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Finite difference approximations
Let’s start with a warmup:

ut + cuy =0 in R x (0, 00)
(1) {

u=g onRx{t=0}

The solution is given by
u(z,t) = g(x — ct).

Characteristics are the lines x = ¢t with speed dz/dt = c.

Question: How should we discretize (1)?



Finite difference approximations

ut 4+ cuy =0 in R x (0,00)
(2) {

u=g onRx {t=0}

Write u? ~ u(nAt, jAz) on a grid of resolution (At, Az). We use forward

differences for u;:
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Maximum principle

When ¢ > 0, upwind scheme uses backward differences for wu,:

n+1 = CAt( n n )

R Bl v

=1/
We can write scheme as

u;-”rl = (1= s)uj + suj_y,
where s = cAt/Ax. If 1 —s > 0, or Ax/At > ¢, this a convex combination
of u7 and u}_;, hence the scheme satsifies the maximum principle. This
is the CFL stability condition At < ¢~ 'Ax or

Ax

- > c

At ~—~
~~ Speed of characteristics

Numerical speed of propagation



Numerical viscosity

When ¢ > 0, upwind scheme uses backward differences for wu,:

u —
—1
uh = — At | L—1 ).
J J Az

We can also write scheme as

n+l _  n j+1 j—1 . j+1 j j—1
u; = g cAt (2Aa: > + 2AtAx < A2 ) .

This looks like a discretization of
c
U = —CUyg + gAxum.

This is called numerical viscosity. Note ¢ > 0 is essential.



Numerical viscosity

A simple nonlinear example:

up + |ug| =2 in (0,1) x (0,00)
(3) u=yg on (0,1) x {t =0}
u(0) =u(l) =0

We can think of the equation as
us +cuy, =0
where ¢ = sign(u,). Therefore, we should choose
e Backward differences for u; when u, > 0.
e Forward differences for u, when u, < 0.

This is called upwinding.



Finite difference schemes
We consider finite difference schems for solving the Hamilton-Jacobi equation

(1) {H(Du,u,x) =0 in (0,1)"

u=g¢g ond(0,1)".

Our goal is to design finite difference schemes for (4) that converge to the
viscosity solution of (4) as the grid resolution tends to zero.



Notation

For h > 0 let Zy, = {hz : z € Z} and Z} = (Zp)".

For a set O C R™ we define O, := O NZj, and 00y, := (00) N Z}.

We will always assume that 1/h is an integer.

Given a function u : [0,1]" — R, we define the forward and backward
difference quotients by

u(x £+ he;) — u(x)
3 ;

(5) Viu(z) =+

and we set

VEu(z) = (Viu(z),. .., Viu(z)).



Basic example

Exercise 1. Consider the following finite difference scheme for the one di-
mensional eikonal equation

(6) \Viup(z)] =1 forx€[0,1),, and wup(0)=uy(l)=0.

Show that the scheme is not well-posed, that is, depending on whether 1/h
is even or odd, there is either no solution, or there is more than one solution.



Hamilton-Jacobi-Bellman Equation
Recall the Hamilton-Jacobi-Bellman equation

H(Du,z) =0
where

H(p,x) = ls?g {-p-a— L(a,x)}.

In this case, the solution u satisfies the dynamic programming principle

uw)= _inf {uly) + Tz}

The infimum on the right is attained at some y € 9B(z,r) so we have
u(@) = u(y) + T(z,y).

Key observation: u(x) depends only on u(y) with u(y) < u(z).



Basic monotone scheme
We define the monotone finite differences
(7) Vitu = m(Viu, Vi),

where
a, ifa+b<0anda<0

m(a,b) =¢b, ifa+b>0andb>0

0, otherwise.

We also define the monotone gradient by
VP = (Vi*u,...,Vitu).
Key property:

|Vitu(x)| = %max {u(z) — u(x + he;),u(x) — u(x — he;),0} .



Basic monotone scheme

Exercise 2. Consider the following monotone finite difference scheme for the
one dimensional eikonal equation:

IVitup(z)| =1 for x € (0,1)n, and up(0) =up(l) =0.

Find the solution u; explicitly, and show that u; — % —|z] as h — 0.



Back to maximum principle
Proposition 1. If u(x) = v(x) and u < v then

|Vitu(z)| > |Vi"v(x)|  for alli.
Lemma 1. Suppose H is given by

H(p,z) = ‘Slll:l% {-p-a—L(a,r)}

and L satisfies
(8) L(ai,...,an,x) = L(la1|, ..., |an|,x) for all z.
If u(z) = v(x) and u < v then

(9) H(V™u(x),z) > H(V™v(x), z).



Back to maximum principle

A general finite difference scheme has the form

{Sh(uh,uh(:z:),$) =0 in (0,1)7

10
(10) up, =g on 0(0,1)x,

where
Sp o Xp xR xR" = R,
and X}, denotes the collection of real-valued functions on [0, 1]
Definition 1. We say the scheme S} is monotone if
(11) u<v = Sp(u,t,x) > Sp(v,t,x)
for all u,v € X3, t € R and z € R™.

