
Math 8590 – Homework 3 Solutions

Please hand in your solution to 1 problem from those below.

1. Complete the proof of Theorem 5.2 in the notes. In particular, let uε ∈ C2(U) ∩ C(U)
be a classical solution of the viscous Hamilton-Jacobi equation

(Hε)

{
uε +H(Duε, x)− ε∆uε = 0 in U

uε = 0 on ∂U,

and let u ∈ C0,1(U) be the unique viscosity solution of

(H)

{
u+H(Du, x) = 0 in U

u = 0 on ∂U.

Assume that H and U satisfy all of the hypotheses stated at the beginning of Section 5
in the notes. Show that there exists C > 0 such that

uε − u ≤ C
√
ε.

[Hint: Define the auxiliary function

Φ(x, y) = uε(x)− u(y)− α

2
|x− y|2,

and proceed as in the proof of Theorem 5.2. You will need to use the exterior sphere
condition and the barrier function method from the proof of Theorem 5.1 to handle the
case when yα ∈ ∂U . For the exterior sphere condition, you can assume that the same
radius r > 0 works for all boundary points.]

Solution. Define the auxiliary function

Φ(x, y) = uε(x)− u(y)− α

2
|x− y|2.

Let (xα, yα) ∈ U × U such that

Φ(xα, yα) = max
U×U

Φ.

Since Φ(xα, yα) ≥ Φ(xα, xα) we have

α

2
|xα − yα|2 ≤ u(xα)− u(yα) ≤ C|xα − yα|.

Therefore
|xα − yα| ≤

C√
α
.

Let us set α = 1√
ε
. Then we have

|xα − yα| ≤ C
√
ε.



As in the proof of Theorem 5.2, we just need to show that

uε(xα)− u(yα) ≤ C
√
ε.

We have 3 cases to consider

1. Suppose xα ∈ ∂U . Then uε(xα) = 0 and u(yα) ≥ 0 so we have

uε(xα)− u(yα) ≤ 0.

2. Suppose that yα ∈ ∂U . Then u(yα) = 0 and we have

uε(xα)− u(yα) = uε(xα).

We need to use the barrier function technique from the proof of Theorem 5.1 to bound
the right hand side. By coercivity of H we can select C ′ > 0 and δ > 0 so that

H(C ′p, x) ≥ δ for all x ∈ U and |p| = 1.

By the exterior sphere condition there exists r > 0 and x0 ∈ Rn\U such that |x0−yα| = r
and

ψ(x) := C ′(|x− x0| − r) ≥ 0 for all x ∈ U.

We note that

|Dψ(x)| = C ′ and ∆ψ(x) =
C ′(n− 1)

|x− x0|
≤ C ′(n− 1)

r

for all x ∈ U . Since the same r works for all boundary points, the quantity C ′(n− 1)/r
depends only on U and n. It follows that

ψ(x) +H(Dψ(x), x)− ε∆ψ(x) ≥ δ − Cε

for all x ∈ U . Hence there exists ε′ > 0, depending only on H, U and n, such that for
0 < ε < ε′ we have

ψ(x) +H(Dψ(x), x)− ε∆ψ(x) ≥ 0 for all x ∈ U,

and ψ ≥ 0 on ∂U . Therefore we can use maximum principle arguments to show that
uε ≤ ψ on U for ε < ε′. Therefore

uε(xα) ≤ ψ(xα) = C(|xα − x0| − r) ≤ C|xα − yα| = C
√
ε.

For ε ≥ ε′ we have

uε(xα) ≤

(
sup

ε>0,x∈U
uε

) √
ε√
ε′

= C
√
ε.

3. Suppose that xα, yα ∈ U . By the viscosity supersolution property, we have

u(yα) +H(pα, yα) ≥ 0,
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where pα = α(xα − yα). Since x 7→ uε(x) − α
2 |x − yα|

2 has a maximum at xα we have
Duε(xα) = pα and ∆uε(xα) ≤ αn. Therefore

uε(xα) +H(pα, xα)− αnε ≤ 0.

Subtracting these inequalities we have

uε(xα)− u(yα) ≤ H(pα, yα)−H(pα, xα) + C
√
ε ≤ C

√
ε,

due to the Lipschitz continuity of H. This completes the proof.

2. (a) Let u ∈ C(U) be a viscosity solution of

H(Du, u, x) = 0 in U.

