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Notation

Notation follows Evans PDE book:

e x eR" = (x1,...,2p), |2| = $%+---+x%
o Uy, () = limy, o Uethe)—u)
o Du= (Upy,Ugyy---,Usg,)

o D*u= (uﬂﬁixj)i,j

C*(U) = {k-times continuously differentiable u : U — R}

CHU) = {u € C*(U) : D uniformly continuous, |a| < k}*

* On bounded subsets of U if unbounded.

e CF(T) are the Hélder spaces. . .



Introduction

We are concerned with fully nonlinear 1st and 2nd order partial differential
equations (PDE)

(1) F(D*u, Du,u,z) = 0.

The PDE will hold in some domain U C R™ with some appropriate boundary
condition.

Definition 1. A classical solution is a function v € C?(U) such that (1) is
satisfied at each x € U.



Need for a nonsmooth (weak) solution

For many important applications, classical solutions do not exist.
e Optimal control theory (including stochastic versions)
e Differential games
e Calculus of variations (also in L)
e Geometric evolutions (e.g., curvature motion, level-set method)
e Computer vision and image processing
e More recently machine learning

Viscosity solution is a notion of weak solution for fully nonlinear PDEs
that provides the physically correct nonsmooth solution to all the problems
above (and, in general, most problems®).



Example 1 (Distance function). Let I' be a closed subset of R™ and let
u: R™ — [0,00) be the distance function to I', defined by

(2) u(z) = dist(x,I') ;== min |z — y|.
yel’



Optimal control theory (Evans Chapter 10)

We have a state x(t) € R™ that evolves according to the dynamics

(3) {5‘(3) =f(x(s),a(s)), (t<s<T)

x(t) = x.

The goal is to select the control a(t) so as to minimize the cost functional

T
() Coslo(] == [ r(x(s).x(s)) ds + g(x(T).
The value function
(5) u(z,t) = inf Crtla(-)]
satisfies (in the viscosity sense) the Hamilton-Jacobi-Bellman equation
{ up + min{f(z,a) - Du+r(z,a)} =0 in R" x (0,7)

) u=g onR"x {t=T}.



Example 2 (Mean curvature motion)

For a smooth curve v(p), p € R?, the curvature at p is defined as

M) 5(p) = 2 (0),

where s = arclength and 6 = angle between tangent and reference axis.

Exercise 1. The curvature of a circle of radius R is kK = 1/R. Here, R is the
radius of curvature.



Exercise 2. For a curve v(7) = (z(7),y(7)), the curvature is

x’y” _ x”y’

(8) k(1) = (@2 1 )32

Exercise 3. For a curve vy(x) = (z, f(x)) with f(0) = f’(0) = 0, the curva-
ture at (0,0) is

(9) k= f"(0).



Curvature motion of planar curves

Curvature motion moves a curve in the direction of its inward normal with
a speed equal to curvature. That is, curvature motion generates a family of
curves C(t,7) = (x(t,7),y(t, 7)) satisfying the coupled PDE

@ _ 2y — 'y’ —y
ot (22 + y’2)3/2 /272 4 2 ’

ay B .,L,/yll _ I'//y/ x/
ot \(@?+y2)32 ) \far 4y

In more compact notation

(10)

o0 _
ot
where N = (—y/,2)/v/2'? + y'? is the unit inward normal vector to C.

kN,



Curvature motion is gradient descent on length
Define the length of C = (z(7), y(7)) by

b
(11) L(C) = / a2 4+ y? dr.

Suppose C(s) = (x(s),y(s)) is parameterised by arclength s, and consider a
perturbation in the normal direction C(s) + ev(s)N(s).

We compute ("= %)

b
(12) 4 O +eN) = / (i — dij)v ds.






