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Vanishing viscosity

Exercise 1. Consider the ordinary differential equation

u′ε(x)− εu′′ε(x) = 1, uε(0) = uε(1) = 0.

Find explicitly the solution uε and sketch its graph. Show that uε(x) → x
pointwise on [0, 1) as ε→ 0.



Vanishing viscosity & boundary conditions

Let uε be a smooth solution of

(1) H(Duε, uε, x)− ε∆uε = 0 in U,

and assume that uε ≤ g on ∂U . Consider the weak upper limit

u(x) = lim sup
(y,ε)→(x,0+)

uε(y).

Let x ∈ ∂U and let ϕ ∈ C∞(Rn) such that u− ϕ has a strict local max at x.
Show that

min {H(Dϕ(x), u(x), x), u(x)− g(x)} ≤ 0.



Vanishing viscosity & boundary conditions

Let uε be a smooth solution of

(2) H(Duε, uε, x)− ε∆uε = 0 in U,

and assume that uε ≤ g on ∂U . Consider the weak upper limit

u(x) = lim sup
(y,ε)→(x,0+)

uε(y).

Let x ∈ ∂U and let ϕ ∈ C∞(Rn) such that u− ϕ has a strict local max at x.
Show that

min {H(Dϕ(x), u(x), x), u(x)− g(x)} ≤ 0.

We can make the same argument with the weak lower limit u to find that
when u− ϕ has a local minimum at x ∈ ∂U we have

max {H(Dϕ(x), u(x), x), u(x)− g(x)} ≥ 0,

provided uε ≥ g on ∂U .



Boundary conditions in the viscosity sense

(3)

{
H(Du, u, x) = 0 in U

u = g on ∂U

This motivates the following definitions.

Definition 1. We say u ∈ USC(U) is a viscosity subsolution of (3) if for all
x ∈ U and every ϕ ∈ C∞(Rn) such that u − ϕ has a local maximum at x
with respect to U{

H(Dϕ(x), u(x), x) ≤ 0, if x ∈ U

min {H(Dϕ(x), u(x), x), u(x)− g(x)} ≤ 0 if x ∈ ∂U.



Likewise, we say that u ∈ LSC(U) is a viscosity supersolution of (3) if for
all x ∈ U and every ϕ ∈ C∞(Rn) such that u− ϕ has a local minimum at x
with respect to U{

H(Dϕ(x), u(x), x) ≥ 0, if x ∈ U

max {H(Dϕ(x), u(x), x), u(x)− g(x)} ≥ 0 if x ∈ ∂U.

Finally, we say that u is a viscosity solution of (3) if u is both a viscosity
sub- and supersolution. In this case, we say that the boundary conditions in
(3) hold in the viscosity sense

Exercise 2. Show that u(x) = x is a viscosity solution of

u′(x) = 1, u(0) = u(1) = 0,

on the interval U = (0, 1) in the sense of Definition 1.



Comparison principle

We assume the usual monotonicity and regularity conditions on H hold. In
addition we assume

(4) |H(p, z, x)−H(q, z, x)| ≤ ω1(|p− q|),

where ω1 is a modulus of continuity.

Theorem 1. Let U ⊂ Rn be open and suppose ∂U = Γ1 ∪ Γ2 where Γ1 is
relatively open and Γ1 ∩ Γ2 = ∅. Let u ∈ USC(U) be a bounded viscosity
solution of

H(Du, u, x) + ε ≤ 0 on U ∪ Γ1,

and let v ∈ LSC(U) be a bounded viscosity solution of

H(Dv, v, x) ≥ 0 on U ∪ Γ1.

If u ≤ v on Γ2 then u ≤ v on U .



Time-dependent equations on Rn

As an application we will prove a comparison principle for the time-dependent
Hamilton-Jacobi equation

(5)

{
ut + H(Du, x) = 0 in Rn × (0, T )

u = g on Rn × {t = 0}.

We assume H satisfies the usual monotonicity and regularity, as well as (4).

Theorem 2. Let u ∈ USC(Rn × [0, T ]) be a bounded viscosity subsolution of
(5), and let v ∈ LSC(Rn× [0, T ]) be a bounded viscosity supersolution of (5).
Then u ≤ v on Rn × [0, T ].

We say u is a subsolution of (5), we mean that u is a solution of ut+H ≤ 0
in Rn × (0, T ) and u ≤ g at t = 0. Likewise, a supersolution is assumed to
satisfy v ≥ g at t = 0, hence u ≤ v at t = 0.



Time-dependent equations on Rn

Continuous dependence on initial data.

Corollary 1. Let u, v ∈ C(Rn × [0, T ]) be bounded, and assume that w := u
and w := v are viscosity solutions of

wt + H(Dw, x) = 0 in Rn × (0, T ).

Then
sup

Rn×[0,T ]
|u− v| ≤ sup

x∈Rn
|u(x, 0)− v(x, 0)|.



The Hopf-Lax Formula

In the case that H = H(p) and H is convex and superlinear we have the
Hopf-Lax formula

u(x, t) = min
y∈Rn

{
tL

(
x− y

t

)
+ g(y)

}
,

where
L(v) = sup

p∈Rn
{p · v −H(p)}

is the Legendre transform of H.

Exercise 3. Prove that the Hopf-Lax formula gives the unique viscosity
solution of (6).

(6)

{
ut + H(Du) = 0 in Rn × (0, T )

u = g on Rn × {t = 0}.


