Math 8590 - Homework 4 Solutions

1. Implement both fast sweeping and fast marching in the programming language of your choice for solving the one dimensional eikonal equation

$$
\left|u^{\prime}(x)\right|=f(x) \text { for } x \in(0,1),
$$

with boundary conditions $u(0)=u_{0}$ and $u(1)=u_{1}$. Experiment with different funtions $f \geq 0$ and different boundary conditions. Are the boundary conditions always attained continuously? Which method is faster? Produce some plots of solutions to hand in, and turn in a working version of your code.
2. Suppose the numerical solutions u_{h} of our monotone scheme $S_{h}=0$ are uniformly Lipschitz continuous, i.e., there exists $C>0$ such that

$$
\left|u_{h}(x)-u_{h}(y)\right| \leq C|x-y| \quad \text { for all } x, y \in[0,1]_{h}^{n} \text { and } h>0 .
$$

This is a stronger form of stability. Prove the Barles-Souganidis convergence theorem from class without assuming strong uniqueness. You can assume that ordinary uniqueness holds, that is, there is at most one viscosity solution satisfying the boundary conditions in the usual sense. [Hint: Use the Arzelà-Ascoli Theorem to extract a subsequence $u_{h_{k}}$ converging uniformly to a continuous function $u \in C\left([0,1]^{n}\right)$. Show that u is the unique viscosity solution, and conclude that the entire sequence must converge uniformly to u.]

Proof. We briefly sketch the proof. By a minor extension of Arzela-Ascoli, every subsequence $u_{h_{j}}$ contains a further subsequence converging uniformly to a continuous function $u \in C(\bar{U})$. Then use the standard viscosity machinery and monotonicity of the scheme to show that u is the unique viscosity solution of the scheme. Now, assume by way of contradiction that the entire sequence u_{h} does not converge uniformly to u. Then we can extract a subsequence $u_{h_{j}}$ for which $\sup _{[0,1]_{h_{j}}^{n}}\left|u(x)-u_{h_{j}}(x)\right| \geq \delta>0$ as $h_{j} \rightarrow 0$. But then, as above, $u_{h_{j}}$ contains a subsequence converging uniformly to u, which is a contradiction. Note the proof only requres uniqueness of continuous viscosity solutions of the limiting PDE.
3. Suppose that S_{h} depends only on the forward and backward neighboring grid points in each direction, so that we can write

$$
S_{h}(u, u(x), x)=F\left(\nabla_{1}^{-} u(x),-\nabla_{1}^{+} u(x), \ldots, \nabla_{n}^{-} u(x),-\nabla_{n}^{+} u(x), u(x), x\right) .
$$

Let us set $F=F\left(a_{1}, \ldots, a_{2 n}, z, x\right)$. You may assume that H and F are smooth.
(a) Show that S_{h} is monotone if and only if $F_{a_{i}} \geq 0$ for all i.

Solution. The statement is obvious from the identity

$$
\begin{aligned}
S_{h}(u, t, x)=F\left(\frac{t-u\left(x-h e_{1}\right)}{h},\right. & \frac{t-u\left(x+h e_{1}\right)}{h} \\
\ldots & \\
\ldots & \left.\frac{t-u\left(x-h e_{n}\right)}{h}, \frac{t-u\left(x+h e_{n}\right)}{h}, t, x\right) .
\end{aligned}
$$

(b) Show that S_{h} is consistent if and only if

$$
F\left(p_{1},-p_{2}, \ldots, p_{n},-p_{n}, z, x\right)=H(p, z, x)
$$

for all $p \in \mathbb{R}^{n}, z \in \mathbb{R}$ and $x \in[0,1]_{h}^{n}$.
Solution. Let $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right), x \in(0,1)^{n}$, and set $p=D \varphi(x)$. Since F is smooth,

$$
\lim _{\substack{y \rightarrow x \\ h \rightarrow+^{+} \\ \gamma \rightarrow 0}} S_{h}(\varphi+\gamma, \varphi(y)+\gamma, y)=H\left(p_{1},-p_{1}, \ldots, p_{n},-p_{n}, \varphi(x), x\right) .
$$

The result immediately follows.
(c) Find a monotone and consistent scheme for the linear PDE

$$
a_{1} u_{x_{1}}+\cdots+a_{n} u_{x_{n}}=f(x)
$$

where a_{1}, \ldots, a_{n} are real numbers. Compare your scheme with the direction of the projected characteristics. [Hint: Your solution should depend on the signs of the a_{i}.]

