
Math 8590 – Homework 4 Solutions

1. Implement both fast sweeping and fast marching in the programming language of your
choice for solving the one dimensional eikonal equation

|u′(x)| = f(x) for x ∈ (0, 1),

with boundary conditions u(0) = u0 and u(1) = u1. Experiment with different funtions
f ≥ 0 and different boundary conditions. Are the boundary conditions always attained
continuously? Which method is faster? Produce some plots of solutions to hand in, and
turn in a working version of your code.

2. Suppose the numerical solutions uh of our monotone scheme Sh = 0 are uniformly
Lipschitz continuous, i.e., there exists C > 0 such that

|uh(x)− uh(y)| ≤ C|x− y| for all x, y ∈ [0, 1]nh and h > 0.

This is a stronger form of stability. Prove the Barles-Souganidis convergence theo-
rem from class without assuming strong uniqueness. You can assume that ordinary
uniqueness holds, that is, there is at most one viscosity solution satisfying the boundary
conditions in the usual sense. [Hint: Use the Arzelà-Ascoli Theorem to extract a sub-
sequence uhk converging uniformly to a continuous function u ∈ C([0, 1]n). Show that
u is the unique viscosity solution, and conclude that the entire sequence must converge
uniformly to u.]

Proof. We briefly sketch the proof. By a minor extension of Arzela-Ascoli, every subse-
quence uhj contains a further subsequence converging uniformly to a continuous function
u ∈ C(U). Then use the standard viscosity machinery and monotonicity of the scheme
to show that u is the unique viscosity solution of the scheme. Now, assume by way of
contradiction that the entire sequence uh does not converge uniformly to u. Then we
can extract a subsequence uhj for which sup[0,1]nhj

|u(x) − uhj (x)| ≥ δ > 0 as hj → 0.
But then, as above, uhj contains a subsequence converging uniformly to u, which is a
contradiction. Note the proof only requres uniqueness of continuous viscosity solutions
of the limiting PDE.

3. Suppose that Sh depends only on the forward and backward neighboring grid points in
each direction, so that we can write

Sh(u, u(x), x) = F (∇−1 u(x),−∇+
1 u(x), . . . ,∇−n u(x),−∇+

n u(x), u(x), x).

Let us set F = F (a1, . . . , a2n, z, x). You may assume that H and F are smooth.

(a) Show that Sh is monotone if and only if Fai ≥ 0 for all i.

Solution. The statement is obvious from the identity

Sh(u, t, x) =F
( t− u(x− he1)

h
,
t− u(x+ he1)

h
,

. . . ,
t− u(x− hen)

h
,
t− u(x+ hen)

h
, t, x

)
.



(b) Show that Sh is consistent if and only if

F (p1,−p2, . . . , pn,−pn, z, x) = H(p, z, x)

for all p ∈ Rn, z ∈ R and x ∈ [0, 1]nh.

Solution. Let ϕ ∈ C∞(Rn), x ∈ (0, 1)n, and set p = Dϕ(x). Since F is smooth,

lim
y→x
h→0+
γ→0

Sh(ϕ+ γ, ϕ(y) + γ, y) = H(p1,−p1, . . . , pn,−pn, ϕ(x), x).

The result immediately follows.

(c) Find a monotone and consistent scheme for the linear PDE

a1ux1 + · · ·+ anuxn = f(x),

where a1, . . . , an are real numbers. Compare your scheme with the direction of the
projected characteristics. [Hint: Your solution should depend on the signs of the
ai.]

Solution. As discovered in part (a), monotone schemes are increasing functions of
∇−i u(x) and decreasing functions of ∇+

i u(x). Thus, if ai is positive, we should
select backward differences, and if ai is negative, then we should select forward
differences. Let

mi :=

{
1, if ai ≥ 0

0, otherwise.

We can write a monotone scheme as

Sh(u, u(x), x) =

n∑
i=1

mi∇−i u(x) + (1−mi)∇+
i u(x).

Notice that the characteristics flow in the direction

ẋ(s) = DpH(p(s), z(s), x(s)) = (a1, . . . , an).

When the characteristics are flowing in the positive xi direction, we say the ‘wind’
is blowing from the left to the right (by ‘wind’, we mean information is propagating
in this direction). In this case ai ≥ 0 and we choose backward differences ∇−i u(x).
This is called ‘upwinding’, and reflects the fact that u(x) should depend on the
values of u in the direction from which the wind is blowing. When the characteristics
flow in the negative xi direction, so ai < 0, the wind is blowing from the right to
the left, and we choose forward differences. Again, this reflects the fact that the
solution u(x) depends on the values of u in the direction from which the wind is
blowing. These heuristics are why monotone schemes for first order equations are
called upwind schemes.
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(d) Suppose that H is Lipschitz continuous and define

a := sup {|DpH(p, z, x)| : p ∈ Rn, z ∈ R, x ∈ [0, 1]n} .

