Math 8590: Viscosity Solutions Homogenization

Instructor: Jeff Calder Office: 538 Vincent Email: jcalder@umn.edu Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

Let $u_{\varepsilon} \in C(\overline{U})$ be a viscosity solution of

(1)
$$\begin{cases} u_{\varepsilon} + H\left(Du_{\varepsilon}, \frac{x}{\varepsilon}\right) = 0 & \text{in } U\\ u_{\varepsilon} = 0 & \text{on } \partial U. \end{cases}$$

We aim to understand u_{ε} as $\varepsilon \to 0^+$. Our primary assumption is

(2) (Periodicity) $y \mapsto H(p, y)$ is \mathbb{Z}^n -periodic for all $p \in \mathbb{R}^n$. We also assume that H satisfies all previous assumptions and is

(3) (Coercive)
$$\liminf_{|p| \to \infty} H(p, y) > 0$$
 uniformly in $y \in \mathbb{R}^n$,

and

(4) (Nonnegative)
$$-H(0,y) \ge 0$$
 for all $y \in \mathbb{R}^n$.

Lemma 1. There exists a constant C such that for all $\varepsilon > 0$

(5)
$$||u_{\varepsilon}||_{C^{0,1}(\overline{U})} \le C.$$

So along a subsequence $u_{\varepsilon} \to u$ as $\varepsilon \to 0$, uniformly. Suppose for x near x_0 we have the expansion

$$u_{\varepsilon}(x) = u(x) + \varepsilon v(\frac{x}{\varepsilon}) + O(\varepsilon^2)$$
 as $\varepsilon \to 0^+$.

Then setting $y := \frac{x}{\varepsilon}$ and $p = Du(x_0)$ we find

(6)
$$H(p + Dv(y), y) = \lambda \text{ in } \mathbb{R}^n$$

for some $\lambda \in \mathbb{R}$. This is the **cell problem**.

Cell problem:

(7)
$$H(p + Dv(y), y) = \lambda \text{ in } \mathbb{R}^n$$

Lemma 2. For each $p \in \mathbb{R}^n$, there exists a unique real number λ such that (7) has a \mathbb{Z}^n -periodic viscosity solution $v \in C^{0,1}(\mathbb{R}^n)$.

In light of the lemma, we write

(8)
$$\overline{H}(p) := \lambda,$$

and the heuristics above suggest that u should be the viscosity solution of

$$u + \overline{H}(Du) = 0$$
 in U ,

satisfying u = 0 on ∂U . The function \overline{H} is called the **effective Hamiltonian**.

Theorem 1. The sequence u_{ε} converges uniformly on \overline{U} to the unique viscosity solution $u \in C^{0,1}(\overline{U})$ of

(9)
$$\begin{cases} u + \overline{H}(Du) = 0 & in \ U \\ u = 0 & on \ \partial U. \end{cases}$$

The proof of Theorem 1 is based on the "perturbed test function" technique, which was pioneered in [1, 2].

References

- L. C. Evans. The perturbed test function method for viscosity solutions of nonlinear PDE. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 111(3-4):359–375, 1989.
- [2] L. C. Evans. Periodic homogenisation of certain fully nonlinear partial differential equations. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 120(3-4):245-265, 1992.