Solution. As discovered in part (a), monotone schemes are increasing functions of $\nabla_{i}^{-} u(x)$ and decreasing functions of $\nabla_{i}^{+} u(x)$. Thus, if a_{i} is positive, we should select backward differences, and if a_{i} is negative, then we should select forward differences. Let

$$
m_{i}:= \begin{cases}1, & \text { if } a_{i} \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

We can write a monotone scheme as

$$
S_{h}(u, u(x), x)=\sum_{i=1}^{n} m_{i} \nabla_{i}^{-} u(x)+\left(1-m_{i}\right) \nabla_{i}^{+} u(x) .
$$

Notice that the characteristics flow in the direction

$$
\dot{x}(s)=D_{p} H(p(s), z(s), x(s))=\left(a_{1}, \ldots, a_{n}\right) .
$$

When the characteristics are flowing in the positive x_{i} direction, we say the 'wind' is blowing from the left to the right (by 'wind', we mean information is propagating in this direction). In this case $a_{i} \geq 0$ and we choose backward differences $\nabla_{i}^{-} u(x)$. This is called 'upwinding', and reflects the fact that $u(x)$ should depend on the values of u in the direction from which the wind is blowing. When the characteristics flow in the negative x_{i} direction, so $a_{i}<0$, the wind is blowing from the right to the left, and we choose forward differences. Again, this reflects the fact that the solution $u(x)$ depends on the values of u in the direction from which the wind is blowing. These heuristics are why monotone schemes for first order equations are called upwind schemes.
(d) Suppose that H is Lipschitz continuous and define

$$
a:=\sup \left\{\left|D_{p} H(p, z, x)\right|: p \in \mathbb{R}^{n}, z \in \mathbb{R}, x \in[0,1]^{n}\right\} .
$$

The Lax-Friedrichs scheme is defined by

$$
S_{h}(u, u(x), x):=H\left(\nabla_{h} u(x), u(x), x\right)-\frac{a h}{2} \Delta_{h} u(x),
$$

where

$$
\nabla_{h} u(x):=\left(\frac{u\left(x+h e_{1}\right)-u\left(x-h e_{1}\right)}{2 h}, \ldots, \frac{u\left(x+h e_{n}\right)-u\left(x-h e_{n}\right)}{2 h}\right),
$$

and

$$
\Delta_{h} u(x):=\sum_{i=1}^{n} \frac{u\left(x+h e_{i}\right)-2 u(x)+u\left(x-h e_{i}\right)}{h^{2}} .
$$

Show that the Lax-Friedrichs scheme is monotone and consistent. [Hint: Rewrite the scheme as a function of the forward and backward differences $\nabla_{i}^{ \pm} u(x)$, as above.]

Solution. Write $a \in \mathbb{R}^{2 n}$ as $a=\left(b_{1}, c_{1}, \ldots, b_{n}, c_{n}\right)$. Then we can write the LaxFriedrichs scheme as

$$
F(a, z, x)=H\left(\frac{b-c}{2}, z, x\right)+\frac{a}{2} \sum_{i=1}^{n}\left(b_{i}+c_{i}\right) .
$$

Then

$$
F_{b_{i}}=\frac{1}{2} H_{p_{i}}\left(\frac{b-c}{2}, z, x\right)+\frac{a}{2} \geq 0
$$

and

$$
F_{c_{i}}=-\frac{1}{2} H_{p_{i}}\left(\frac{b-c}{2}, z, x\right)+\frac{a}{2} \geq 0 .
$$

