Math 8590: Viscosity Solutions

Instructor: Jeff Calder Office: 538 Vincent Email: jcalder@umn.edu Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

Notation

Notation follows Evans PDE book:

• $x \in \mathbb{R}^n, x = (x_1, \dots, x_n), |x| = \sqrt{x_1^2 + \dots + x_n^2}$

•
$$u_{x_i}(x) = \lim_{h \to 0} \frac{u(x+he_i) - u(x)}{h}$$

- $Du = (u_{x_1}, u_{x_2}, \dots, u_{x_n})$
- $D^2u = (u_{x_ix_j})_{i,j}$
- $C^k(U) = \{k \text{-times continuously differentiable } u : U \to \mathbb{R}\}$
- $C^k(\overline{U}) = \{ u \in C^k(U) : D^{\alpha}u \text{ uniformly continuous, } |\alpha| \le k \}^*$

* On bounded subsets of U if unbounded.

• $C^{k,\alpha}(\overline{U})$ are the Hölder spaces...

Introduction

We are concerned with fully nonlinear 1st and 2nd order partial differential equations (PDE)

(1)
$$F(D^2u, Du, u, x) = 0.$$

The PDE will hold in some domain $U\subset \mathbb{R}^n$ with some appropriate boundary condition.

Definition 1. A *classical* solution is a function $u \in C^2(U)$ such that (1) is satisfied at each $x \in U$.

Need for a nonsmooth (weak) solution

For many important applications, classical solutions do not exist.

- Optimal control theory (including stochastic versions)
- Differential games
- Calculus of variations (also in L^{∞})
- Geometric evolutions (e.g., curvature motion, level-set method)
- Computer vision and image processing
- More recently machine learning

Viscosity solution is a notion of weak solution for fully nonlinear PDEs that provides the physically correct nonsmooth solution to all the problems above (and, in general, most problems^{*}).

Example 1 (Distance function). Let Γ be a closed subset of \mathbb{R}^n and let $u : \mathbb{R}^n \to [0, \infty)$ be the *distance function to* Γ , defined by

(2)
$$u(x) = \operatorname{dist}(x, \Gamma) := \min_{y \in \Gamma} |x - y|.$$

Optimal control theory (Evans Chapter 10)

We have a state $\mathbf{x}(t) \in \mathbb{R}^n$ that evolves according to the dynamics

(3)
$$\begin{cases} \dot{\mathbf{x}}(s) = \mathbf{f}(\mathbf{x}(s), \boldsymbol{\alpha}(s)), & (t < s < T) \\ \mathbf{x}(t) = x. \end{cases}$$

The goal is to select the control $\alpha(t)$ so as to minimize the cost functional

(4)
$$C_{x,t}[\boldsymbol{\alpha}(\cdot)] := \int_t^T r(\mathbf{x}(s), \boldsymbol{\alpha}(s)) \, ds + g(\mathbf{x}(T)).$$

The value function

(5)
$$u(x,t) = \inf_{\boldsymbol{\alpha}(\cdot)} C_{x,t}[\boldsymbol{\alpha}(\cdot)]$$

satisfies (in the viscosity sense) the Hamilton-Jacobi-Bellman equation

(6)
$$\begin{cases} u_t + \min_a \{ \mathbf{f}(x, a) \cdot Du + r(x, a) \} = 0 & \text{in } \mathbb{R}^n \times (0, T) \\ u = g & \text{on } \mathbb{R}^n \times \{ t = T \}. \end{cases}$$

Example 2 (Mean curvature motion)

For a smooth curve $\gamma(p), p \in \mathbb{R}^2$, the curvature at p is defined as

(7)
$$\kappa(p) = \frac{d\theta}{ds}(p),$$

where s =arclength and $\theta =$ angle between tangent and reference axis.

Exercise 1. The curvature of a circle of radius R is $\kappa = 1/R$. Here, R is the radius of curvature.

Exercise 2. For a curve $\gamma(\tau) = (x(\tau), y(\tau))$, the curvature is

(8)
$$\kappa(t) = \frac{x'y'' - x''y'}{(x'^2 + y'^2)^{3/2}},$$

where $' = \frac{d}{d\tau}$.

Exercise 3. For a curve $\gamma(x) = (x, f(x))$ with f(0) = f'(0) = 0, the curvature at (0, 0) is

(9)
$$\kappa = f''(0).$$

Curvature motion of planar curves

Curvature motion moves a curve in the direction of its inward normal with a speed equal to curvature. That is, curvature motion generates a family of curves $C(t, \tau) = (x(t, \tau), y(t, \tau))$ satisfying the coupled PDE

(10)
$$\begin{cases} \frac{\partial x}{\partial t} = \left(\frac{x'y'' - x''y'}{(x'^2 + y'^2)^{3/2}}\right) \frac{-y'}{\sqrt{x'^2 + y'^2}},\\ \frac{\partial y}{\partial t} = \left(\frac{x'y'' - x''y'}{(x'^2 + y'^2)^{3/2}}\right) \frac{x'}{\sqrt{x'^2 + y'^2}}.\end{cases}$$

In more compact notation

$$\frac{\partial C}{\partial t} = \kappa \mathbf{N},$$

where $\mathbf{N} = (-y', x')/\sqrt{x'^2 + y'^2}$ is the unit inward normal vector to C.

Curvature motion is gradient descent on length

Define the length of $C = (x(\tau), y(\tau))$ by

(11)
$$L(C) = \int_{a}^{b} \sqrt{x'^{2} + y'^{2}} \, d\tau.$$

Suppose C(s) = (x(s), y(s)) is parameterised by arclength s, and consider a perturbation in the normal direction $C(s) + \varepsilon v(s) \mathbf{N}(s)$.

