Math 8590: Viscosity Solutions Finite difference schemes

Instructor: Jeff Calder Office: 538 Vincent Email: jcalder@umn.edu Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

Finite difference approximations

Let's start with a warmup:

(1)
$$\begin{cases} u_t + cu_x = 0 & \text{in } \mathbb{R} \times (0, \infty) \\ u = g & \text{on } \mathbb{R} \times \{t = 0\} \end{cases}$$

The solution is given by

$$u(x,t) = g(x - ct).$$

Characteristics are the lines x = ct with speed dx/dt = c.

Question: How should we discretize (1)?

Finite difference approximations

(2)
$$\begin{cases} u_t + cu_x = 0 & \text{in } \mathbb{R} \times (0, \infty) \\ u = g & \text{on } \mathbb{R} \times \{t = 0\} \end{cases}$$

Write $u_j^n \approx u(n\Delta t, j\Delta x)$ on a grid of resolution $(\Delta t, \Delta x)$. We use forward differences for u_t :

$$u_t \approx \frac{u_j^{n+1} - u_j^n}{\Delta t}.$$

For u_x we have (at least) three choices

$$u_x \approx \frac{u_{j+1}^n - u_j^n}{\Delta x}, u_x \approx \frac{u_j^n - u_{j-1}^n}{\Delta x}, \text{ or } u_x \approx \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x}$$

With any choice, the scheme is

$$u_j^{n+1} = u_j^n - c\Delta t u_x.$$

Maximum principle

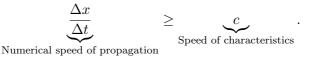
When c > 0, upwind scheme uses backward differences for u_x :

$$u_{j}^{n+1} = u_{j}^{n} - \frac{c\Delta t}{\Delta x}(u_{j}^{n} - u_{j-1}^{n}).$$

We can write scheme as

$$u_j^{n+1} = (1-s) u_j^n + s u_{j-1}^n,$$

where $s = c\Delta t/\Delta x$. If $1 - s \ge 0$, or $\Delta x/\Delta t \ge c$, this a convex combination of u_j^n and u_{j-1}^n , hence the scheme satisfies the **maximum principle**. This is the CFL stability condition $\Delta t \le c^{-1}\Delta x$ or



Numerical viscosity

When c > 0, upwind scheme uses backward differences for u_x :

$$u_j^{n+1} = u_j^n - c\Delta t \left(\frac{u_j^n - u_{j-1}^n}{\Delta x}\right).$$

We can also write scheme as

$$u_{j}^{n+1} = u_{j}^{n} - c\Delta t \left(\frac{u_{j+1}^{n} - u_{j-1}^{n}}{2\Delta x}\right) + \frac{c}{2}\Delta t\Delta x \left(\frac{u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}}{\Delta x^{2}}\right).$$

This looks like a discretization of

$$u_t = -cu_x + \frac{c}{2}\Delta x u_{xx}.$$

This is called **numerical viscosity**. Note c > 0 is essential.

Numerical viscosity

A simple nonlinear example:

(3)
$$\begin{cases} u_t + |u_x| = 2 & \text{in } (0,1) \times (0,\infty) \\ u = g & \text{on } (0,1) \times \{t=0\} \\ u(0) = u(1) = 0 \end{cases}$$

We can think of the equation as

$$u_t + cu_x = 0$$

where $c = \operatorname{sign}(u_x)$. Therefore, we should choose

- Backward differences for u_x when $u_x > 0$.
- Forward differences for u_x when $u_x < 0$.

This is called **upwinding**.

Finite difference schemes

We consider finite difference schems for solving the Hamilton-Jacobi equation

(4)
$$\begin{cases} H(Du, u, x) = 0 & \text{in } (0, 1)^n \\ u = g & \text{on } \partial(0, 1)^n. \end{cases}$$

Our goal is to design finite difference schemes for (4) that converge to the viscosity solution of (4) as the grid resolution tends to zero.