Therefore F is monotone. When $b=p$ and $c=-p$ we have

$$
F\left(p_{1},-p_{1}, \ldots, p_{n},-p_{n}, z, x\right)=H(p, z, x) .
$$

Therefore F is consistent.
4. Let $U:=B^{0}(0,1)$ and $\varepsilon>0$. Consider the nonlocal integral equation

$$
\left(I_{\varepsilon}\right)\left\{\begin{aligned}
\left(1+c \varepsilon^{2}\right) u_{\varepsilon}(x)-f_{B(x, \varepsilon)} u_{\varepsilon} d y=c \varepsilon^{2} f(x) & \text { if } x \in U \\
u_{\varepsilon}(x)=0 & \text { if } x \in \Gamma_{\varepsilon},
\end{aligned}\right.
$$

where $c=\frac{1}{2(n+2)}, u_{\varepsilon}: \Gamma_{\varepsilon} \cup U \rightarrow \mathbb{R}, f \in C(\bar{U})$, and

$$
\Gamma_{\varepsilon}=\left\{x \in \mathbb{R}^{n} \backslash U: \operatorname{dist}(x, \partial U) \leq \varepsilon\right\} .
$$

Follow the steps below to show that as $\varepsilon \rightarrow 0^{+}, u_{\varepsilon}$ converges uniformly to the viscosity solution u of

$$
\text { (P) }\left\{\begin{aligned}
u-\Delta u=f & \text { in } U \\
u=0 & \text { on } \partial U .
\end{aligned}\right.
$$

The proof is based on recognizing $\left(I_{\varepsilon}\right)$ as a monotone approximation scheme for (P). Unless otherwise specified, any function $u: U \rightarrow \mathbb{R}$ is implicitly extended to be identically zero on Γ_{ε}.
(a) Show that there exists a unique function $u_{\varepsilon} \in C(\bar{U})$ solving $\left(\mathrm{I}_{\varepsilon}\right)$. [Hint: Show that the mapping $T: C(\bar{U}) \rightarrow C(\bar{U})$ defined by

$$
T[u](x):=\frac{1}{1+c \varepsilon^{2}} f_{B(x, \varepsilon)} u d y+\frac{c \varepsilon^{2}}{1+c \varepsilon^{2}} f(x)
$$

is a contraction mapping. Use the usual norm $\|u\|:=\max _{\bar{U}}|u|$ on $C(\bar{U})$. Then appeal to Banach's fixed point theorem.]

Solution. Define $T: C(\bar{U}) \rightarrow C(\bar{U})$ by

$$
T[u](x):=\frac{1}{1+c \varepsilon^{2}} f_{B(x, \varepsilon)} u d y+\frac{c \varepsilon^{2}}{1+c \varepsilon^{2}} f(x)
$$

Since $x \mapsto f_{B(x, \varepsilon)} u d y$ is continuous provided $u \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{n}\right)$, the mapping T is welldefined. We claim that T is a contraction. Let $\alpha=\frac{1}{1+c \varepsilon^{2}}$, and fix $u, v \in C(\bar{U})$. Then

$$
\begin{aligned}
|T[u](x)-T[v](x)| & =\left|\alpha f_{B(x, \varepsilon)} u(y)-v(y) d y\right| \\
& \leq \frac{\alpha}{|B(x, \varepsilon)|} \int_{B(x, \varepsilon) \cap U}|u(y)-v(y)| d y \\
& \leq \alpha \frac{|B(x, \varepsilon) \cap U|}{|B(x, \varepsilon)|}\|u-v\| \leq \alpha\|u-v\| .
\end{aligned}
$$

Therefore

$$
\|T[u]-T[v]\| \leq \alpha\|u-v\|,
$$

for all $u, v \in C(\bar{U})$, where $0<\alpha<1$. Therefore T is a contraction mapping, and by Banach's fixed point theorem, there exists a unique $u_{\varepsilon} \in C(\bar{U})$ such that $T\left[u_{\varepsilon}\right]=u_{\varepsilon}$, i.e., u_{ε} is the unique solution of $\left(\mathrm{I}_{\varepsilon}\right)$.
(b) Define $S_{\varepsilon}: L^{\infty}\left(U \cup \Gamma_{\varepsilon}\right) \times \mathbb{R} \times U \rightarrow \mathbb{R}$ by

$$
S_{\varepsilon}(u, t, x):=\left(1+c \varepsilon^{2}\right) t-f_{B(x, \varepsilon)} u d y
$$

Show that S_{ε} is monotone, i.e., for all $t \in \mathbb{R}, x \in U$, and $u, v \in L^{\infty}\left(U \cup \Gamma_{\varepsilon}\right)$

$$
u \leq v \text { on } B(x, \varepsilon) \Longrightarrow S_{\varepsilon}(u, t, x) \geq S_{\varepsilon}(v, t, x) .
$$

