Math 8590: Viscosity Solutions
 Homogenization

Instructor: Jeff Calder
Office: 538 Vincent
Email: jcalder@umn.edu Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

Homogenization

Let $u_{\varepsilon} \in C(\bar{U})$ be a viscosity solution of

$$
\left\{\begin{align*}
u_{\varepsilon}+H\left(D u_{\varepsilon}, \frac{x}{\varepsilon}\right) & =0 & & \text { in } U \tag{1}\\
u_{\varepsilon} & =0 & & \text { on } \partial U .
\end{align*}\right.
$$

We aim to understand u_{ε} as $\varepsilon \rightarrow 0^{+}$.
Our primary assumption is (Periodicity) $\quad y \mapsto H(p, y)$ is \mathbb{Z}^{n}-periodic for all $p \in \mathbb{R}^{n}$.

We also assume that H satisfies all previous assumptions and is
(3) (Coercive) $\liminf _{|p| \rightarrow \infty} H(p, y)>0 \quad$ uniformly in $y \in \mathbb{R}^{n}$, and

$$
\begin{equation*}
\text { (Nonnegative) } \quad-H(0, y) \geq 0 \quad \text { for all } y \in \mathbb{R}^{n} \text {. } \tag{4}
\end{equation*}
$$

Homogenization

Lemma 1. There exists a constant C such that for all $\varepsilon>0$

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{C^{0,1}(\bar{U})} \leq C . \tag{5}
\end{equation*}
$$

So along a subsequence $u_{\varepsilon} \rightarrow u$ as $\varepsilon \rightarrow 0$, uniformly.
Suppose for x near x_{0} we have the expansion

$$
u_{\varepsilon}(x)=u(x)+\varepsilon v\left(\frac{x}{\varepsilon}\right)+O\left(\varepsilon^{2}\right) \text { as } \varepsilon \rightarrow 0^{+} .
$$

Then setting $y:=\frac{x}{\varepsilon}$ and $p=D u\left(x_{0}\right)$ we find

$$
\begin{equation*}
H(p+D v(y), y)=\lambda \text { in } \mathbb{R}^{n} \tag{6}
\end{equation*}
$$

for some $\lambda \in \mathbb{R}$. This is the cell problem.

Homogenization

Cell problem:

$$
\begin{equation*}
H(p+D v(y), y)=\lambda \text { in } \mathbb{R}^{n} \tag{7}
\end{equation*}
$$

Lemma 2. For each $p \in \mathbb{R}^{n}$, there exists a unique real number λ such that (7) has a \mathbb{Z}^{n}-periodic viscosity solution $v \in C^{0,1}\left(\mathbb{R}^{n}\right)$.

In light of the lemma, we write

$$
\begin{equation*}
\bar{H}(p):=\lambda, \tag{8}
\end{equation*}
$$

and the heuristics above suggest that u should be the viscosity solution of

$$
u+\bar{H}(D u)=0 \text { in } U,
$$

satisfying $u=0$ on ∂U. The function \bar{H} is called the effective Hamiltonian.

Homogenization

Theorem 1. The sequence u_{ε} converges uniformly on \bar{U} to the unique viscosity solution $u \in C^{0,1}(\bar{U})$ of

$$
\left\{\begin{align*}
u+\bar{H}(D u)=0 & \text { in } U \tag{9}\\
u=0 & \text { on } \partial U .
\end{align*}\right.
$$

The proof of Theorem 1 is based on the "perturbed test function" technique, which was pioneered in [1,2].

References

[1] L. C. Evans. The perturbed test function method for viscosity solutions of nonlinear PDE. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 111(3-4):359-375, 1989.
[2] L. C. Evans. Periodic homogenisation of certain fully nonlinear partial differential equations. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 120(3-4):245-265, 1992.

