Math 8590: Viscosity Solutions Bellman Equation

Instructor: Jeff Calder
Office: 538 Vincent
Email: jcalder@umn.edu Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

Shortest paths

Consider the following calculus of variations problem:

$$
\begin{equation*}
T(x, y)=\inf \left\{I[\mathbf{w}]: \mathbf{w} \in C^{1}([0,1] ; \bar{U}), \mathbf{w}(0)=x, \text { and } \mathbf{w}(1)=y\right\} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
I[\mathbf{w}]:=\int_{0}^{1} L\left(\mathbf{w}^{\prime}(t), \mathbf{w}(t)\right) d t \tag{2}
\end{equation*}
$$

We assume that $L: \mathbb{R}^{n} \times \bar{U} \rightarrow \mathbb{R}$ is continuous, $L(p, x)>0$ for $p \neq 0$ and

$$
\begin{equation*}
p \mapsto L(p, x) \text { is positively 1-homogeneous. } \tag{3}
\end{equation*}
$$

For $g: \partial U \rightarrow \mathbb{R}$ we define the value function

$$
\begin{equation*}
u(x)=\inf _{y \in \partial U}\{g(y)+T(x, y)\} \tag{4}
\end{equation*}
$$

Shortest paths: Maze navigation

Shortest paths

Proposition 1. For any $x, y \in \bar{U}$ such that the line segment between x and y belongs to \bar{U} we have

$$
\begin{equation*}
T(x, y) \leq K|x-y|, \tag{5}
\end{equation*}
$$

where $K=\sup _{x \in \bar{U},|p|=1} L(p, x)$.
Lemma 1. For all $x, y, z \in \bar{U}$ we have

$$
\begin{equation*}
T(x, z) \leq T(x, y)+T(y, z) . \tag{6}
\end{equation*}
$$

Shortest paths: Dynamic programming principle

Lemma 2. For every $B(x, r) \subset U$ we have
(7)

$$
u(x)=\inf _{y \in \partial B(x, r)}\{u(y)+T(x, y)\} .
$$

Shortest paths: Regularity

Here, we need a compatibility condition on the boundary values $g: \partial U \rightarrow \mathbb{R}$.

$$
\begin{equation*}
g(x)-g(y) \leq T(x, y) \quad \text { for all } x, y \in \partial U \tag{8}
\end{equation*}
$$

Lemma 3. The value function u is locally Lipschitz continuous in U and assumes the boundary values $u=g$ on ∂U, in the sense that for all $x \in \partial U$

$$
\lim _{\substack{y \rightarrow x \\ y \in U}} u(y)=g(x) .
$$

Shortest paths: Bellman equation

We can now characterize u as the viscosity solution of a Hamilton-Jacobi equation. We define

$$
\begin{equation*}
H(p, x)=\sup _{|a|=1}\{-p \cdot a-L(a, x)\} \tag{9}
\end{equation*}
$$

Lemma 4. H is convex in p and satisfies

$$
\begin{equation*}
H(p, y)-H(p, x) \leq \omega(|x-y|(1+|p|)) \tag{10}
\end{equation*}
$$

Theorem 1. The value function u is the unique viscosity solution of the Bellman equation

$$
\left\{\begin{align*}
H(D u, x)=0 & \text { in } U \tag{11}\\
u=g & \text { on } \partial U .
\end{align*}\right.
$$

Shortest paths: Maze navigation

Shortest paths: Dynamic programming

Recall the dynamic programming principle.

$$
\begin{equation*}
u(x)=\inf _{y \in \partial B(x, r)}\{u(y)+T(x, y)\} . \tag{12}
\end{equation*}
$$

Once we compute the value function u, we can compute nearly optimal paths via dynamic programming

$$
\begin{equation*}
x^{k+1}=\underset{x \in \partial B\left(x^{k}, \varepsilon\right)}{\arg \min }\left\{u(x)+T\left(x^{k}, x\right)\right\} . \tag{13}
\end{equation*}
$$