Solution. The monotonicity is immediate, since $u \leq v \Longrightarrow f_{B(x, \varepsilon)} u d y \leq f_{B(x, \varepsilon)} v d y$ for all x.
(c) Show that the following comparison principle holds: Let $u, v \in L^{\infty}\left(U \cup \Gamma_{\varepsilon}\right)$ such that $\left.u\right|_{\bar{U}},\left.v\right|_{\bar{U}} \in C(\bar{U})$. If $u \leq v$ on Γ_{ε} and $S_{\varepsilon}(u, u(x), x) \leq S_{\varepsilon}(v, v(x), x)$ at all $x \in U$, then $u \leq v$ on U.

Solution. Set $w:=u-v$, and note that since S is linear we have

$$
S_{\varepsilon}(w, w(x), x)=S_{\varepsilon}(u, u(x), x)-S_{\varepsilon}(v, v(x), x) \leq 0 \quad \text { for all } x \in U
$$

Therefore

$$
\left(1+c \varepsilon^{2}\right) w(x) \leq f_{B(x, \varepsilon)} w(y) d y \quad \text { for all } x \in \bar{U}
$$

due to the fact that w is uniformly continuous on U.
Assume to the contrary that $w(x)>0$ for some $x \in U$. Let $x_{0} \in \bar{U}$ be a point at which w attains its positive maximum over \bar{U}. Since $w \leq 0$ on $\Gamma_{\varepsilon}, w\left(x_{0}\right) \geq w(x)$ for all $x \in U \cup \Gamma_{\varepsilon}$. Therefore

$$
\left(1+c \varepsilon^{2}\right) w\left(x_{0}\right) \leq f_{B\left(x_{0}, \varepsilon\right)} w(y) d y \leq w\left(x_{0}\right)
$$

which is a contradiction. Therefore $w \leq 0$ on U, and hence $u \leq v$ on U.
(d) Use the comparison principle to show that there exists $C>0$ such that

$$
\left|u_{\varepsilon}(x)\right| \leq C\left(1+3 \varepsilon-|x|^{2}\right)
$$

for all $x \in U$ and $0<\varepsilon \leq 1$, where C depends only on $\|f\|=\max _{\bar{U}}|f|$. [Hint: Compare against $v(x):=C\left(1+3 \varepsilon-|x|^{2}\right)$ and $-v$, and adjust the constant C appropriately.]

Solution. For $C>0$ to be determined later, set $v(x):=C\left(1+3 \varepsilon-|x|^{2}\right)$. A computation yields

$$
S_{\varepsilon}(v, v(x), x)=c \varepsilon^{2} v(x)+2 n C c \varepsilon^{2}
$$

Note that for $x \in U \cup \Gamma_{\varepsilon},|x| \leq 1+\varepsilon$ and so

$$
v(x) \geq C\left(1+3 \varepsilon-(1+\varepsilon)^{2}\right)=C\left(3 \varepsilon-2 \varepsilon-\varepsilon^{2}\right) \geq 0
$$

for $0<\varepsilon \leq 1$. Therefore $v \geq 0$ on $U \cup \Gamma_{\varepsilon}$ and

$$
S_{\varepsilon}(v, v(x), x) \geq 2 n C c \varepsilon^{2}
$$

By choosing $C>0$ large enough, depending only on $\|f\|$, we have

$$
S_{\varepsilon}(v, v(x), x) \geq c \varepsilon^{2} f(x)=S_{\varepsilon}\left(u_{\varepsilon}, u_{\varepsilon}(x), x\right)
$$

for all $x \in U$. Since $u_{\varepsilon}=0 \leq v$ on Γ_{ε}, the comparison principle from problem 3 shows that $u_{\varepsilon} \leq v$ on U. A similar argument shows that $u_{\varepsilon} \geq-v$.
(e) Use the method of weak upper and lower limits to show that $u_{\varepsilon} \rightarrow u$ uniformly on \bar{U}, where u is the viscosity solution of (P). You may assume a comparison principle holds for (P) for semicontinuous viscosity solutions. That is, if $u \in \operatorname{USC}(\bar{U})$ is a viscosity subsolution of (P) and $v \in \operatorname{LSC}(\bar{U})$ is a viscosity supersolution, and $u \leq v$ on ∂U, then $u \leq v$ in U. [Hint: You will find the identity in the hint from HW1 Problem 4 useful.]

