Math 8590: Viscosity Solutions Motivation and definitions

Instructor: Jeff Calder Office: 538 Vincent Email: jcalder@umn.edu Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

Example 1 (Distance function). Let Γ be a closed subset of \mathbb{R}^n and let $u : \mathbb{R}^n \to [0, \infty)$ be the *distance function to* Γ , defined by

(1)
$$u(x) = \operatorname{dist}(x, \Gamma) := \min_{y \in \Gamma} |x - y|.$$

Last time we saw that |Du(x)| = 1 at any point where u is differentiable.

Exercise 1. Show that there are in general infinitely many Lipschitz almost everywhere solutions of the eikonal equation |u'(x)| = 1 on (-1, 1) with u(-1) = u(1) = 0.

Vanishing viscosity

We can regularize the equation by adding *viscosity*:

$$H(Du_{\varepsilon}, u_{\varepsilon}, x) - \varepsilon \Delta u_{\varepsilon} = 0.$$

This equation is semilinear and uniformly elliptic. In general, it admits a unique classical solution u_{ε} subject to some appropriate boundary conditions.

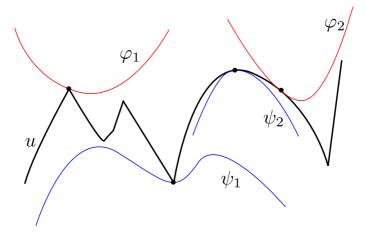
Exercise 2. For $\varepsilon > 0$ consider the ODE

(2)
$$|u'_{\varepsilon}(x)| - \varepsilon u''_{\varepsilon}(x) = 1 \quad \text{on } (-1,1)$$

with boundary condition u(-1) = 0 = u(1). Compute u_{ε} and show that

(3)
$$\lim_{\varepsilon \to 0^+} u_{\varepsilon}(x) = 1 - |x|.$$

Touching with smooth test functions



 $u - \varphi_i$ have local maxima (touching from above). $u - \psi_i$ have local minima (touching from below).

Vanishing viscosity

Consider again the viscous regularized equation

$$H(Du_{\varepsilon}, u_{\varepsilon}, x) - \varepsilon \Delta u_{\varepsilon} = 0 \text{ on } \mathbb{R}^{n}.$$

Assume $u_{\varepsilon} \to u$ uniformly as $\varepsilon \to 0$, and let $\varphi \in C^{\infty}(\mathbb{R}^n)$.

• If $u - \varphi$ has a local maximum at x_0 then

$$H(D\varphi(x_0), u(x_0), x_0) \le 0.$$

• If $u - \varphi$ has a local minimum at x_0 then

 $H(D\varphi(x_0), u(x_0), x_0) \ge 0.$

Important property of touching

If $u - \varphi$ has a local maximum at x, then

$$u(y) - u(x) \le \varphi(y) - \varphi(x)$$
 for y near x.

If $u - \varphi$ has a local minimum at x, then

$$u(y) - u(x) \ge \varphi(y) - \varphi(x)$$
 for y near x.

Dynamic programming

Recall the distance function

(4)
$$u(x) = \operatorname{dist}(x, \Gamma) := \min_{y \in \Gamma} |x - y|.$$

Last time we saw that u satisfies the **dynamic programming principle**

(5)
$$\max_{y \in \partial B(x,r)} \{u(x) - u(y) - r\} = 0.$$

If $u - \varphi$ has a local maximum at x, then

$$\max_{y \in \partial B(x,r)} \left\{ \varphi(x) - \varphi(y) - r \right\} \le 0,$$

and so $|D\varphi(x)| \leq 1$.

Similarly, if $u - \varphi$ has a local minimum at x, then $|D\varphi(x)| \ge 1$.

The maximum principle

Suppose that $u \in C^1(U) \cap C(\overline{U})$ is a solution of

 $H(Du, x) = 0 \quad \text{in } U.$

If $\varphi \in C^{\infty}(\mathbb{R}^n)$ is any function satisfying

 $H(D\varphi, x) > 0 \quad \text{in } U,$

then we have the maximum principle

$$\max_{\overline{U}}(u-\varphi) = \max_{\partial U}(u-\varphi),$$

The maximum principle

Suppose that $u \in C^1(U) \cap C(\overline{U})$ is a solution of

 $H(Du, x) = 0 \quad \text{in } U.$

If $\varphi \in C^{\infty}(\mathbb{R}^n)$ is any function satisfying

 $H(D\varphi, x) > 0$ in U,

then we have the maximum principle

$$\max_{\overline{U}}(u-\varphi) = \max_{\partial U}(u-\varphi),$$

In fact, we also have

$$u \leq \varphi \text{ on } \partial U \implies u < \varphi \text{ in } U.$$

The maximum principle

Let $V \subset \subset U$, $\varphi \in C^{\infty}(\mathbb{R}^n)$.

