Note: Please choose a paper for your term end project/presentation by Friday Oct 5 .

Math 8590 - Homework 2 (Due Friday Oct 5)

Please hand in your solution to 1 problem from those below.
Let $U \subset \mathbb{R}^{n}$ be open.

1. (a) Let $u, v \in \operatorname{USC}(\bar{U})$. Suppose that $w:=u$ and $w:=v$ are viscosity solutions of

$$
\begin{equation*}
H\left(D^{2} w, D w, w, x\right) \leq 0 \text { in } \mathrm{U} . \tag{1}
\end{equation*}
$$

Show that $w(x):=\max \{u(x), v(x)\}$ is a viscosity solution of (1) (i.e., the pointwise maximum of two subsolutions is again a subsolution).
(b) Let $u, v \in \operatorname{LSC}(\bar{U})$. Suppose that $w:=u$ and $w:=v$ are viscosity solutions of

$$
\begin{equation*}
H\left(D^{2} w, D w, w, x\right) \geq 0 \text { in } \mathrm{U} . \tag{2}
\end{equation*}
$$

Show that $w(x):=\min \{u(x), v(x)\}$ is a viscosity solution of (2).
2. For each $k \in \mathbb{N}$, let $u_{k} \in C(U)$ be a viscosity solution of

$$
H\left(D^{2} u_{k}, D u_{k}, u_{k}, x\right)=0 \text { in } U .
$$

Suppose that $u_{k} \rightarrow u$ locally uniformly on U (this means $u_{k} \rightarrow u$ uniformly on every $V \subset \subset U)$. Show that u is a viscosity solution of

$$
H\left(D^{2} u, D u, u, x\right)=0 \text { in } U .
$$

Thus, viscosity solutions are stable under uniform convergence. (We will see shortly that viscosity solutions are stable under even weaker types of convergence.)
3. Suppose that $H=H(p, x)$ is continuous and $p \mapsto H(p, x)$ is convex for any fixed x. Let $u \in C_{l o c}^{0,1}(U)$ satisfy

$$
\lambda u(x)+H(D u(x), x) \leq 0 \quad \text { for a.e. } x \in U,
$$

where $\lambda \geq 0$. Show that u is a viscosity solution of

$$
\lambda u+H(D u, x) \leq 0 \text { in } U .
$$

Give an example to show that the same result does not hold for supersolutions. [Hint: Mollify $u: u_{\varepsilon}:=\eta_{\varepsilon} * u$. For $V \subset \subset U$, use Jensen's inequality to show that

$$
\lambda u_{\varepsilon}(x)+H\left(D u_{\varepsilon}(x), x\right) \leq h_{\varepsilon}(x) \text { for all } x \in V
$$

and $\varepsilon>0$ sufficiently small, where $h_{\varepsilon} \rightarrow 0$ uniformly on V. Then apply an argument similar to problem 2.]
4. Let $1<p<\infty$ and define

$$
|x|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

Assume $U \subset \mathbb{R}^{n}$ is open, bounded, and path connected with Lipschitz boundary ∂U, and let $f: \bar{U} \rightarrow \mathbb{R}$ be continuous and positive. Show that there exists a unique viscosity solution $u \in C(\bar{U})$ of the p-eikonal equation

$$
\text { (P) }\left\{\begin{aligned}
|D u|_{p}=f & \text { in } U \\
u=0 & \text { on } \partial U .
\end{aligned}\right.
$$

[Hint: Construct u as the value function

$$
u(x)=\inf \{T(x, y): y \in \partial U\}
$$

where

$$
T(x, y)=\inf \left\{\int_{0}^{1} f(\mathbf{w}(t))\left|\mathbf{w}^{\prime}(t)\right|_{q} d t: \mathbf{w} \in C^{1}([0,1] ; \bar{U}), \mathbf{w}(0)=x, \mathbf{w}(1)=y\right\}
$$

and q is the Hölder conjugate of p, i.e., $\frac{1}{p}+\frac{1}{q}=1$. Don't worry about exactly computing the form of H. Instead show that any solution of $H=0$ is also a solution of (P).]