Let Ψ : R→ R be continuously differentiable with Ψ′ > 0. Show that v := Ψ ◦ u is
a viscosity solution of

H((Φ′ ◦ v)Dv,Φ ◦ v, x) = 0 in U,

where Φ := Ψ−1.

Solution. Let x ∈ U and ϕ ∈ C∞(Rn) such that v − ϕ has a local maximum at x.
We may assume that v(x) = ϕ(x). Then there exists r > 0 such that v(y) ≤ ϕ(y)
for y ∈ B(x, r). Let Φ := Ψ−1. Since Φ is increasing we have u(y) = Φ(v(y)) ≤
Φ(ϕ(y)) := ψ(y) for all y ∈ B(x, r), and u(x) = Φ(v(x)) = Φ(ϕ(x)) = ψ(x).
Therefore u− ψ has a local maximum at x, and therefore

H(Dψ(x), u(x), x) ≤ 0.

Since Dψ(x) = Φ′(v(x))Dϕ(x) we have

H(Φ′(v(x))Dϕ(x),Φ(v(x)), x) ≤ 0.

This verifies the subsolution property. The supersolution property follows a similar
argument.

(b) Let u ∈ C(U) be a viscosity solution of

H(Du) = f in U,

and suppose that H is positively 1-homogeneous. Define the Kružkov Transform of
u by v := −e−u. Use part (a) to show that v is a viscosity solution of

fv +H(Dv) = 0 in U. (1)

[Remark: The Kružkov Transform is a standard technique for introducing a zeroth
order term. When f > 0, this term has the correct sign for a comparison principle
to hold for (1). This also shows that we do not lose much in the way of generality
by studying equations with zeroth order terms.]
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Solution. We are in the same setting as part (a), where Ψ(x) = −e−x and Φ(x) =
− log(−x). Therefore v is a viscosity solution of

H

(
−Dv

v

)
= f in U.

Let x ∈ U and ϕ ∈ C∞(Rn) such that v − ϕ has a local maximum at x. Then

H

(
−Dϕ(x)

v(x)

)
≤ f(x) in U.

Since H is positively one homogeneous and v(x) < 0 we have

f(x) ≥ H
(
−Dϕ(x)

v(x)

)
= − 1

v(x)
H(Dϕ(x)).

Therefore
f(x)v(x) +H(Dϕ(x)) ≤ 0.

The supersolution property is verified similarly.

3. Consider the Hamilton-Jacobi equation

u+H(Du, x) = 0 in Rn.

What (non-trivial) conditions can you place onH to guarantee the existence of a bounded
viscosity solution u ∈ C(Rn)? State your conditions and give the proof. [Hint: Use the
Perron method.]

Solution. Perron’s method requires a comparison principle, so we assume the usual con-
ditions

H(p, x)−H(p, y) ≤ ω1((1 + |p|)|x− y|)

and
H(p, x)−H(q, x) ≤ ω2(|p− q|).

In order to construct the bounded super and subsolutions required in Perron’s method,
we also need to assume

K := sup{|H(0, x)| : x ∈ Rn} <∞.

Let w(x) = K and w̃(x) = −K. Then w is a viscosity supersolution and w̃ is a viscosity
subsolution. Define

F := {v ∈ USC(Rn) : v is a subsolution and v ≤ w},

and
u(x) := sup{v(x) : v ∈ F}.

Since w̃ ∈ F , F is nonempty, and we have u∗ is a viscosity subsolution of u+H = 0 on
Rn (recall u∗ is the upper semicontinuous envelope of u). Since u ≤ w we have u∗ ≤ w
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due to the fact that w is smooth. Therefore u∗ ∈ F and u∗ = u. The other lemma
from Perron’s method says that u∗ is a viscosity supersolution of u + H = 0. Define
uε := u− ε. Then we can show that

uε +H(Duε, x) + ε ≤ 0 in Rn

in the viscosity sense. Indeed, if uε−ϕ has a local maximum at x ∈ Rn, then u− (ϕ+ε)
has a local maximum at x and thus

u(x) +H(Dϕ(x), x) ≤ 0.

Therefore
uε(x) +H(Dϕ(x), x) + ε ≤ 0.

By the comparison theorem with strict sub solution (Theorem 6.1 in notes), we have
uε ≤ u∗. Sending ε → 0+ we have u ≤ u∗. Since u = u∗ ≥ u∗, we have that u =
u∗ = u∗ ∈ C(Rn) is a bounded viscosity solution of u + H = 0 in Rn, and u satisfies
−K ≤ u ≤ K.
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