Subsolution property:

(6) If
$$u \leq \varphi$$
 on ∂V and $H(D\varphi, x) > 0$ then $u < \varphi$ in V.

Supersolution property:

(7) If
$$u \ge \varphi$$
 on ∂V and $H(D\varphi, x) < 0$ then $u > \varphi$ in V.

If $u \in C(U)$ satisfies (6) for all $V \subset C$ and all $\varphi \in C^{\infty}(\mathbb{R}^n)$ then $u - \varphi$ local max at $x_0 \implies H(D\varphi(x_0), u(x_0), x_0) \le 0.$

Same for (6) and local min.

Definitions

We consider the general second order nonlinear PDE

(8)
$$H(D^2u, Du, u, x) = 0 \quad \text{in } \mathcal{O},$$

where H is continuous and $\mathcal{O} \subset \mathbb{R}^n$.

Definition 1. We say that a function $u : \mathcal{O} \subset \mathbb{R}^n \to \mathbb{R}$ is upper semicontinuous at $x \in \mathcal{O}$ provided

 $\limsup_{\mathcal{O}\ni y\to x} u(y) \le u(x).$

Similarly, a function $u : \mathcal{O} \subset \mathbb{R}^n \to \mathbb{R}$ is *lower semicontinuous* at $x \in \mathcal{O}$ provided

 $\liminf_{\mathcal{O}\ni y\to x} u(y) \ge u(x).$

Let $USC(\mathcal{O})$ (resp. $LSC(\mathcal{O})$) denote the collection of functions that are upper (resp. lower) semicontinuous at all points in \mathcal{O} .

Definition of viscosity subsolution

We consider the general second order nonlinear PDE

(9)
$$H(D^2u, Du, u, x) = 0 \quad \text{in } \mathcal{O},$$

Definition 2. We say that $u \in \text{USC}(\mathcal{O})$ is a viscosity subsolution of (9) if for every $x \in \mathcal{O}$ and every $\varphi \in C^{\infty}(\mathbb{R}^n)$ such that $u - \varphi$ has a local maximum at x with respect to \mathcal{O}

$$H(D^2\varphi(x), D\varphi(x), u(x), x) \le 0.$$

We will often say that $u \in \text{USC}(\mathcal{O})$ is a viscosity solution of $H \leq 0$ in \mathcal{O} when u is a viscosity subsolution of (9).

Definition of viscosity supersolution

We consider the general second order nonlinear PDE

(10)
$$H(D^2u, Du, u, x) = 0 \quad \text{in } \mathcal{O},$$

Definition 3. We say that $u \in \text{LSC}(\mathcal{O})$ is a viscosity supersolution of (10) if for every $x \in \mathcal{O}$ and every $\varphi \in C^{\infty}(\mathbb{R}^n)$ such that $u - \varphi$ has a local minimum at x with respect to \mathcal{O}

$$H(D^2\varphi(x), D\varphi(x), u(x), x) \ge 0.$$

We will often say that $u \in LSC(\mathcal{O})$ is a viscosity solution of $H \ge 0$ in \mathcal{O} when u is a viscosity supersolution of (10).

Definition 4. We say u is viscosity solution of (10) if u is both a viscosity subsolution and a viscosity supersolution.

Classical solutions are viscosity solutions

We can relax the condition $\varphi \in C^{\infty}(\mathbb{R}^n)$ to $\varphi \in C^2(\mathbb{R}^n)$ for second order equations and $\varphi \in C^1(\mathbb{R}^n)$ for first order equations, provided H is continuous.

Comparison against smooth sub/super solutions

Theorem 1. Let $U \subset \mathbb{R}^n$ be open and bounded and suppose $\varphi \in C^{\infty}(\mathbb{R}^n)$ satisfies

(11)
$$H(D^2\varphi, D\varphi, x) > 0 \text{ in } U$$

and let $u \in USC(\overline{U})$ be a viscosity solution of $H \leq 0$ in U. Then

(12)
$$\max_{\overline{U}}(u-\varphi) = \max_{\partial U}(u-\varphi).$$

Similarly, if

(13)
$$H(D^2\varphi, D\varphi, x) < 0 \text{ in } U$$

and $u \in LSC(\overline{U})$ is a viscosity solution of $H \ge 0$ in U then

(14)
$$\min_{\overline{U}}(u-\varphi) = \min_{\partial U}(u-\varphi).$$

Warning

The PDEs

$$H(D^{2}u, Du, u, x) = 0$$
 and $-H(D^{2}u, Du, u, x) = 0$

are **not** the same in the viscosity sense.

Exercise 3. Verify that u(x) = -|x| is a viscosity solution of |u'(x)| - 1 = 0 on \mathbb{R} , but is *not* a viscosity solution of -|u'(x)| + 1 = 0 on \mathbb{R} . What is the viscosity solution of the second PDE?