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Homogenization

Let uε ∈ C(U) be a viscosity solution of

(1)

uε +H
(
Duε,

x

ε

)
= 0 in U

uε = 0 on ∂U.

We aim to understand uε as ε→ 0+.
Our primary assumption is

(2) (Periodicity) y 7→ H(p, y) is Zn-periodic for all p ∈ Rn.

We also assume that H satisfies all previous assumptions and is

(3) (Coercive) lim inf
|p|→∞

H(p, y) > 0 uniformly in y ∈ Rn,

and

(4) (Nonnegative) −H(0, y) ≥ 0 for all y ∈ Rn.



Homogenization

Lemma 1. There exists a constant C such that for all ε > 0

(5) ‖uε‖C0,1(U) ≤ C.

So along a subsequence uε → u as ε→ 0, uniformly.
Suppose for x near x0 we have the expansion

uε(x) = u(x) + εv(xε ) +O(ε2) as ε→ 0+.

Then setting y := x
ε and p = Du(x0) we find

(6) H(p+Dv(y), y) = λ in Rn

for some λ ∈ R. This is the cell problem.



Homogenization

Cell problem:

(7) H(p+Dv(y), y) = λ in Rn

Lemma 2. For each p ∈ Rn, there exists a unique real number λ such that
(7) has a Zn-periodic viscosity solution v ∈ C0,1(Rn).

In light of the lemma, we write

(8) H(p) := λ,

and the heuristics above suggest that u should be the viscosity solution of

u+H(Du) = 0 in U,

satisfying u = 0 on ∂U . The functionH is called the effective Hamiltonian.



Homogenization

Theorem 1. The sequence uε converges uniformly on U to the unique vis-
cosity solution u ∈ C0,1(U) of

(9)

{
u+H(Du) = 0 in U

u = 0 on ∂U.

The proof of Theorem 1 is based on the “perturbed test function” tech-
nique, which was pioneered in [1, 2].
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