therefore, for small enough ¢ > 0
u(zz) — @(22) < min{u(z1) — @(z1), u(zs) — @(z3)}.

It follows that for such an € > 0, u — ¢ has a local minimum at some = € (z1,x3),
at which ¢/(x) < —% < 0, which is a contradiction. ]

Show that u is convex on (0, 1) if and only if u is a viscosity solution of —u” < 0 on
(0,1). Show that in general, convex functions are not viscosity solutions of u” > 0.

Solution. The proof is split into two steps.

1. Suppose that u is convex on (0,1). Let x € (0,1) and ¢ € C*°(R) such that
u — ¢ has a local maximum at z. Then

p(r) =z +h) <u(z) —u(z+h)
for |h| sufficiently small. Therefore

2¢0(z) —p@+h) —ple—h) _ 2u(z) —u(z+h) —ulz-h)
h? - h?

<0

due to the convexity of u. Since the left hand side converges to —¢"(z) as h — 0,
we deduce that —¢"(z) < 0.

2. Suppose now that u is a viscosity solution of —u” < 0 on (0,1), but u is not
convex on (0,1). Then there exists 0 < 21 < z3 < 1 and X € (0, 1) such that

u(Az1 + (1 = Naxz) > Au(zr) + (1 — Nu(zs).

Let us write 2 := Az1 + (1 — A\)zg. Define f : R — R to be the line interpolating
between (z1,u(x1)) and (z3,u(x3)) as follows:

f(z) = u(z1) + m(z — 21),
where

u(zz) — u(z1)
r3 — 1 .

By definition, u(z1) = f(x1), u(x2) > f(z2), and u(xz) = f(r3). Now define

p(a) = f(z) — ez — z2)*.

Note that
u(w2) — p(x2) = u(z2) — f(22) >0,

u(zy) — (1) = e(x — 332)2, and  u(z3) — @(x3) = e(x3 — $2)2.



Thus, for € > 0 sufficiently small
u(w2) — p(z2) > max{u(z1) — (1), u(zs) — p(z3)}-
For such an € > 0, u — ¢ has a local maximum at some x € (z1,z3) and
o"(x) = f(x) — 26 = —2¢ < 0.

This contradicts the fact that w is a viscosity solution of —u” < 0 on (0, 1).

Finally, convex functions are not viscosity solutions of u” > 0 because the second
derivative of functions that touch from below can be arbitrarily negative, even if
u is smooth and convex. For example, let u(z) = 2? and ¢(z) = —Cz? Then
u — ¢ has a local minimum at x = 0 for every C' > —1. Since ¢”(0) = —2C, u is
clearly not a viscosity solution of ” > 0. Notice that the PDE «” > 0 is not even
degenerate elliptic (whereas —u” < 0 is degenerate elliptic). Notice also that these
issues are not observed in first order equations. For example, part (a) remains true
if u' > 0 is replaced by —u’ < 0. d

4. Let U C R™ be open. Suppose that u € C(U) satisfies
u(x) :][ udy +o(e?) ase — 0"
B(z,e)

for every z € U. Show that u is a viscosity solution of

—Au=0 in U.

Solution. Let ¢ € C*°(R™) and z € R™. Then we can expand ¢ in a second order Taylor
series

o(y) = () + Dp(x) - (y —x) + %(y —2)"D%p(x)(y — x) + o(|y — =[?).

Take the average of both sides over the ball B(x,¢) to find that

1

Foeti=e@t3f -0 Deln)y - o)y + o),
B(z,e) B(z,e)

where we used the fact that the first order terms in the Taylor expansion are affine,
hence harmonic, and their average is ¢(z) by the mean value property. Set z = y;—x in
the second integral to find that

2
Fooe@ ey o) = -5 TDel)zde 1)
B(x,¢) B(0,1)

Let us work on the right hand side. We have

Z T 12 Z
z- D%p(z)zdz = E Opyz; (T zizi dz.
B(0,1) (=) ]( ) !

i B(0,1)



Since z;z;j for i # j is harmonic, we can again use the mean value property to obtain

][ 2 D%p(2)zdz = Z Oriz; (:z)][ 22dz = AQD(:B)][ |2|% dz.
B(0,1) i—1 B( n B(0,1)

0,1)

Switching to polar coordinates we have

I n
z2dz:// r2dS(y) dr = .
.é@UH a(n) Jo Jopom ) n+2

Plugging this into (1) we have

—Acp(:c):2(n+2)]é( )Wdy+o(1) ase — 0. (2)

Similarly, the assumption on u can be written as

][ u(a;);u(y)dy_o(l) ase — 0T, (3)
B(z,e)

Now let x € R™ and ¢ € C*°(R") such that u — ¢ has a local maximum at x. Then

o(x) — @(y) <u(z) —u(y) for all y near x.

Therefore

][ Mdyg][ Mdy:o(l) ase — 07,
B(x,e) € B(x.e)

Combining this with (2) we have
—Ap(r) <o(l) ase— 0T,
and so —Ap(z) < 0. Therefore u is a viscosity subsolution of

—Au=0 in U.
Now suppose u — ¢ has a local minimum at . Then

¢(x) — ¢(y) = u(x) —u(y) for all y near x,

and so

][ Mdyzj[ UD) —ul9) g~ o(1) ase - 0.
Bl(z,e) 5 B(z,e) €

Combining this with (2) we have
—Ap(z) >0(1) ase— 0T,

which verifies the supersolution property. ]



