Math 8590: Viscosity Solutions Discontinuous Coefficients

Instructor: Jeff Calder Office: 538 Vincent Email: jcalder@umn.edu Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

Discontinuous coefficients

(1)
$$\begin{cases} H(Du) = f & \text{in } U \\ u = g & \text{on } \partial U. \end{cases}$$

Definition 1 (Viscosity solution). Let $f: U \to \mathbb{R}$. We say that $u \in \text{USC}(\overline{U})$ is a viscosity subsolution of (1) if for every $x \in U$ and every $\varphi \in C^{\infty}(\mathbb{R}^n)$ such that $u - \varphi$ has a local maximum at x we have

$$H(D\varphi(x)) \le f^*(x).$$

Similarly, we say that $u \in \text{LSC}(\overline{U})$ is a viscosity supersolution of (1) if for every $x \in U$ and every $\varphi \in C^{\infty}(\mathbb{R}^n)$ such that $u - \varphi$ has a local minimum at x we have

 $H(D\varphi(x)) \ge f_*(x).$

Discontinuous coefficients

Theorem 1. Let $U = B^0(0, 1)$ and set $B^+ = U \cap \{x_n > 0\}$, $B^- = U \cap \{x_n < 0\}$, and $\Gamma = U \cap \{x_n = 0\}$. Assume that $f|_{B^+} \in C(\overline{B^+})$, $f|_{B^-} \in C(\overline{B^-})$ and for all $x \in \Gamma$

(2)
$$\lim_{B^- \ni y \to x} f(y) \le \lim_{B^+ \ni y \to x} f(y).$$

Let $\varepsilon > 0$ and let $u, v \in C^{0,1}(\overline{U})$ such that $H(Du) \leq f$ and $H(Dv) \geq f + \varepsilon$ in U in the viscosity sense of Definition 1. Then

(3)
$$\max_{\overline{U}}(u-v) = \max_{\partial U}(u-v).$$

Proof uses auxiliary function

(4)
$$\Phi(x,y) = u(x) - v(y) - \frac{\alpha}{2} \left| x - y + \frac{1}{\sqrt{\alpha}} e_n \right|^2$$

Discontinuous coefficients

A generalization:

(D) For all $x_0 \in U$ there exists $\varepsilon_{x_0} > 0$ and $\eta_{x_0} \in \mathbb{S}^{n-1}$ such that

(5)
$$f^*(x) - f_*(x + rd) \le \omega(|x - x_0| + r),$$

for all $x \in U$, r > 0 and $d \in \mathbb{S}^{n-1}$ such that $|d - \eta_{x_0}| < \varepsilon_{x_0}$ and $x + rd \in U$, where ω is a modulus of continuity.

Theorem 2. Let $U \subset \mathbb{R}^n$ be open and bounded, assume $f: U \to \mathbb{R}$ satisfies (D) and $H \in C(\mathbb{R}^n)$. Let $\varepsilon > 0$ and let $u, v \in C^{0,1}(\overline{U})$ such that $H(Du) \leq f$ and $H(Dv) \geq f + \varepsilon$ in U in the viscosity sense of Definition 1. Then

(6)
$$\max_{\overline{U}}(u-v) = \max_{\partial U}(u-v).$$

We use auxiliary function

(7)
$$\Phi(x,y) = u(x) - v(y) - \frac{\alpha}{2} \left| x - y + \frac{1}{\sqrt{\alpha}} \eta_{x_0} \right|^2 - |x - x_0|^2.$$