
Math 8590 – Homework 2 Solutions

Please hand in your solution to 1 problem from those below.
Let U ⊂ Rn be open.

1. (a) Let u, v ∈ USC(U). Suppose that w := u and w := v are viscosity solutions of

H(D2w,Dw,w, x) ≤ 0 in U. (1)

Show that w(x) := max{u(x), v(x)} is a viscosity solution of (1) (i.e., the pointwise
maximum of two subsolutions is again a subsolution).

Solution. Let x ∈ U and ϕ ∈ C∞(Rn) such that w − ϕ has a local maximum at x.
We can assume that w(x) = ϕ(x) and for some r > 0, w(y) ≤ ϕ(y) for y ∈ B(x, r).
By definition of w, either w(x) = u(x) or w(x) = v(x). Without loss of generality,
assume w(x) = u(x). Then u(x) = ϕ(x) and u(y) ≤ w(y) ≤ ϕ(y) for y ∈ B(x, r).
Therefore u− ϕ has a local maximum at x and hence

H(D2ϕ(x), Dϕ(x), u(x), x) ≤ 0.

Since u(x) = w(x), w is a viscosity subsolution of (1).

(b) Let u, v ∈ LSC(U). Suppose that w := u and w := v are viscosity solutions of

H(D2w,Dw,w, x) ≥ 0 in U. (2)

Show that w(x) := min{u(x), v(x)} is a viscosity solution of (1).

Solution. The proof is similar to part (a).

2. For each k ∈ N, let uk ∈ C(U) be a viscosity solution of

H(D2uk, Duk, uk, x) = 0 in U.

Suppose that uk → u locally uniformly on U (this means uk → u uniformly on every
V ⊂⊂ U). Show that u is a viscosity solution of

H(D2u,Du, u, x) = 0 in U.

Thus, viscosity solutions are stable under uniform convergence. (We will see shortly that
viscosity solutions are stable under even weaker types of convergence.)

Solution. Let x ∈ U and ϕ ∈ C∞(Rn) such that u − ϕ has a local maximum at x. As
usual, we can assume u(x) = ϕ(x) and there exists r > 0 such that B(x, r) ⊂⊂ U and
u(y) < ϕ(y) for y ∈ B(x, r), y 6= x (add |x− y|2 to ϕ to get the strict inequality). Since
uk → u uniformly on B(x, r), there exists xk → x such that uk−ϕ has a local maximum
at xk for sufficiently large k. We’ve used this fact several times, so let’s give a short
proof. Let xk ∈ B(x, r) be a point at which the continuous function uk − ϕ attains its
maximum over the closed ball B(x, r). Assume to the contrary that xk does not converge
to x0. Then there exists a subsequence xkj and δ > 0 such that |xkj−x| > δ for all j. By



passing to a further subsequence, if necessary, we may assume that xkj → x0 ∈ B(x, r),
where |x− x0| > δ. Since

ukj (xkj )− ϕ(xkj ) ≥ ukj (x)− ϕ(x),

and uk → u uniformly on B(x, r), we find that u(x0) ≥ ϕ(x0). Since u(y) < ϕ(y) for
y 6= x, we have x0 = x, which is a contradiction. Therefore xk → x as k → ∞. For
sufficiently large k, xk ∈ B0(x, r), so uk − ϕ has a local max at xk.

Since uk − ϕ has a local maximum at xk

H(D2ϕ(xk), Dϕ(xk), uk(xk), xk) ≤ 0.

Sending k → ∞ and using the continuity of H and uniform convergence of uk → u on
B(x, r) we have

H(D2ϕ(x), Dϕ(x), u(x), x) ≤ 0.

Therefore u is a viscosity subsolution. The proof that u is a viscosity supersolution is
similar.

3. Suppose that H = H(p, x) is continuous and p 7→ H(p, x) is convex for any fixed x. Let
u ∈ C0,1

loc (U) satisfy

λu(x) +H(Du(x), x) ≤ 0 for a.e. x ∈ U,

where λ ≥ 0. Show that u is a viscosity solution of

λu+H(Du, x) ≤ 0 in U.

Give an example to show that the same result does not hold for supersolutions. [Hint:
Mollify u: uε := ηε ∗ u. For V ⊂⊂ U , use Jensen’s inequality to show that

λuε(x) +H(Duε(x), x) ≤ hε(x) for all x ∈ V

and ε > 0 sufficiently small, where hε → 0 uniformly on V . Then apply an argument
similar to problem 2.]

