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Notation

Notation follows Evans PDE book:

• x ∈ Rn, x = (x1, . . . , xn), |x| =
√
x2

1 + · · ·+ x2
n

• uxi(x) = limh→0
u(x+hei)−u(x)

h

• Du = (ux1 , ux2 , . . . , uxn)

• D2u = (uxixj )i,j

• Ck(U) = {k-times continuously differentiable u : U → R}

• Ck(U) = {u ∈ Ck(U) : Dαu uniformly continuous, |α| ≤ k}∗

* On bounded subsets of U if unbounded.

• Ck,α(U) are the Hölder spaces. . .



Introduction

We are concerned with fully nonlinear 1st and 2nd order partial differential
equations (PDE)

(1) F (D2u,Du, u, x) = 0.

The PDE will hold in some domain U ⊂ Rn with some appropriate boundary
condition.

Definition 1. A classical solution is a function u ∈ C2(U) such that (1) is
satisfied at each x ∈ U .



Need for a nonsmooth (weak) solution

For many important applications, classical solutions do not exist.

• Optimal control theory (including stochastic versions)

• Differential games

• Calculus of variations (also in L∞)

• Geometric evolutions (e.g., curvature motion, level-set method)

• Computer vision and image processing

• More recently machine learning

Viscosity solution is a notion of weak solution for fully nonlinear PDEs
that provides the physically correct nonsmooth solution to all the problems
above (and, in general, most problems*).



Example 1 (Distance function). Let Γ be a closed subset of Rn and let
u : Rn → [0,∞) be the distance function to Γ, defined by

(2) u(x) = dist(x,Γ) := min
y∈Γ
|x− y|.



Optimal control theory (Evans Chapter 10)

We have a state x(t) ∈ Rn that evolves according to the dynamics

(3)

{
ẋ(s) = f(x(s),α(s)), (t < s < T )

x(t) = x.

The goal is to select the control α(t) so as to minimize the cost functional

(4) Cx,t[α(·)] :=

∫ T

t
r(x(s),α(s)) ds+ g(x(T )).

The value function

(5) u(x, t) = inf
α(·)

Cx,t[α(·)]

satisfies (in the viscosity sense) the Hamilton-Jacobi-Bellman equation

(6)

{
ut + min

a
{f(x, a) ·Du+ r(x, a)} = 0 in Rn × (0, T )

u = g on Rn × {t = T}.



Example 2 (Mean curvature motion)

For a smooth curve γ(p), p ∈ R2, the curvature at p is defined as

(7) κ(p) =
dθ

ds
(p),

where s = arclength and θ = angle between tangent and reference axis.

Exercise 1. The curvature of a circle of radius R is κ = 1/R. Here, R is the
radius of curvature.



Exercise 2. For a curve γ(τ) = (x(τ), y(τ)), the curvature is

(8) κ(t) =
x′y′′ − x′′y′

(x′2 + y′2)3/2
,

where ′ = d
dτ .

Exercise 3. For a curve γ(x) = (x, f(x)) with f(0) = f ′(0) = 0, the curva-
ture at (0, 0) is

(9) κ = f ′′(0).



Curvature motion of planar curves

Curvature motion moves a curve in the direction of its inward normal with
a speed equal to curvature. That is, curvature motion generates a family of
curves C(t, τ) = (x(t, τ), y(t, τ)) satisfying the coupled PDE

(10)


∂x

∂t
=

(
x′y′′ − x′′y′

(x′2 + y′2)3/2

)
−y′√
x′2 + y′2

,

∂y

∂t
=

(
x′y′′ − x′′y′

(x′2 + y′2)3/2

)
x′√

x′2 + y′2
.

In more compact notation
∂C

∂t
= κN,

where N = (−y′, x′)/
√
x′2 + y′2 is the unit inward normal vector to C.



Curvature motion is gradient descent on length

Define the length of C = (x(τ), y(τ)) by

(11) L(C) =

∫ b

a

√
x′2 + y′2 dτ.

Suppose C(s) = (x(s), y(s)) is parameterised by arclength s, and consider a
perturbation in the normal direction C(s) + εv(s)N(s).

We compute ( ˙ = d
ds)

(12)
d

dε

∣∣∣
ε=0

L(C + εvN) =

∫ b

a
(ẍẏ − ẋÿ)v ds.