Gage-Hamilton-Grayson Theorem

A smooth simple closed curve in the plane that undergoes curvature mo-
tion remains smoothly embedded without self-intersections, will eventually
become and remain convex, and shrink to a single point, becoming asympo-
totically round.

e Gage & Hamilton (1986) proved smooth convex curves contract to a
point.

e Grayson (1987) proved that every non-convex curve eventually becomes
convex.

e Simpler proofs have emerged since (Andrews & Bryan (2011)).

This is all in the classical setting (solutions are smooth, etc).



Level-set method

The level-set method represents the evolving curve C'(t) implicitly as the zero
level-set of a function u : R? x [0, 00) — R. That is,

(13) C(t) = {z € R? : u(z,t) = 0}.

YK
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Level-set method

The level-set method represents the evolving curve C'(t) implicitly as the zero
level-set of a function u : R? x [0, 00) — R. That is,

(14) C(t) = {x € R* : u(z,t) = 0}.

If C(t) evolves according to curvature motion 0C/0t = kN then u satisfies
(formally) the level-set equation

V4iu- D2uV4tu

1 —
( 5) Ut |VU|2

=0,

where V4u = (ug,, —uz, ). The viscosity solution theory applies to the
level-set equation for curvature motion (15). The PDE can be rewritten as

(16) _ V| div <|§ ‘>



Curvature of surfaces

For a smooth surface S C R3 we have curvatures in each direction v € T,S:

k(p;v) = Curvature of interesection of S and the plane span(v, N)

planes normal
of principal vector
curvatures

tangent
plane

https://en.wikipedia.org/wiki/Principal_curvature
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Curvature of surfaces
The principal curvatures are

k1(p) = ernTiils k(p;v) and ka(p) = Jg%}fq k(p;v).

The principal curvatures occur in orthogonal directions if k1 # ks.

We define the mean curvature

(17) H(p) = rk1(p) + K2(p),

and the Gauss curvature

(18) K(p) = k1(p)r2(p).

Gauss curvature is an intrinsic quantity (Gauss’s Theorema Egregium).



Curvature of surfaces

Exercise 4. For a flat space (e.g., a plane), k1 = ko = H = K = 0.

Exercise 5. For a sphere of radius R > 0, k1 = ko = 1/R, H = 2/R and
K =1/R%

Exercise 6. For a cylinder of radius R > 0, k1 = 0, ko = 1/R, H = 1/R
and K = 0.



Curvature of surfaces

Exercise 7. For a surface z = f(z,y) with f(0,0) =0 and Df(0,0) = 0,

#1(0,0), r2(0,0) = Eigenvalues of Hessian matrix D?f(0,0),

(Mean curvature) H(0,0) = Trace(D?f(0,0)) = f.2(0,0) + £,,(0,0),

(Gauss curvature) K (0,0) = det(D?£(0,0)) = fz:(0,0) 5 (0,0) — fy, (0,0)%.



Mean curvature motion

Mean curvature motion evolves a surface with normal speed equal to mean
curvature:

05 p) = H(p)N(p).

(19) )

Mean curvature motion is gradient descent on the surface area functional

(20) A(S) = /S ds.

Demo: Gage-Hamilton-Grayson theorem does not hold in dimension n > 3.
Surface can develop singluarities in finite time, after which point classical
solutions fail to exist.



Level-set method

The level-set method represents the evolving surface S(t) implicitly as the
zero level-set of a function u : R? x [0,00) — R. That is,

(21) S(t) ={z € R® : u(x,t) = 0}.

If S(t) evolves according to mean curvature motion 9S/9t = HN then u
satisfies (formally) the level-set equation

(22) — |Vu| div (; ‘)

The viscosity solution of (22) exists and is unique for all time, allowing us to
interpret mean curvature motion beyond singularities.



Level-set method

References:

e Level-set method was invented by Sethian and Osher (1988) as an effi-
cient numerical scheme for tracking evolving fronts and surfaces.

e Evans and Spruck (1991) proved well-posedness of the level-set equation
for mean curvature motion in the viscosity sense, and proposed it as a
notion of generalized mean curvature motion.



