Math 8590: Viscosity Solutions
 Boundary conditions in viscosity sense

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

Vanishing viscosity

Exercise 1. Consider the ordinary differential equation

$$
u_{\varepsilon}^{\prime}(x)-\varepsilon u_{\varepsilon}^{\prime \prime}(x)=1, \quad u_{\varepsilon}(0)=u_{\varepsilon}(1)=0 .
$$

Find explicitly the solution u_{ε} and sketch its graph. Show that $u_{\varepsilon}(x) \rightarrow x$ pointwise on $[0,1)$ as $\varepsilon \rightarrow 0$.

Vanishing viscosity \& boundary conditions

Let u_{ε} be a smooth solution of

$$
\begin{equation*}
H\left(D u_{\varepsilon}, u_{\varepsilon}, x\right)-\varepsilon \Delta u_{\varepsilon}=0 \text { in } U \tag{1}
\end{equation*}
$$

and assume that $u_{\varepsilon} \leq g$ on ∂U. Consider the weak upper limit

$$
\bar{u}(x)=\limsup _{(y, \varepsilon) \rightarrow\left(x, 0^{+}\right)} u_{\varepsilon}(y)
$$

Let $x \in \partial U$ and let $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\bar{u}-\varphi$ has a strict local max at x. Show that

$$
\min \{H(D \varphi(x), \bar{u}(x), x), \bar{u}(x)-g(x)\} \leq 0
$$

Vanishing viscosity \& boundary conditions

Let u_{ε} be a smooth solution of

$$
\begin{equation*}
H\left(D u_{\varepsilon}, u_{\varepsilon}, x\right)-\varepsilon \Delta u_{\varepsilon}=0 \text { in } U \tag{2}
\end{equation*}
$$

and assume that $u_{\varepsilon} \leq g$ on ∂U. Consider the weak upper limit

$$
\bar{u}(x)=\limsup _{(y, \varepsilon) \rightarrow\left(x, 0^{+}\right)} u_{\varepsilon}(y)
$$

Let $x \in \partial U$ and let $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\bar{u}-\varphi$ has a strict local max at x. Show that

$$
\min \{H(D \varphi(x), \bar{u}(x), x), \bar{u}(x)-g(x)\} \leq 0 .
$$

We can make the same argument with the weak lower limit \underline{u} to find that when $\underline{u}-\varphi$ has a local minimum at $x \in \partial U$ we have

$$
\max \{H(D \varphi(x), \underline{u}(x), x), \underline{u}(x)-g(x)\} \geq 0,
$$

provided $u_{\varepsilon} \geq g$ on ∂U.

Boundary conditions in the viscosity sense

$$
\left\{\begin{align*}
H(D u, u, x)=0 & \text { in } U \tag{3}\\
u=g \quad & \text { on } \partial U
\end{align*}\right.
$$

This motivates the following definitions.
Definition 1. We say $u \in \operatorname{USC}(\bar{U})$ is a viscosity subsolution of (3) if for all $x \in \bar{U}$ and every $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $u-\varphi$ has a local maximum at x with respect to \bar{U}

$$
\begin{cases}H(D \varphi(x), u(x), x) \leq 0, & \text { if } x \in U \\ \min \{H(D \varphi(x), u(x), x), u(x)-g(x)\} \leq 0 & \text { if } x \in \partial U\end{cases}
$$

Likewise, we say that $u \in \operatorname{LSC}(\bar{U})$ is a viscosity supersolution of (3) if for all $x \in \bar{U}$ and every $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $u-\varphi$ has a local minimum at x with respect to \bar{U}

$$
\begin{cases}H(D \varphi(x), u(x), x) \geq 0, & \text { if } x \in U \\ \max \{H(D \varphi(x), u(x), x), u(x)-g(x)\} \geq 0 & \text { if } x \in \partial U\end{cases}
$$

Finally, we say that u is a viscosity solution of (3) if u is both a viscosity sub- and supersolution. In this case, we say that the boundary conditions in (3) hold in the viscosity sense

Exercise 2. Show that $u(x)=x$ is a viscosity solution of

$$
u^{\prime}(x)=1, \quad u(0)=u(1)=0
$$

on the interval $U=(0,1)$ in the sense of Definition 1 .

Comparison principle

We assume the usual monotonicity and regularity conditions on H hold. In addition we assume

$$
\begin{equation*}
|H(p, z, x)-H(q, z, x)| \leq \omega_{1}(|p-q|), \tag{4}
\end{equation*}
$$

where ω_{1} is a modulus of continuity.
Theorem 1. Let $U \subset \mathbb{R}^{n}$ be open and suppose $\partial U=\Gamma_{1} \cup \Gamma_{2}$ where Γ_{1} is relatively open and $\Gamma_{1} \cap \Gamma_{2}=\varnothing$. Let $u \in U S C(\bar{U})$ be a bounded viscosity solution of

$$
H(D u, u, x)+\varepsilon \leq 0 \text { on } U \cup \Gamma_{1},
$$

and let $v \in L S C(\bar{U})$ be a bounded viscosity solution of

$$
H(D v, v, x) \geq 0 \text { on } U \cup \Gamma_{1} .
$$

If $u \leq v$ on Γ_{2} then $u \leq v$ on U.

Time-dependent equations on \mathbb{R}^{n}

As an application we will prove a comparison principle for the time-dependent Hamilton-Jacobi equation

We assume H satisfies the usual monotonicity and regularity, as well as (4).
Theorem 2. Let $u \in \operatorname{USC}\left(\mathbb{R}^{n} \times[0, T]\right)$ be a bounded viscosity subsolution of (5), and let $v \in L S C\left(\mathbb{R}^{n} \times[0, T]\right)$ be a bounded viscosity supersolution of (5). Then $u \leq v$ on $\mathbb{R}^{n} \times[0, T]$.

We say u is a subsolution of (5), we mean that u is a solution of $u_{t}+H \leq 0$ in $\mathbb{R}^{n} \times(0, T)$ and $u \leq g$ at $t=0$. Likewise, a supersolution is assumed to satisfy $v \geq g$ at $t=0$, hence $u \leq v$ at $t=0$.

Time-dependent equations on \mathbb{R}^{n}

Continuous dependence on initial data.
Corollary 1. Let $u, v \in C\left(\mathbb{R}^{n} \times[0, T]\right)$ be bounded, and assume that $w:=u$ and $w:=v$ are viscosity solutions of

$$
w_{t}+H(D w, x)=0 \quad \text { in } \mathbb{R}^{n} \times(0, T)
$$

Then

$$
\sup _{\mathbb{R}^{n} \times[0, T]}|u-v| \leq \sup _{x \in \mathbb{R}^{n}}|u(x, 0)-v(x, 0)| .
$$

The Hopf-Lax Formula

In the case that $H=H(p)$ and H is convex and superlinear we have the Hopf-Lax formula

$$
u(x, t)=\min _{y \in \mathbb{R}^{n}}\left\{t L\left(\frac{x-y}{t}\right)+g(y)\right\},
$$

where

$$
L(v)=\sup _{p \in \mathbb{R}^{n}}\{p \cdot v-H(p)\}
$$

is the Legendre transform of H.
Exercise 3. Prove that the Hopf-Lax formula gives the unique viscosity solution of (6).

$$
\left\{\begin{align*}
u_{t}+H(D u)=0 & \text { in } \mathbb{R}^{n} \times(0, T) \tag{6}\\
u=g & \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{align*}\right.
$$