We compute $(\dot{} = \frac{d}{ds})$

(12)
$$\frac{d}{d\varepsilon}\Big|_{\varepsilon=0}L(C+\varepsilon v\mathbf{N}) = \int_a^b (\ddot{x}\dot{y}-\dot{x}\ddot{y})v\,ds.$$

Gage-Hamilton-Grayson Theorem

A smooth simple closed curve in the **plane** that undergoes curvature motion remains smoothly embedded without self-intersections, will eventually become and remain convex, and shrink to a single point, becoming asympototically *round*.

- Gage & Hamilton (1986) proved smooth convex curves contract to a point.
- Grayson (1987) proved that every non-convex curve eventually becomes convex.
- Simpler proofs have emerged since (Andrews & Bryan (2011)).

This is all in the **classical setting** (solutions are smooth, etc).

The level-set method represents the evolving curve C(t) implicitly as the zero level-set of a function $u: \mathbb{R}^2 \times [0, \infty) \to \mathbb{R}$. That is,

 $C(t) = \{ x \in \mathbb{R}^2 : u(x, t) = 0 \}.$ (13)

https://en.wikipedia.org/wiki/Level-set_method

The level-set method represents the evolving curve C(t) implicitly as the zero level-set of a function $u: \mathbb{R}^2 \times [0, \infty) \to \mathbb{R}$. That is,

(14)
$$C(t) = \{ x \in \mathbb{R}^2 : u(x,t) = 0 \}.$$

If C(t) evolves according to curvature motion $\partial C/\partial t = \kappa \mathbf{N}$ then u satisfies (formally) the level-set equation

(15)
$$u_t - \frac{\nabla^{\perp} u \cdot D^2 u \nabla^{\perp} u}{|\nabla u|^2} = 0,$$

where $\nabla^{\perp} u = (u_{x_2}, -u_{x_1})$. The viscosity solution theory applies to the level-set equation for curvature motion (15). The PDE can be rewritten as

(16)
$$u_t - |\nabla u| \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right) = 0.$$

For a smooth surface $S \subset \mathbb{R}^3$ we have curvatures in each direction $v \in T_p S$:

 $\kappa(p;v)=\operatorname{Curvature}$ of interesection of S and the plane $\operatorname{span}(v,N)$

https://en.wikipedia.org/wiki/Principal_curvature

The *principal curvatures* are

$$\kappa_1(p) = \min_{v \in T_p S} \kappa(p; v) \text{ and } \kappa_2(p) = \max_{v \in T_p S} \kappa(p; v).$$

The principal curvatures occur in orthogonal directions if $\kappa_1 \neq \kappa_2$.

We define the *mean curvature*

(17)
$$H(p) = \kappa_1(p) + \kappa_2(p),$$

and the Gauss curvature

(18)
$$K(p) = \kappa_1(p)\kappa_2(p).$$

Gauss curvature is an *intrinsic* quantity (Gauss's Theorema Egregium).

Exercise 4. For a flat space (e.g., a plane), $\kappa_1 = \kappa_2 = H = K = 0$.

Exercise 5. For a sphere of radius R > 0, $\kappa_1 = \kappa_2 = 1/R$, H = 2/R and $K = 1/R^2$.

Exercise 6. For a cylinder of radius R > 0, $\kappa_1 = 0$, $\kappa_2 = 1/R$, H = 1/R and K = 0.

Exercise 7. For a surface z = f(x, y) with f(0, 0) = 0 and Df(0, 0) = 0,

 $\kappa_1(0,0), \kappa_2(0,0) =$ Eigenvalues of Hessian matrix $D^2 f(0,0),$

(Mean curvature) $H(0,0) = \text{Trace}(D^2 f(0,0)) = f_{xx}(0,0) + f_{yy}(0,0),$

(Gauss curvature) $K(0,0) = \det(D^2 f(0,0)) = f_{xx}(0,0)f_{yy}(0,0) - f_{xy}(0,0)^2$.

Mean curvature motion

Mean curvature motion evolves a surface with normal speed equal to mean curvature:

(19)
$$\frac{\partial S}{\partial t}(p) = H(p)\mathbf{N}(p).$$

Mean curvature motion is gradient descent on the surface area functional

(20)
$$A(S) = \int_{S} dS$$

Demo: Gage-Hamilton-Grayson theorem does **not** hold in dimension $n \ge 3$. Surface can develop singluarities in finite time, after which point **classical** solutions fail to exist.

The level-set method represents the evolving surface S(t) implicitly as the zero level-set of a function $u: \mathbb{R}^3 \times [0, \infty) \to \mathbb{R}$. That is,

(21)
$$S(t) = \{ x \in \mathbb{R}^3 : u(x,t) = 0 \}.$$

If S(t) evolves according to mean curvature motion $\partial S/\partial t = H\mathbf{N}$ then u satisfies (formally) the level-set equation

(22)
$$u_t - |\nabla u| \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right) = 0.$$

The viscosity solution of (22) exists and is unique for all time, allowing us to interpret mean curvature motion beyond singularities.

References:

- Level-set method was invented by Sethian and Osher (1988) as an efficient numerical scheme for tracking evolving fronts and surfaces.
- Evans and Spruck (1991) proved well-posedness of the level-set equation for mean curvature motion in the viscosity sense, and proposed it as a notion of generalized mean curvature motion.