Math 8590: Viscosity Solutions

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

Notation

Notation follows Evans PDE book:

- $x \in \mathbb{R}^{n}, x=\left(x_{1}, \ldots, x_{n}\right),|x|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$
- $u_{x_{i}}(x)=\lim _{h \rightarrow 0} \frac{u\left(x+h e_{i}\right)-u(x)}{h}$
- $D u=\left(u_{x_{1}}, u_{x_{2}}, \ldots, u_{x_{n}}\right)$
- $D^{2} u=\left(u_{x_{i} x_{j}}\right)_{i, j}$
- $C^{k}(U)=\{k$-times continuously differentiable $u: U \rightarrow \mathbb{R}\}$
- $C^{k}(\bar{U})=\left\{u \in C^{k}(U): D^{\alpha} u \text { uniformly continuous, }|\alpha| \leq k\right\}^{*}$
* On bounded subsets of U if unbounded.
- $C^{k, \alpha}(\bar{U})$ are the Hölder spaces. . .

Introduction

We are concerned with fully nonlinear 1st and 2nd order partial differential equations (PDE)

$$
\begin{equation*}
F\left(D^{2} u, D u, u, x\right)=0 . \tag{1}
\end{equation*}
$$

The PDE will hold in some domain $U \subset \mathbb{R}^{n}$ with some appropriate boundary condition.

Definition 1. A classical solution is a function $u \in C^{2}(U)$ such that (1) is satisfied at each $x \in U$.

Need for a nonsmooth (weak) solution

For many important applications, classical solutions do not exist.

- Optimal control theory (including stochastic versions)
- Differential games
- Calculus of variations (also in L^{∞})
- Geometric evolutions (e.g., curvature motion, level-set method)
- Computer vision and image processing
- More recently machine learning

Viscosity solution is a notion of weak solution for fully nonlinear PDEs that provides the physically correct nonsmooth solution to all the problems above (and, in general, most problems*).

Example 1 (Distance function). Let Γ be a closed subset of \mathbb{R}^{n} and let $u: \mathbb{R}^{n} \rightarrow[0, \infty)$ be the distance function to Γ, defined by

$$
\begin{equation*}
u(x)=\operatorname{dist}(x, \Gamma):=\min _{y \in \Gamma}|x-y| \tag{2}
\end{equation*}
$$

Optimal control theory (Evans Chapter 10)

We have a state $\mathbf{x}(t) \in \mathbb{R}^{n}$ that evolves according to the dynamics

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}(s)=\mathbf{f}(\mathbf{x}(s), \boldsymbol{\alpha}(s)), \quad(t<s<T) \tag{3}\\
\mathbf{x}(t)=x
\end{array}\right.
$$

The goal is to select the control $\boldsymbol{\alpha}(t)$ so as to minimize the cost functional

$$
\begin{equation*}
C_{x, t}[\boldsymbol{\alpha}(\cdot)]:=\int_{t}^{T} r(\mathbf{x}(s), \boldsymbol{\alpha}(s)) d s+g(\mathbf{x}(T)) . \tag{4}
\end{equation*}
$$

The value function

$$
\begin{equation*}
u(x, t)=\inf _{\boldsymbol{\alpha}(\cdot)} C_{x, t}[\boldsymbol{\alpha}(\cdot)] \tag{5}
\end{equation*}
$$

satisfies (in the viscosity sense) the Hamilton-Jacobi-Bellman equation

$$
\left\{\begin{align*}
u_{t}+\min _{a}\{\mathbf{f}(x, a) \cdot D u+r(x, a)\}=0 & \text { in } \mathbb{R}^{n} \times(0, T) \tag{6}\\
u=g & \text { on } \mathbb{R}^{n} \times\{t=T\} .
\end{align*}\right.
$$

Example 2 (Mean curvature motion)

For a smooth curve $\gamma(p), p \in \mathbb{R}^{2}$, the curvature at p is defined as

$$
\begin{equation*}
\kappa(p)=\frac{d \theta}{d s}(p) \tag{7}
\end{equation*}
$$

where $s=$ arclength and $\theta=$ angle between tangent and reference axis.
Exercise 1. The curvature of a circle of radius R is $\kappa=1 / R$. Here, R is the radius of curvature.