The Lax-Friedrichs scheme is defined by

Sh(u, u(x), x) := H (∇hu(x), u(x), x)− ah

2
∆hu(x),

where

∇hu(x) :=

(
u(x+ he1)− u(x− he1)

2h
, . . . ,

u(x+ hen)− u(x− hen)

2h

)
,

and

∆hu(x) :=
n∑
i=1

u(x+ hei)− 2u(x) + u(x− hei)
h2

.

Show that the Lax-Friedrichs scheme is monotone and consistent. [Hint: Rewrite
the scheme as a function of the forward and backward differences∇±i u(x), as above.]

Solution. Write a ∈ R2n as a = (b1, c1, . . . , bn, cn). Then we can write the Lax-
Friedrichs scheme as

F (a, z, x) = H

(
b− c

2
, z, x

)
+
a

2

n∑
i=1

(bi + ci).

Then
Fbi =

1

2
Hpi

(
b− c

2
, z, x

)
+
a

2
≥ 0,

and
Fci = −1

2
Hpi

(
b− c

2
, z, x

)
+
a

2
≥ 0.

Therefore F is monotone. When b = p and c = −p we have

F (p1,−p1, . . . , pn,−pn, z, x) = H(p, z, x).

Therefore F is consistent.

4. Let U := B0(0, 1) and ε > 0. Consider the nonlocal integral equation

(Iε)


(1 + cε2)uε(x)−−

∫
B(x,ε)

uε dy = cε2f(x) if x ∈ U

uε(x) = 0 if x ∈ Γε,

where c = 1
2(n+2) , uε : Γε ∪ U → R, f ∈ C(U), and

Γε = {x ∈ Rn \ U : dist(x, ∂U) ≤ ε}.
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Follow the steps below to show that as ε→ 0+, uε converges uniformly to the viscosity
solution u of

(P)

{
u−∆u = f in U

u = 0 on ∂U.

The proof is based on recognizing (Iε) as a monotone approximation scheme for (P).
Unless otherwise specified, any function u : U → R is implicitly extended to be identically
zero on Γε.

(a) Show that there exists a unique function uε ∈ C(U) solving (Iε). [Hint: Show that
the mapping T : C(U)→ C(U) defined by

T [u](x) :=
1

1 + cε2
−
∫
B(x,ε)

u dy +
cε2

1 + cε2
f(x)

is a contraction mapping. Use the usual norm ‖u‖ := maxU |u| on C(U). Then
appeal to Banach’s fixed point theorem.]

Solution. Define T : C(U)→ C(U) by

T [u](x) :=
1

1 + cε2
−
∫
B(x,ε)

u dy +
cε2

1 + cε2
f(x).

Since x 7→ −
∫
B(x,ε) u dy is continuous provided u ∈ L∞loc(Rn), the mapping T is well-

defined. We claim that T is a contraction. Let α = 1
1+cε2

, and fix u, v ∈ C(U).
Then

|T [u](x)− T [v](x)| =

∣∣∣∣∣α−
∫
B(x,ε)

u(y)− v(y) dy

∣∣∣∣∣
≤ α

|B(x, ε)|

∫
B(x,ε)∩U

|u(y)− v(y)| dy

≤ α |B(x, ε) ∩ U |
|B(x, ε)|

‖u− v‖ ≤ α‖u− v‖.

Therefore
‖T [u]− T [v]‖ ≤ α‖u− v‖,

for all u, v ∈ C(U), where 0 < α < 1. Therefore T is a contraction mapping, and by
Banach’s fixed point theorem, there exists a unique uε ∈ C(U) such that T [uε] = uε,
i.e., uε is the unique solution of (Iε).

(b) Define Sε : L∞(U ∪ Γε)× R× U → R by

Sε(u, t, x) := (1 + cε2)t−−
∫
B(x,ε)

u dy.

Show that Sε is monotone, i.e., for all t ∈ R, x ∈ U , and u, v ∈ L∞(U ∪ Γε)

u ≤ v on B(x, ε) =⇒ Sε(u, t, x) ≥ Sε(v, t, x).
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Solution. The monotonicity is immediate, since u ≤ v =⇒ −
∫
B(x,ε) u dy ≤ −

∫
B(x,ε) v dy

for all x.

(c) Show that the following comparison principle holds: Let u, v ∈ L∞(U∪Γε) such that
u|U , v|U ∈ C(U). If u ≤ v on Γε and Sε(u, u(x), x) ≤ Sε(v, v(x), x) at all x ∈ U ,
then u ≤ v on U .

