MATH 8590 — HOMEWORK 2 SOLUTIONS

Please hand in your solution to 1 problem from those below.
Let U C R™ be open.

1. (a) Let u,v € USC(U). Suppose that w := u and w := v are viscosity solutions of
H(D?*w, Dw,w,z) <0 in U. (1)

Show that w(z) := max{u(x),v(z)} is a viscosity solution of (1) (i.e., the pointwise
maximum of two subsolutions is again a subsolution).

Solution. Let z € U and ¢ € C*°(R") such that w — ¢ has a local maximum at z.
We can assume that w(z) = ¢(x) and for some r > 0, w(y) < ¢(y) for y € B(z, ).
By definition of w, either w(z) = u(z) or w(z) = v(x). Without loss of generality,
assume w(x) = u(x). Then u(x) = p(z) and u(y) < w(y) < ¢(y) for y € B(z,r).
Therefore u — ¢ has a local maximum at z and hence

H(D%0(z), D (), u(z), 2) < 0.
Since u(z) = w(z), w is a viscosity subsolution of (1). O
(b) Let u,v € LSC(U). Suppose that w := u and w := v are viscosity solutions of
H(D*w, Dw,w,z) >0 in U. (2)
Show that w(z) := min{u(x),v(z)} is a viscosity solution of (1).

Solution. The proof is similar to part (a). O

2. For each k € N, let u;, € C(U) be a viscosity solution of
H(D?uy, Dug, ug,z) =0 in U.

Suppose that u; — u locally uniformly on U (this means ux — u uniformly on every
V cc U). Show that u is a viscosity solution of

H(D?*u, Du,u,z) =0 in U.

Thus, viscosity solutions are stable under uniform convergence. (We will see shortly that
viscosity solutions are stable under even weaker types of convergence.)

Solution. Let x € U and ¢ € C°°(R"™) such that u — ¢ has a local maximum at x. As
usual, we can assume u(z) = @(x) and there exists > 0 such that B(z,r) CC U and
u(y) < p(y) for y € B(z,r), y # x (add |z — y|? to ¢ to get the strict inequality). Since
ug — w uniformly on B(x,r), there exists z; — x such that uj — ¢ has a local maximum
at xp for sufficiently large k. We've used this fact several times, so let’s give a short
proof. Let xj € B(x,r) be a point at which the continuous function u; — ¢ attains its
maximum over the closed ball B(x,r). Assume to the contrary that xj; does not converge
to zo. Then there exists a subsequence xy; and § > 0 such that |z, —x| > ¢ for all j. By



passing to a further subsequence, if necessary, we may assume that z, — zo € B (z,7),
where |z — xo| > 0. Since

ug; (Tr;) — p(TR;) 2> up, () — (),

and up — w uniformly on B(z,r), we find that u(xg) > ¢(xg). Since u(y) < ¢(y) for
y # x, we have g = z, which is a contradiction. Therefore x;, — x as k — oo. For
sufficiently large k, zp € B(x,7), so uj — ¢ has a local max at xy.

Since up — ¢ has a local maximum at xj

H(D*¢(xi), Do(xy), up (), x1) < 0.

Sending k — oo and using the continuity of H and uniform convergence of uy — u on
B(z,r) we have
H(D*p(x), Dy(x), u(z),z) < 0.

Therefore u is a viscosity subsolution. The proof that u is a viscosity supersolution is
similar. O

. Suppose that H = H(p, ) is continuous and p — H(p, x) is convex for any fixed z. Let
0,1 .
u € C).(U) satisfy
Au(z) + H(Du(z),z) <0 for a.e. x € U,
where A > 0. Show that w is a viscosity solution of
A+ H(Du,z) <0 in U.

Give an example to show that the same result does not hold for supersolutions. [Hint:
Mollify u: ug := 1z * u. For V.CC U, use Jensen’s inequality to show that

Mg (x) + H(Dug(z),x) < he(z) forall x € V

and € > 0 sufficiently small, where h. — 0 uniformly on V. Then apply an argument
similar to problem 2.|

Solution. Let V CC U and define u. := 7. * u where 7. is the standard mollifier. For
e < dist(V,0U) we have

/U ne(z — y)uly) + H(Du(y), ) dy <0,

and so
hue(z) + /B L H (DU, ) dy <0 (3)

By Jensen’s inequality we have

/ ne( — y)H(Du(y), ) dy = / ne(x — y) H(Duly), z)) dy — he(z)
B(z,e) B(z,e)

> H(Du(z),z) — he(x),



where

@) = [ te =) (HDU). )~ HDuty).v)dy.
Therefore
Mug(x) + H(Due(z),z) < he(x)

for all z € V. Since w is Lipschitz on V' and H is continuous (hence uniformly continuous
on compact sets), we can show that h. — 0 uniformly on V. We are now ready to show
that u is a viscosity subsolution. Let x € V and ¢ € C*°(R") such that u — ¢ has a local
maximum at z. We can assume the local maximum is strict, and so by usual arguments,
there exist sequences ¢, — 07 and x, — x such that ug, — ¢ has a local maximum at
xg. Since u,, is smooth, we have Duy, (x;) = Dp(zy), and hence

Aug, (zx) + H(De(zy), 2x) < hey ().
Sending ¢, — 0 and using the uniform convergence u; — u and he — 0 on V' we have
Mu(x) + H(Dp(x),z) < 0.

Therefore u is a viscosity subsolution. O

. Let 1 < p < o0 and define

1
n p
[zlp = (Z \fcz'!p> :
i=1

Assume U C R" is open, bounded, and path connected with Lipschitz boundary 0U,
and let f: U — R be continuous and positive. Show that there exists a unique viscosity

solution u € C(U) of the p-Eikonal equation

) |Dul, =f inU
u=0 on dU.

Solution. Define
u(z) == inf{T(x,y) : y € OU},

where
1
T(x,y) = inf{/o Fw(®)|w'(t)lgdt - we CH[0,1];T), w(0) =z, w(l) = y}

and ¢ is the Holder conjugate of p, i.e., % + % = 1. Based on the results from class,

u € C(U) is locally Lipschitz in U and is a viscosity solution of

H(Du,z)=0 inU
u=0 on JU,



where
H(r,xz) = sup{—r-a— f(x)]alq}.

la]=1

Let r £ 0 with r; > 0 for all 4. Set s; = —rf/q and choose a = ﬁ in the definition of H.
Then we can compute

1

H(r,xz) >
]

(Irp = £ @)/ = laly(rly — f(2))-

Since H depends only on the absolute values |r;|, the above holds for all » # 0 and
a=a(r) # 0. Let p € C°(R") such that u — ¢ has a local maximum at at . Then
H(Dp(z),z) <0. If Dp(x) = 0 then |Dy(x)|, < f(z) is trivial, since f is positive. So
we may assume Dp(x) # 0. Using 7 = Dp(z) in the above we find that [Dy(x)|, < f(z),
and so u is a viscosity subsolution of (P).

Let ¢ € C*°(R"™) such that u — ¢ has a local minimum at x. Then H(Dp(x),z)) > 0,
and it follows that Dp(x) # 0 (since f is positive). Let a* € R™ with |a*| = 1 such that

0 < H(Dg(z),2) = —Dp(x) - a* = f(x)]a"|q.
By Hélder’s inequality we have
0 < [a”|o(|Dep(x)]p — f(2))-

Therefore |Dy(x)|, > f(z), and so u is a viscosity supersolution.

Uniqueness follows from the results in class, since H is convex in r and ¢ = 0 is a smooth
strict subsolution. O