Exercise 2. For a curve $\gamma(\tau)=(x(\tau), y(\tau))$, the curvature is

$$
\begin{equation*}
\kappa(t)=\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left(x^{\prime 2}+y^{\prime 2}\right)^{3 / 2}}, \tag{8}
\end{equation*}
$$

where $^{\prime}=\frac{d}{d \tau}$.

Exercise 3. For a curve $\gamma(x)=(x, f(x))$ with $f(0)=f^{\prime}(0)=0$, the curvature at $(0,0)$ is
(9)

$$
\kappa=f^{\prime \prime}(0) .
$$

Curvature motion of planar curves

Curvature motion moves a curve in the direction of its inward normal with a speed equal to curvature. That is, curvature motion generates a family of curves $C(t, \tau)=(x(t, \tau), y(t, \tau))$ satisfying the coupled PDE

$$
\left\{\begin{array}{l}
\frac{\partial x}{\partial t}=\left(\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left(x^{2}+y^{\prime 2}\right)^{3 / 2}}\right) \frac{-y^{\prime}}{\sqrt{x^{\prime 2}+y^{2}}} \tag{10}\\
\frac{\partial y}{\partial t}=\left(\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right) \frac{x^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}
\end{array}\right.
$$

In more compact notation

$$
\frac{\partial C}{\partial t}=\kappa \mathbf{N}
$$

where $\mathbf{N}=\left(-y^{\prime}, x^{\prime}\right) / \sqrt{x^{\prime 2}+y^{\prime 2}}$ is the unit inward normal vector to C.

Curvature motion is gradient descent on length

Define the length of $C=(x(\tau), y(\tau))$ by

$$
\begin{equation*}
L(C)=\int_{a}^{b} \sqrt{x^{\prime 2}+y^{\prime 2}} d \tau \tag{11}
\end{equation*}
$$

Suppose $C(s)=(x(s), y(s))$ is parameterised by arclength s, and consider a perturbation in the normal direction $C(s)+\varepsilon v(s) \mathbf{N}(s)$.

We compute $\left(\cdot=\frac{d}{d s}\right)$

$$
\begin{equation*}
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} L(C+\varepsilon v \mathbf{N})=\int_{a}^{b}(\ddot{x} \dot{y}-\dot{x} \ddot{y}) v d s \tag{12}
\end{equation*}
$$

Gage-Hamilton-Grayson Theorem

A smooth simple closed curve in the plane that undergoes curvature motion remains smoothly embedded without self-intersections, will eventually become and remain convex, and shrink to a single point, becoming asympototically round.

- Gage \& Hamilton (1986) proved smooth convex curves contract to a point.
- Grayson (1987) proved that every non-convex curve eventually becomes convex.
- Simpler proofs have emerged since (Andrews \& Bryan (2011)).

This is all in the classical setting (solutions are smooth, etc).

Level-set method

The level-set method represents the evolving curve $C(t)$ implicitly as the zero level-set of a function $u: \mathbb{R}^{2} \times[0, \infty) \rightarrow \mathbb{R}$. That is,

$$
\begin{equation*}
C(t)=\left\{x \in \mathbb{R}^{2}: u(x, t)=0\right\} . \tag{13}
\end{equation*}
$$

https://en.wikipedia.org/wiki/Level-set_method

Level-set method

The level-set method represents the evolving curve $C(t)$ implicitly as the zero level-set of a function $u: \mathbb{R}^{2} \times[0, \infty) \rightarrow \mathbb{R}$. That is,

$$
\begin{equation*}
C(t)=\left\{x \in \mathbb{R}^{2}: u(x, t)=0\right\} \tag{14}
\end{equation*}
$$

If $C(t)$ evolves according to curvature motion $\partial C / \partial t=\kappa \mathbf{N}$ then u satisfies (formally) the level-set equation

$$
\begin{equation*}
u_{t}-\frac{\nabla^{\perp} u \cdot D^{2} u \nabla^{\perp} u}{|\nabla u|^{2}}=0 \tag{15}
\end{equation*}
$$

where $\nabla^{\perp} u=\left(u_{x_{2}},-u_{x_{1}}\right)$. The viscosity solution theory applies to the level-set equation for curvature motion (15). The PDE can be rewritten as

$$
\begin{equation*}
u_{t}-|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)=0 \tag{16}
\end{equation*}
$$

