MATH 8590 – HOMEWORK 4 (DUE FRIDAY NOV 2)

Please hand in your solution to 1 problem from those below.

1. Implement both fast sweeping and fast marching in the programming language of your choice for solving the one dimensional eikonal equation

$$|u'(x)| = f(x)$$
 for $x \in (0, 1)$,

with boundary conditions $u(0) = u_0$ and $u(1) = u_1$. Experiment with different functions $f \ge 0$ and different boundary conditions. Are the boundary conditions always attained continuously? Which method is faster? Produce some plots of solutions to hand in, and turn in a working version of your code.

2. Suppose the numerical solutions u_h of our monotone scheme $S_h = 0$ are uniformly Lipschitz continuous, i.e., there exists C > 0 such that

$$|u_h(x) - u_h(y)| \le C|x - y|$$
 for all $x, y \in [0, 1]_h^n$ and $h > 0$.

This is a stronger form of stability. Prove the Barles-Souganidis convergence theorem from class without assuming **strong uniqueness**. You can assume that ordinary uniqueness holds, that is, there is at most one viscosity solution satisfying the boundary conditions in the usual sense. [Hint: Use the Arzelà-Ascoli Theorem to extract a subsequence u_{h_k} converging uniformly to a continuous function $u \in C([0, 1]^n)$. Show that u is the unique viscosity solution, and conclude that the entire sequence must converge uniformly to u.]

3. Suppose that S_h depends only on the forward and backward neighboring grid points in each direction, so that we can write

$$S_h(u, u(x), x) = F(\nabla_1^- u(x), -\nabla_1^+ u(x), \dots, \nabla_n^- u(x), -\nabla_n^+ u(x), u(x), x).$$

Let us set $F = F(a_1, \ldots, a_{2n}, z, x)$. You may assume that H and F are smooth.

- (a) Show that S_h is monotone if and only if $F_{a_i} \ge 0$ for all *i*.
- (b) Show that S_h is consistent if and only if

$$F(p_1, -p_2, \dots, p_n, -p_n, z, x) = H(p, z, x)$$

for all $p \in \mathbb{R}^n, z \in \mathbb{R}$ and $x \in [0, 1]_h^n$.

(c) Find a monotone and consistent scheme for the linear PDE

$$a_1u_{x_1} + \dots + a_nu_{x_n} = f(x),$$

where a_1, \ldots, a_n are real numbers. Compare your scheme with the direction of the projected characteristics. [Hint: Your solution should depend on the signs of the a_i .]

(d) Suppose that H is Lipschitz continuous and define

$$a := \sup \{ |D_p H(p, z, x)| : p \in \mathbb{R}^n, z \in \mathbb{R}, x \in [0, 1]^n \}.$$

The Lax-Friedrichs scheme is defined by

$$S_h(u, u(x), x) := H\left(\nabla_h u(x), u(x), x\right) - \frac{ah}{2}\Delta_h u(x),$$

where

$$\nabla_h u(x) := \left(\frac{u(x+he_1) - u(x-he_1)}{2h}, \dots, \frac{u(x+he_n) - u(x-he_n)}{2h}\right),$$

and

$$\Delta_h u(x) := \sum_{i=1}^n \frac{u(x+he_i) - 2u(x) + u(x-he_i)}{h^2}$$

Show that the Lax-Friedrichs scheme is monotone and consistent. [Hint: Rewrite the scheme as a function of the forward and backward differences $\nabla_i^{\pm} u(x)$, as above.]

4. Let $U := B^0(0,1)$ and $\varepsilon > 0$. Consider the nonlocal integral equation

$$(\mathbf{I}_{\varepsilon}) \begin{cases} (1+c\varepsilon^2)u_{\varepsilon}(x) - \int_{B(x,\varepsilon)} u_{\varepsilon} \, dy = c\varepsilon^2 f(x) & \text{if } x \in U \\ u_{\varepsilon}(x) = 0 & \text{if } x \in \Gamma_{\varepsilon}, \end{cases}$$

where $c = \frac{1}{2(n+2)}, u_{\varepsilon} : \Gamma_{\varepsilon} \cup U \to \mathbb{R}, f \in C(\overline{U})$, and

$$\Gamma_{\varepsilon} = \{ x \in \mathbb{R}^n \setminus U : \operatorname{dist}(x, \partial U) \le \varepsilon \}.$$

Follow the steps below to show that as $\varepsilon \to 0^+$, u_ε converges uniformly to the viscosity solution u of

(P)
$$\begin{cases} u - \Delta u = f & \text{in } U \\ u = 0 & \text{on } \partial U. \end{cases}$$

The proof is based on recognizing (I_{ε}) as a monotone approximation scheme for (P). Unless otherwise specified, any function $u: U \to \mathbb{R}$ is implicitly extended to be identically zero on Γ_{ε} .

(a) Show that there exists a unique function $u_{\varepsilon} \in C(\overline{U})$ solving (I_{ε}) . [Hint: Show that the mapping $T: C(\overline{U}) \to C(\overline{U})$ defined by

$$T[u](x) := \frac{1}{1 + c\varepsilon^2} \oint_{B(x,\varepsilon)} u \, dy + \frac{c\varepsilon^2}{1 + c\varepsilon^2} f(x)$$

is a contraction mapping. Use the usual norm $||u|| := \max_{\overline{U}} |u|$ on $C(\overline{U})$. Then appeal to Banach's fixed point theorem.]

(b) Define $S_{\varepsilon}: L^{\infty}(U \cup \Gamma_{\varepsilon}) \times \mathbb{R} \times U \to \mathbb{R}$ by

$$S_{\varepsilon}(u,t,x) := (1+c\varepsilon^2)t - \int_{B(x,\varepsilon)} u \, dy.$$

Show that S_{ε} is monotone, i.e., for all $t \in \mathbb{R}$, $x \in U$, and $u, v \in L^{\infty}(U \cup \Gamma_{\varepsilon})$

$$u \leq v \text{ on } B(x,\varepsilon) \implies S_{\varepsilon}(u,t,x) \geq S_{\varepsilon}(v,t,x).$$

- (c) Show that the following comparison principle holds: Let $u, v \in L^{\infty}(U \cup \Gamma_{\varepsilon})$ such that $u|_{\overline{U}}, v|_{\overline{U}} \in C(\overline{U})$. If $u \leq v$ on Γ_{ε} and $S_{\varepsilon}(u, u(x), x) \leq S_{\varepsilon}(v, v(x), x)$ at all $x \in U$, then $u \leq v$ on U.
- (d) Use the comparison principle to show that there exists C > 0 such that

$$|u_{\varepsilon}(x)| \le C(1+3\varepsilon - |x|^2),$$

for all $x \in U$ and $0 < \varepsilon \leq 1$, where C depends only on $||f|| = \max_{\overline{U}} |f|$. [Hint: Compare against $v(x) := C(1 + 3\varepsilon - |x|^2)$ and -v, and adjust the constant C appropriately.]

(e) Use the method of weak upper and lower limits to show that $u_{\varepsilon} \to u$ uniformly on \overline{U} , where u is the viscosity solution of (P). You may assume a comparison principle holds for (P) for semicontinuous viscosity solutions. That is, if $u \in \text{USC}(\overline{U})$ is a viscosity subsolution of (P) and $v \in \text{LSC}(\overline{U})$ is a viscosity supersolution, and $u \leq v$ on ∂U , then $u \leq v$ in U. [Hint: You will find the identity in the hint from HW1 Problem 4 useful.]