Math 8590: Viscosity Solutions Comparison Principle

Instructor: Jeff Calder Office: 538 Vincent Email: jcalder@umn.edu Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

Partial order on symmetric matrices

Definition 1. Given A, B real symmetric matrices, we say $A \leq B$ if

 $\forall v \in \mathbb{R}^n \quad v \cdot Av \le v \cdot Bv.$

Properties:

- Transitive: $A \leq B$ and $B \leq C$ implies $A \leq C$.
- Reflexive: $A \leq A$.
- Anitsymmetric: $A \leq B$ and $B \leq A$ implies A = B.
- If $A \leq B$ then $A + C \leq B + C$.

Partial order on symmetric matrices

Definition 2. Given A, B real symmetric matrices, we say $A \leq B$ if

 $\forall v \in \mathbb{R}^n \quad v \cdot Av \le v \cdot Bv.$

Exercise 1. If A, B are diagonal, then $A \leq B$ if and only if $a_{ii} \leq b_{ii}$ for all i. In particular, there exist A, B for which both $A \leq B$ and $B \leq A$ do not hold.

Exercise 2. If $u \in C^2(\mathbb{R}^n)$ has a local maximum at x_0 then $D^2u(x_0) \leq 0$.

In particular, if u - v has a local maximum at x_0 then $D^2 u(x_0) \le D^2 v(x_0)$.

The maximum principle (in more generality)

Suppose that $u \in C^2(U) \cap C(\overline{U})$ is a solution of

 $H(D^2u, Du, u, x) \le 0 \quad \text{in } U.$

and $v \in C^2(U) \cap C(\overline{U})$ is a solution of

 $H(D^2v, Dv, v, x) > 0 \quad \text{in } U.$

Question: When can we conclude that the maximum principle

$$\max_{\overline{U}}(u-v) = \max_{\partial U}(u-v)$$

holds?

The maximum principle (in more generality)

The maximum principle requires *monotonicity*

(1)
$$H(X, p, r, x) \le H(X, p, s, x)$$
 whenever $r \le s$,

and *degenerate ellipticity*

(2)
$$H(X, p, z, x) \ge H(Y, p, z, x)$$
 whenever $X \le Y$.

Examples of degenerate elliptic PDE

Degenerate ellipticity:

 $(3) \hspace{1cm} H(X,p,z,x) \geq H(Y,p,z,x) \hspace{1cm} \text{whenever} \hspace{1cm} X \leq Y.$

Examples:

- Every first order equation.
- Nondivergence form quasilinear equations when $A = (a_{ij}) \ge 0$:

$$-\sum_{i,j=1}^{n} a_{ij}(Du, x)u_{x_i x_j} = 0.$$

• Euler-Lagrange equation for convex variational problems $\min \int L(Du, x) dx$:

$$-\operatorname{div}\left(\nabla_p L(Du, x)\right) = \sum_{i,j=1}^n L_{p_i p_j}(Du, x) u_{x_i x_j} = 0.$$

• Mean curvature motion.

$$u_t - |Du| \operatorname{div}\left(\frac{Du}{|Du|}\right) = 0.$$

• Decreasing functions of eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ of $D^2 u$ (e.g., convex Monge-Ampere equation) since we have the min-max formula for symmetric matrices

$$\lambda_k = \min_{\dim(L)=k} \max_{v \in L} \frac{v \cdot Av}{|v|^2}.$$

Let $U \subset \mathbb{R}^n$ be open and bounded, and assume

(4)
$$H(p,r,x) \le H(p,s,x)$$
 whenever $r \le s$,

and

(5)
$$H(p, z, y) - H(p, z, x) \le \omega(|x - y|(1 + |p|))$$

for all $x, y \in U$, $z \in \mathbb{R}$, and $p \in \mathbb{R}^n$, where ω is a modulus of continuity (i.e., ω is nonnegative, $\omega(0) = 0$ and ω is continuous at 0).

Theorem 1 (Comparison with strict subsolution). Let $u \in USC(\overline{U})$ be a viscosity solution of $H \leq -\varepsilon$ in U and let $v \in LSC(\overline{U})$ be a viscosity solution of $H \geq 0$ in U. If $u \leq v$ on ∂U then $u \leq v$ on U.

Theorem 2 (Comparison with strict subsolution). Let $u \in USC(\overline{U})$ be a viscosity solution of $H \leq -\varepsilon$ in U and let $v \in LSC(\overline{U})$ be a viscosity solution of $H \geq 0$ in U. If $u \leq v$ on ∂U then $u \leq v$ on U.

Proof. Assume, by way of contradiction, that $u \leq v$ on ∂U and

$$\max_{\overline{U}}(u-v) > 0.$$

For $\alpha > 0$ define the auxilliary function

$$\Phi(x,y) = u(x) - v(y) - \frac{\alpha}{2}|x - y|^2.$$

Let $(x_{\alpha}, y_{\alpha}) \in \overline{U} \times \overline{U}$ such that

$$\Phi(x_{\alpha}, y_{\alpha}) = \max_{\overline{U} \times \overline{U}} \Phi.$$

. . .

Why does the proof fail for second order equations?

Corollary 1 (Comparison principle). Let $u \in USC(\overline{U})$ be a viscosity solution of $H \leq 0$ in U and let $v \in LSC(\overline{U})$ be a viscosity solution of $H \geq 0$ in U. Suppose there exists a sequence $u_k \in USC(\overline{U})$ such that

 $u_k \rightarrow u \text{ pointwise on } U,$

 $u_k \leq v \text{ on } \partial U,$

and each u_k satisfies in the viscosity sense

$$H(Du_k, u_k, x) \leq -\frac{1}{k}$$
 in U

Then $u \leq v$ on U.

Comparison holds when:

1. There exists $\gamma > 0$ such that

(6)
$$H(p, z+h, x) - H(p, z, x) \ge \gamma h \quad (h > 0).$$

2. There exists $\gamma > 0$ and $i \in \{1, \ldots, n\}$ such that

(7)
$$H(p+he_i, z, x) - H(p, z, x) \ge \gamma h \quad (h > 0).$$

3. If H(p, z, x) = H(p, x), suppose $p \mapsto H(p, x)$ is convex, and there exists $\varphi \in C^{\infty}(\overline{U})$ such that

$$H(D\varphi(x), x) + \gamma \le 0$$
 in U

where $\gamma > 0$.