Solution. We consider the weak upper and lower limits

$$
\bar{u}(x):=\limsup _{(y, \varepsilon) \rightarrow\left(x, 0^{+}\right)} u_{\varepsilon}(y) \quad \text { and } \quad \underline{u}(x):=\liminf _{(y, \varepsilon) \rightarrow\left(x, 0^{+}\right)} u_{\varepsilon}(y) .
$$

By problem 4, these are bounded functions on \bar{U}, and we showed in class that $\bar{u} \in \operatorname{USC}(\bar{U})$ and $\underline{u} \in \operatorname{LSC}(\bar{U})$. Furthermore, the estimate in problem 4 also shows that $\bar{u}=\underline{u}=0$ on $\partial U=\partial B(0,1)$.
To complete the proof, we just need to show that \bar{u} is a viscosity subsolution of (P), and \underline{u} is a viscosity supersolution of (P). Then the assumed comparison principle gives $\bar{u} \leq \underline{u}$, and so $\bar{u}=\underline{u}=u$, where u is the unique viscosity solution of (P).
We'll show that \bar{u} is a viscosity subsolution of (P); the proof that \underline{u} is a supersolution is similar. We first extend $\bar{u}(x)=0$ for $x \notin \bar{U}$. Let $x_{0} \in U$ and $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\bar{u}-\varphi$ has a local maximum at x. As usual, we may assume that $\bar{u}-\varphi$ actually has a strict global maximum at x_{0} over \mathbb{R}^{n} and $\varphi\left(x_{0}\right)=\bar{u}\left(x_{0}\right)$. Then there exist sequences $\varepsilon_{k} \rightarrow 0^{+}$and $x_{k} \rightarrow x_{0}$ such that $u_{\varepsilon_{k}}\left(x_{k}\right) \rightarrow \bar{u}\left(x_{0}\right)$ and $u_{\varepsilon_{k}}-\varphi$ has a global maximum at x_{k} for each k. Define

$$
\varphi_{k}(x):=\varphi(x)+\gamma_{k},
$$

where $\gamma_{k}:=u_{\varepsilon_{k}}\left(x_{k}\right)-\varphi\left(x_{k}\right)$. Then

$$
\varphi_{k}\left(x_{k}\right)=u_{\varepsilon_{k}}\left(x_{k}\right) \quad \text { and } \quad u_{\varepsilon_{k}} \leq \varphi_{k} \quad \text { on } U \cup \Gamma_{\varepsilon_{k}} .
$$

By the monotonicity of the scheme S_{ε} we have

$$
c \varepsilon_{k}^{2} f\left(x_{k}\right)=S_{\varepsilon_{k}}\left(u_{\varepsilon_{k}}, u_{\varepsilon_{k}}\left(x_{k}\right), x_{k}\right) \geq S_{\varepsilon_{k}}\left(\varphi_{k}, \varphi_{k}\left(x_{k}\right), x_{k}\right) .
$$

Unwrapping the definition of S_{ε} we have

$$
\left(1+c \varepsilon_{k}^{2}\right) \varphi_{k}\left(x_{k}\right)-f_{B\left(x_{k}, \varepsilon_{k}\right)} \varphi_{k}(y) d y \leq c \varepsilon_{k}^{2} f\left(x_{k}\right)
$$

Since $\varphi_{k}=\varphi+\gamma_{k}$ we have

$$
\varphi\left(x_{k}\right)+2(n+1) f_{B\left(x_{k}, \varepsilon_{k}\right)} \frac{\varphi\left(x_{k}\right)-\varphi(y)}{\varepsilon_{k}^{2}} d y+\gamma_{k} \leq f\left(x_{k}\right) .
$$

Sending $k \rightarrow \infty$, recalling $\gamma_{k} \rightarrow 0$, and using the identity from Homework 8, Problem 4, we have

$$
\bar{u}\left(x_{0}\right)-\Delta \varphi\left(x_{0}\right) \leq f\left(x_{0}\right) .
$$

Therefore \bar{u} is a viscosity subsolution of (P).

