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Discontinuous coefficients

Q) {H(Du) =f iU

u=g on JU.

Definition 1 (Viscosity solution). Let f : U — R. We say that u € USC(U)
is a wiscosity subsolution of (1) if for every x € U and every ¢ € C>*(R")
such that u — ¢ has a local maximum at z we have

H(Dg(x)) < f*(x).

Similarly, we say that u € LSC(U) is a wiscosity supersolution of (1) if for
every z € U and every ¢ € C*°(R") such that u — ¢ has a local minimum at
x we have

H(Dp(x)) > fu(x).



Discontinuous coefficients

Theorem 1. Let U = B%(0,1) and set Bt = UN{x, >0}, B~ =UN{x, <
0}, and I' =U N {z, = 0}. Assume that f|g+ € C(BT), flg- € C(B~) and
forallz el

(2) lim f(y) < lim f(y).

Let ¢ > 0 and let u,v € COY(U) such that H(Du) < f and H(Dv) > f +¢
in U in the viscosity sense of Definition 1. Then

(3) mﬁax(u —v) = I%%X(u —0).

Proof uses auxiliary function
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(4) <I>(:L’,y) = u(m) - U(y) -5 ﬁen
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Discontinuous coefficients

A generalization:

(D) For all xy € U there exists £,, > 0 and 7,, € S"~! such that
(5) fH(@) = folz +rd) < w(|z — ol +7),

for all z € U, r > 0 and d € S"! such that |d — 1., < €4, and
x4+ rd € U, where w is a modulus of continuity.

Theorem 2. Let U C R" be open and bounded, assume f : U — R satisfies
(D) and H € C(R"). Let € > 0 and let u,v € C¥Y(U) such that H(Du) < f
and H(Dv) > f + ¢ in U in the viscosity sense of Definition 1. Then

(6) mﬁax(u —v) = n%%x(u —0).

We use auxiliary function
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(7) P(z,y) =u(x) —v(y) — 5 |[r—y+
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