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Vanishing viscosity
Exercise 1. Consider the ordinary differential equation
ul(z) —eul(x) =1, u(0) =uc(1) =0.

Find explicitly the solution u. and sketch its graph. Show that u.(z) — =
pointwise on [0,1) as € — 0.



Vanishing viscosity & boundary conditions
Let u. be a smooth solution of
(1) H(Dug,ue,x) —eAu. =0 in U,

and assume that u. < g on OU. Consider the weak upper limit

u(z) = limsup wu.(y).
(y,€)—=(2,0%)

Let x € U and let ¢ € C*°(R™) such that @ — ¢ has a strict local max at .
Show that

min {H (Dg(x),u(x), ), u(z) — g(x)} < 0.



Vanishing viscosity & boundary conditions

Let u. be a smooth solution of
(2) H(Dug,ue,x) —eAu. =0 in U,

and assume that u. < g on OU. Consider the weak upper limit

u(z) = limsup wu.(y).
(y,6)=(2,0%)

Let z € U and let ¢ € C°°(R™) such that @ — ¢ has a strict local max at x.
Show that

We can make the same argument with the weak lower limit u to find that
when u — ¢ has a local minimum at x € U we have

max {H (Dp(z), u(z), x), u(z) — g(x)} = 0,

provided u. > g on OU.



Boundary conditions in the viscosity sense

(3)

H(Du,u,x) =0 inU
u=g ondU

This motivates the following definitions.

Definition 1. We say u € USC(U) is a viscosity subsolution of (3) if for all
z € U and every ¢ € C*(R") such that u — ¢ has a local maximum at z
with respect to U

{H(Dgp(x),u(x), z) <0, ifzeU
min {H(Dy(z),u(x),x),u(z) — g(x)} <0 if z € 9U.



Likewise, we say that u € LSC(U) is a viscosity supersolution of (3) if for
all x € U and every ¢ € C*>°(R") such that u — ¢ has a local minimum at x
with respect to U
H(Dy(x),u(x),z) >0, ifxelU
max {H(Dp(x),u(z),z),u(x) — g(x)} >0 if z € U.
Finally, we say that u is a viscosity solution of (3) if u is both a viscosity

sub- and supersolution. In this case, we say that the boundary conditions in
(3) hold in the wiscosity sense

Exercise 2. Show that u(x) = x is a viscosity solution of

on the interval U = (0, 1) in the sense of Definition 1.



Comparison principle

We assume the usual monotonicity and regularity conditions on H hold. In
addition we assume

(4) |H(p,Z,SC)—H(q,Z,$)| §w1(|p_q,)7

where wy is a modulus of continuity.

Theorem 1. Let U C R" be open and suppose OU = T'y UTs where 'y is

relatively open and 'y NTe = @&. Let u € USC(U) be a bounded viscosity

solution of
H(Du,u,x)4+e <0 onUUTY,

and let v € LSC(U) be a bounded viscosity solution of
H(Dv,v,x) >0 on U UT}.

If u<vonTy thenu<vonU.



Time-dependent equations on R"

As an application we will prove a comparison principle for the time-dependent
Hamilton-Jacobi equation

5 {ut + H(Du,z) =0 inR" x (0,7)

u=g onR"x {t=0}.
We assume H satisfies the usual monotonicity and regularity, as well as (4).

Theorem 2. Let u € USC(R™ x [0,T]) be a bounded viscosity subsolution of
(5), and let v € LSC(R™ x [0,T]) be a bounded viscosity supersolution of (5).
Then uw <wv on R™ x [0,T].

We say u is a subsolution of (5), we mean that u is a solution of u;+H < 0
in R™ x (0,7) and u < g at t = 0. Likewise, a supersolution is assumed to
satisfy v > g at t = 0, hence u < wv at t = 0.



Time-dependent equations on R”
Continuous dependence on initial data.

Corollary 1. Let u,v € C(R™ x [0,T]) be bounded, and assume that w :=u
and w := v are viscosity solutions of

wy + H(Dw,z) =0 inR" x (0,T).
Then

sup |u—v| < sup |u(z,0) — v(z,0)|.
R7 x[0,T] TERM



The Hopf-Lax Formula

In the case that H = H(p) and H is convex and superlinear we have the
Hopf-Lax formula

u(z,t) = min {tL (l:y) +9(y)} :

L(v) = SQR%{]’ v —H(p)}

where

is the Legendre transform of H.

Exercise 3. Prove that the Hopf-Lax formula gives the unique viscosity
solution of (6).

© {ut + H(Du)=0 inR"x (0,T)

u=g onR"x {t=0}