Gage-Hamilton-Grayson Theorem

A smooth simple closed curve in the plane that undergoes curvature mo-
tion remains smoothly embedded without self-intersections, will eventually
become and remain convex, and shrink to a single point, becoming asympo-
totically round.

• Gage & Hamilton (1986) proved smooth convex curves contract to a
point.

• Grayson (1987) proved that every non-convex curve eventually becomes
convex.

• Simpler proofs have emerged since (Andrews & Bryan (2011)).

This is all in the classical setting (solutions are smooth, etc).



Level-set method

The level-set method represents the evolving curve C(t) implicitly as the zero
level-set of a function u : R2 × [0,∞)→ R. That is,

(13) C(t) = {x ∈ R2 : u(x, t) = 0}.

https://en.wikipedia.org/wiki/Level-set_method
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Level-set method

The level-set method represents the evolving curve C(t) implicitly as the zero
level-set of a function u : R2 × [0,∞)→ R. That is,

(14) C(t) = {x ∈ R2 : u(x, t) = 0}.

If C(t) evolves according to curvature motion ∂C/∂t = κN then u satisfies
(formally) the level-set equation

(15) ut −
∇⊥u ·D2u∇⊥u

|∇u|2
= 0,

where ∇⊥u = (ux2 ,−ux1). The viscosity solution theory applies to the
level-set equation for curvature motion (15). The PDE can be rewritten as

(16) ut − |∇u| div
(
∇u
|∇u|

)
= 0.



Curvature of surfaces

For a smooth surface S ⊂ R3 we have curvatures in each direction v ∈ TpS:

κ(p; v) = Curvature of interesection of S and the plane span(v,N)

https://en.wikipedia.org/wiki/Principal_curvature

https://en.wikipedia.org/wiki/Principal_curvature


Curvature of surfaces

The principal curvatures are

κ1(p) = min
v∈TpS

κ(p; v) and κ2(p) = max
v∈TpS

κ(p; v).

The principal curvatures occur in orthogonal directions if κ1 6= κ2.

We define the mean curvature

(17) H(p) = κ1(p) + κ2(p),

and the Gauss curvature

(18) K(p) = κ1(p)κ2(p).

Gauss curvature is an intrinsic quantity (Gauss’s Theorema Egregium).



Curvature of surfaces

Exercise 4. For a flat space (e.g., a plane), κ1 = κ2 = H = K = 0.

Exercise 5. For a sphere of radius R > 0, κ1 = κ2 = 1/R, H = 2/R and
K = 1/R2.

Exercise 6. For a cylinder of radius R > 0, κ1 = 0, κ2 = 1/R, H = 1/R
and K = 0.



Curvature of surfaces

Exercise 7. For a surface z = f(x, y) with f(0, 0) = 0 and Df(0, 0) = 0,

κ1(0, 0), κ2(0, 0) = Eigenvalues of Hessian matrix D2f(0, 0),

(Mean curvature) H(0, 0) = Trace(D2f(0, 0)) = fxx(0, 0) + fyy(0, 0),

(Gauss curvature) K(0, 0) = det(D2f(0, 0)) = fxx(0, 0)fyy(0, 0)− fxy(0, 0)2.



Mean curvature motion

Mean curvature motion evolves a surface with normal speed equal to mean
curvature:

(19)
∂S

∂t
(p) = H(p)N(p).

Mean curvature motion is gradient descent on the surface area functional

(20) A(S) =

∫
S
dS.

Demo: Gage-Hamilton-Grayson theorem does not hold in dimension n ≥ 3.
Surface can develop singluarities in finite time, after which point classical
solutions fail to exist.



Level-set method

The level-set method represents the evolving surface S(t) implicitly as the
zero level-set of a function u : R3 × [0,∞)→ R. That is,

(21) S(t) = {x ∈ R3 : u(x, t) = 0}.

If S(t) evolves according to mean curvature motion ∂S/∂t = HN then u
satisfies (formally) the level-set equation

(22) ut − |∇u| div
(
∇u
|∇u|

)
= 0.

The viscosity solution of (22) exists and is unique for all time, allowing us to
interpret mean curvature motion beyond singularities.



Level-set method

References:

• Level-set method was invented by Sethian and Osher (1988) as an effi-
cient numerical scheme for tracking evolving fronts and surfaces.

• Evans and Spruck (1991) proved well-posedness of the level-set equation
for mean curvature motion in the viscosity sense, and proposed it as a
notion of generalized mean curvature motion.