Solution. Let V ⊂⊂ U and define uε := ηε ∗ u where ηε is the standard mollifier. For
ε < dist(V, ∂U) we have∫

U
ηε(x− y)(λu(y) +H(Du(y), y)) dy ≤ 0,

and so
λuε(x) +

∫
B(x,ε)

ηε(x− y)H(Du(y), y)) dy ≤ 0. (3)

By Jensen’s inequality we have∫
B(x,ε)

ηε(x− y)H(Du(y), y)) dy =

∫
B(x,ε)

ηε(x− y)H(Du(y), x)) dy − hε(x)

≥ H(Duε(x), x)− hε(x),
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where
hε(x) =

∫
B(x,ε)

ηε(x− y)(H(Du(y), x)−H(Du(y), y)) dy.

Therefore
λuε(x) +H(Duε(x), x) ≤ hε(x)

for all x ∈ V . Since u is Lipschitz on V and H is continuous (hence uniformly continuous
on compact sets), we can show that hε → 0 uniformly on V . We are now ready to show
that u is a viscosity subsolution. Let x ∈ V and ϕ ∈ C∞(Rn) such that u−ϕ has a local
maximum at x. We can assume the local maximum is strict, and so by usual arguments,
there exist sequences εk → 0+ and xk → x such that uεk − ϕ has a local maximum at
xk. Since uεk is smooth, we have Duεk(xk) = Dϕ(xk), and hence

λuεk(xk) +H(Dϕ(xk), xk) ≤ hεk(xk).

Sending εk → 0 and using the uniform convergence uε → u and hε → 0 on V we have

λu(x) +H(Dϕ(x), x) ≤ 0.

Therefore u is a viscosity subsolution.

4. Let 1 < p <∞ and define

|x|p :=

(
n∑

i=1

|xi|p
) 1

p

.

Assume U ⊂ Rn is open, bounded, and path connected with Lipschitz boundary ∂U ,
and let f : U → R be continuous and positive. Show that there exists a unique viscosity
solution u ∈ C(U) of the p-Eikonal equation

(P)

{
|Du|p = f in U

u = 0 on ∂U.

Solution. Define
u(x) := inf{T (x, y) : y ∈ ∂U},

where

T (x, y) = inf

{∫ 1

0
f(w(t))|w′(t)|q dt : w ∈ C1([0, 1];U), w(0) = x, w(1) = y

}
,

and q is the Hölder conjugate of p, i.e., 1
p + 1

q = 1. Based on the results from class,
u ∈ C(U) is locally Lipschitz in U and is a viscosity solution of{

H(Du, x) = 0 in U
u = 0 on ∂U,
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where
H(r, x) = sup

|a|=1
{−r · a− f(x)|a|q}.

Let r 6= 0 with ri ≥ 0 for all i. Set si = −rp/qi and choose a = s
|s| in the definition of H.

Then we can compute

H(r, x) ≥ 1

|s|
(|r|pp − f(x)|r|p/qp ) = |a|q(|r|p − f(x)).

Since H depends only on the absolute values |ri|, the above holds for all r 6= 0 and
a = a(r) 6= 0. Let ϕ ∈ C∞(Rn) such that u − ϕ has a local maximum at at x. Then
H(Dϕ(x), x) ≤ 0. If Dϕ(x) = 0 then |Dϕ(x)|p ≤ f(x) is trivial, since f is positive. So
we may assumeDϕ(x) 6= 0. Using r = Dϕ(x) in the above we find that |Dϕ(x)|p ≤ f(x),
and so u is a viscosity subsolution of (P).

Let ϕ ∈ C∞(Rn) such that u − ϕ has a local minimum at x. Then H(Dϕ(x), x)) ≥ 0,
and it follows that Dϕ(x) 6= 0 (since f is positive). Let a∗ ∈ Rn with |a∗| = 1 such that

0 ≤ H(Dϕ(x), x) = −Dϕ(x) · a∗ − f(x)|a∗|q.

By Hölder’s inequality we have

0 ≤ |a∗|q(|Dϕ(x)|p − f(x)).

Therefore |Dϕ(x)|p ≥ f(x), and so u is a viscosity supersolution.

Uniqueness follows from the results in class, since H is convex in r and ϕ ≡ 0 is a smooth
strict subsolution.
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