Curvature of surfaces

For a smooth surface $S \subset \mathbb{R}^{3}$ we have curvatures in each direction $v \in T_{p} S$:
$\kappa(p ; v)=$ Curvature of interesection of S and the plane $\operatorname{span}(v, N)$

https://en.wikipedia.org/wiki/Principal_curvature

Curvature of surfaces

The principal curvatures are

$$
\kappa_{1}(p)=\min _{v \in T_{p} S} \kappa(p ; v) \quad \text { and } \quad \kappa_{2}(p)=\max _{v \in T_{p} S} \kappa(p ; v)
$$

The principal curvatures occur in orthogonal directions if $\kappa_{1} \neq \kappa_{2}$.
We define the mean curvature

$$
\begin{equation*}
H(p)=\kappa_{1}(p)+\kappa_{2}(p) \tag{17}
\end{equation*}
$$

and the Gauss curvature

$$
\begin{equation*}
K(p)=\kappa_{1}(p) \kappa_{2}(p) \tag{18}
\end{equation*}
$$

Gauss curvature is an intrinsic quantity (Gauss's Theorema Egregium).

Curvature of surfaces

Exercise 4. For a flat space (e.g., a plane), $\kappa_{1}=\kappa_{2}=H=K=0$.

Exercise 5. For a sphere of radius $R>0, \kappa_{1}=\kappa_{2}=1 / R, H=2 / R$ and $K=1 / R^{2}$.

Exercise 6. For a cylinder of radius $R>0, \kappa_{1}=0, \kappa_{2}=1 / R, H=1 / R$ and $K=0$.

Curvature of surfaces

Exercise 7. For a surface $z=f(x, y)$ with $f(0,0)=0$ and $D f(0,0)=0$,

$$
\kappa_{1}(0,0), \kappa_{2}(0,0)=\text { Eigenvalues of Hessian matrix } D^{2} f(0,0),
$$

(Mean curvature) $H(0,0)=\operatorname{Trace}\left(D^{2} f(0,0)\right)=f_{x x}(0,0)+f_{y y}(0,0)$,
(Gauss curvature) $K(0,0)=\operatorname{det}\left(D^{2} f(0,0)\right)=f_{x x}(0,0) f_{y y}(0,0)-f_{x y}(0,0)^{2}$.

Mean curvature motion

Mean curvature motion evolves a surface with normal speed equal to mean curvature:

$$
\begin{equation*}
\frac{\partial S}{\partial t}(p)=H(p) \mathbf{N}(p) . \tag{19}
\end{equation*}
$$

Mean curvature motion is gradient descent on the surface area functional

$$
\begin{equation*}
A(S)=\int_{S} d S \tag{20}
\end{equation*}
$$

Demo: Gage-Hamilton-Grayson theorem does not hold in dimension $n \geq 3$. Surface can develop singluarities in finite time, after which point classical solutions fail to exist.

Level-set method

The level-set method represents the evolving surface $S(t)$ implicitly as the zero level-set of a function $u: \mathbb{R}^{3} \times[0, \infty) \rightarrow \mathbb{R}$. That is,

$$
\begin{equation*}
S(t)=\left\{x \in \mathbb{R}^{3}: u(x, t)=0\right\} \tag{21}
\end{equation*}
$$

If $S(t)$ evolves according to mean curvature motion $\partial S / \partial t=H \mathbf{N}$ then u satisfies (formally) the level-set equation

$$
\begin{equation*}
u_{t}-|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)=0 \tag{22}
\end{equation*}
$$

The viscosity solution of (22) exists and is unique for all time, allowing us to interpret mean curvature motion beyond singularities.

Level-set method

References:

- Level-set method was invented by Sethian and Osher (1988) as an efficient numerical scheme for tracking evolving fronts and surfaces.
- Evans and Spruck (1991) proved well-posedness of the level-set equation for mean curvature motion in the viscosity sense, and proposed it as a notion of generalized mean curvature motion.