Solution. Set w := u− v, and note that since S is linear we have

Sε(w,w(x), x) = Sε(u, u(x), x)− Sε(v, v(x), x) ≤ 0 for all x ∈ U.

Therefore
(1 + cε2)w(x) ≤ −

∫
B(x,ε)

w(y) dy for all x ∈ U,

due to the fact that w is uniformly continuous on U .
Assume to the contrary that w(x) > 0 for some x ∈ U . Let x0 ∈ U be a point at
which w attains its positive maximum over U . Since w ≤ 0 on Γε, w(x0) ≥ w(x) for
all x ∈ U ∪ Γε. Therefore

(1 + cε2)w(x0) ≤ −
∫
B(x0,ε)

w(y) dy ≤ w(x0),

which is a contradiction. Therefore w ≤ 0 on U , and hence u ≤ v on U .

(d) Use the comparison principle to show that there exists C > 0 such that

|uε(x)| ≤ C(1 + 3ε− |x|2),

for all x ∈ U and 0 < ε ≤ 1, where C depends only on ‖f‖ = maxU |f |. [Hint:
Compare against v(x) := C(1 + 3ε − |x|2) and −v, and adjust the constant C
appropriately.]

Solution. For C > 0 to be determined later, set v(x) := C(1 + 3ε − |x|2). A
computation yields

Sε(v, v(x), x) = cε2v(x) + 2nCcε2.

Note that for x ∈ U ∪ Γε, |x| ≤ 1 + ε and so

v(x) ≥ C(1 + 3ε− (1 + ε)2) = C(3ε− 2ε− ε2) ≥ 0,

for 0 < ε ≤ 1. Therefore v ≥ 0 on U ∪ Γε and

Sε(v, v(x), x) ≥ 2nCcε2.

By choosing C > 0 large enough, depending only on ‖f‖, we have

Sε(v, v(x), x) ≥ cε2f(x) = Sε(uε, uε(x), x)

for all x ∈ U . Since uε = 0 ≤ v on Γε, the comparison principle from problem 3
shows that uε ≤ v on U . A similar argument shows that uε ≥ −v.
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(e) Use the method of weak upper and lower limits to show that uε → u uniformly on
U , where u is the viscosity solution of (P). You may assume a comparison principle
holds for (P) for semicontinuous viscosity solutions. That is, if u ∈ USC(U) is a
viscosity subsolution of (P) and v ∈ LSC(U) is a viscosity supersolution, and u ≤ v
on ∂U , then u ≤ v in U . [Hint: You will find the identity in the hint from HW1
Problem 4 useful.]

Solution. We consider the weak upper and lower limits

u(x) := lim sup
(y,ε)→(x,0+)

uε(y) and u(x) := lim inf
(y,ε)→(x,0+)

uε(y).

By problem 4, these are bounded functions on U , and we showed in class that
u ∈ USC(U) and u ∈ LSC(U). Furthermore, the estimate in problem 4 also shows
that u = u = 0 on ∂U = ∂B(0, 1).
To complete the proof, we just need to show that u is a viscosity subsolution of (P),
and u is a viscosity supersolution of (P). Then the assumed comparison principle
gives u ≤ u, and so u = u = u, where u is the unique viscosity solution of (P).
We’ll show that u is a viscosity subsolution of (P); the proof that u is a supersolution
is similar. We first extend u(x) = 0 for x 6∈ U . Let x0 ∈ U and ϕ ∈ C∞(Rn) such
that u−ϕ has a local maximum at x. As usual, we may assume that u−ϕ actually
has a strict global maximum at x0 over Rn and ϕ(x0) = u(x0). Then there exist
sequences εk → 0+ and xk → x0 such that uεk(xk)→ u(x0) and uεk−ϕ has a global
maximum at xk for each k. Define

ϕk(x) := ϕ(x) + γk,

where γk := uεk(xk)− ϕ(xk). Then

ϕk(xk) = uεk(xk) and uεk ≤ ϕk on U ∪ Γεk .

By the monotonicity of the scheme Sε we have

cε2kf(xk) = Sεk(uεk , uεk(xk), xk) ≥ Sεk(ϕk, ϕk(xk), xk).

Unwrapping the definition of Sε we have

(1 + cε2k)ϕk(xk)−−
∫
B(xk,εk)

ϕk(y) dy ≤ cε2kf(xk).

Since ϕk = ϕ+ γk we have

ϕ(xk) + 2(n+ 1)−
∫
B(xk,εk)

ϕ(xk)− ϕ(y)

ε2k
dy + γk ≤ f(xk).

Sending k →∞, recalling γk → 0, and using the identity from Homework 8, Problem
4, we have

u(x0)−∆ϕ(x0) ≤ f(x0).

Therefore u is a viscosity subsolution of (P).
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