Note: Equation (10) can be any approximation scheme satisfying (11).



Barles-Souganidis framework [1]

Every monotone, consitent, and stable scheme converges to the viscosity
solution, provided the PDE is well-posed.

e Well-posed here means the PDE satisfies a comparison principle with
boundary conditions in the viscosity sense (called strong uniqueness
in [1]).



Boundary conditions in the viscosity sense

(12)

H(Du,u,x) =0 inU
u=g ondU

Definition 2. We say u € USC(U) is a viscosity subsolution of (12) if for
all z € U and every o € C*°(R") such that u — ¢ has a local maximum at z
with respect to U

{H(Dgp(m),u(m), z) <0, ifzeU
min {H(Dy(z),u(x),x),u(z) — g(x)} <0 if z € 9U.



Likewise, we say that u € LSC(U) is a viscosity supersolution of (12) if
for all z € U and every ¢ € C*°(R") such that u — ¢ has a local minimum at
x with respect to U

{H(D(p(a}), u(x),z) >0, ifeelU
max {H(Dp(x),u(z),z),u(x) — g(x)} >0 if z € U.

Finally, we say that u is a viscosity solution of (12) if u is both a viscosity
sub- and supersolution. In this case, we say that the boundary conditions in
(12) hold in the wiscosity sense

Strong uniqueness means if v € USC(U) is a subsolution (as above),
and v € LSC(U) is a supersolution, then u < v on U.



Barles-Souganidis framework [1]

Definition 3. We say the scheme Sy, is monotone if
(13) u<v = Sp(u,t,x) > Sy(v,t,z)
for all u,v € X3, t € R and z € R™.

Definition 4. We say the scheme S}, is consistent if

(14) lim Sh(e +7:¢(y) +7,9) = H(Dp(x), p(2), )
h—0F
¥—0

for all p € C°(R").

Definition 5. We say the scheme S}, is stable if the solutions uj, are uniformly
bounded as h — 07, that is, there exists C' > 0 such that

sup sup |up(x)| < C.
h>0 z€[0,1]}



Barles-Souganidis framework [1]

H(Du,u,z) =0 1in (0,1)"
(15) { u=g¢g ond(0,1)".
Sh(up,up(z),z) =0 in (0,1)}
1o { un=g on 90, 1)},

Theorem 1. Suppose (15) enjoys strong uniqueness, and Sy is monotone,
consistent, and stable. Then up, — u uniformly on [0,1]" as h — 0T, where
u 18 the unique viscosity solution of (4).



Monotone schemes are first order (at best)

Write our monotone scheme as
Flul(z) = F(Viu(z), -Viu(z),...,V,u(z), -V u(z),u(r),),

where F' = F(ay,...,a2,,2,z). Recall from HW that F' is monotone if and
only if F' is nondecreasing in each a;, i.e., F,,; > 0 for all i. Let M > 0 and
define

Sui={e e C®®") : Iplosmn < M.

We define the local truncation error by

err(M, h) := Sup |Fle)(x) — H(Dp(x), o(x), )|
z€[0,1]™



Monotone schemes are first order (at best)

Theorem 2. Let F' be monotone and smooth, and assume H is smooth.
Suppose that for somep € R", z € R, x € [0,1]", and i € {1,...,n}

(17) H, (p,z,x)#0.
Then there exists M >0, C >0, ¢ > 0 and h > 0 such that for all0 < h < h
(18) ch < err(M,h) < Ch.

Note: In this case, consistency of the scheme states that

(19) F(pb_plv-"?pnv_pn:zaw) :H(p,z,x)



Convergence rates

Let u € C%1([0,1]™) be the unique viscosity solution of

(20)

H(Du,z) =0 in (0,1)"
u=0 on 9(0,1)",

and consider the monotone finite difference scheme

{H(Vmuh(az),x) =0 in (0,1)7

(21)
up, =0 on 0(0,1)j.

We consider the Hamilton-Jacobi-Bellman equation where

(22) H(p,z) = Sup {-p-a—L(a,2)}.

We assume L is Lipschitz and satisfies all prior assumptions.



Convergence rates

We first consider existence/uniqueness of solutions to our scheme.

(23) {H (V™up(z),z) =0 in (0,1)

up, =0 on 9(0,1)r.
We use the Perron method.

Definition 6. We say that wj, : [0,1]} — R is a subsolution of (23) if
H(V™up,xz) < 0in (0,1)} and up < 0 on 9(0,1)}. We define supersolu-
tions analogously.

Lemma 2. If u and v are sub- and supersolutions of (21), respectively, then
u<wv on [0,1]}.

Lemma 3. There exists a unique grid function uy : [0,1]} — R satisfying
the monotone scheme (21). Furthermore, the sequence uy, is nonnegative and
uniformly bounded.



Convergence rates

Proposition 2. The Hamiltonian H s Lipschitz continuous.

Theorem 3. There exists a constant C > 0 such that

|u—uh| < C\/E.
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