Notation

- For h > 0 let $\mathbb{Z}_h = \{hz : z \in \mathbb{Z}\}$ and $\mathbb{Z}_h^n = (\mathbb{Z}_h)^n$.
- For a set $\mathcal{O} \subset \mathbb{R}^n$ we define $\mathcal{O}_h := \mathcal{O} \cap \mathbb{Z}_h^n$, and $\partial O_h := (\partial O) \cap \mathbb{Z}_h^n$.
- We will always assume that 1/h is an integer.
- Given a function $u: [0,1]_n^h \to \mathbb{R}$, we define the forward and backward difference quotients by

(5)
$$\nabla_i^{\pm} u(x) := \pm \frac{u(x \pm he_i) - u(x)}{h},$$

and we set

$$\nabla^{\pm} u(x) = (\nabla_1^{\pm} u(x), \dots, \nabla_n^{\pm} u(x)).$$

Basic example

Exercise 1. Consider the following finite difference scheme for the one dimensional eikonal equation

(6)
$$|\nabla_1^+ u_h(x)| = 1$$
 for $x \in [0,1)_h$, and $u_h(0) = u_h(1) = 0$.

Show that the scheme is not well-posed, that is, depending on whether 1/h is even or odd, there is either no solution, or there is more than one solution.

Hamilton-Jacobi-Bellman Equation

Recall the Hamilton-Jacobi-Bellman equation

$$H(Du, x) = 0$$

where

$$H(p, x) = \sup_{|a|=1} \left\{ -p \cdot a - L(a, x) \right\}.$$

In this case, the solution u satisfies the dynamic programming principle

$$u(x) = \inf_{y \in \partial B(x,r)} \{u(y) + T(x,y)\}.$$

The infimum on the right is attained at some $y \in \partial B(x, r)$ so we have

$$u(x) = u(y) + T(x, y).$$

Key observation: u(x) depends only on u(y) with $u(y) \le u(x)$.

Basic monotone scheme

We define the *monotone* finite differences

(7)
$$\nabla_i^{\mathbf{m}} u = \mathbf{m}(\nabla_i^+ u, \nabla_i^- u),$$

where

$$\mathbf{m}(a,b) = \begin{cases} a, & \text{if } a+b < 0 \text{ and } a \le 0\\ b, & \text{if } a+b \ge 0 \text{ and } b \ge 0\\ 0, & \text{otherwise.} \end{cases}$$

We also define the *monotone gradient* by

$$\nabla^{\mathbf{m}} u = (\nabla_1^{\mathbf{m}} u, \dots, \nabla_n^{\mathbf{m}} u).$$

Key property:

$$|\nabla_i^{\mathbf{m}} u(x)| = \frac{1}{h} \max \{ u(x) - u(x + he_i), u(x) - u(x - he_i), 0 \}$$

Basic monotone scheme

Exercise 2. Consider the following monotone finite difference scheme for the one dimensional eikonal equation:

 $|\nabla_1^{\mathbf{m}} u_h(x)| = 1$ for $x \in (0, 1)_h$, and $u_h(0) = u_h(1) = 0$.

Find the solution u_h explicitly, and show that $u_h \to \frac{1}{2} - |x|$ as $h \to 0^+$.

Back to maximum principle

Proposition 1. If u(x) = v(x) and $u \leq v$ then

 $|\nabla^{\mathbf{m}}_{i}u(x)| \geq |\nabla^{\mathbf{m}}_{i}v(x)| \quad for \ all \ i.$

Lemma 1. Suppose H is given by

$$H(p, x) = \sup_{|a|=1} \{-p \cdot a - L(a, x)\}$$

and L satisfies

(8)
$$L(a_1, \ldots, a_n, x) = L(|a_1|, \ldots, |a_n|, x)$$
 for all x.

If u(x) = v(x) and $u \le v$ then (9) $H(\nabla^{\mathbf{m}}u(x), x) \ge H(\nabla^{\mathbf{m}}v(x), x).$

Back to maximum principle

A general finite difference scheme has the form

(10)
$$\begin{cases} S_h(u_h, u_h(x), x) = 0 & \text{in } (0, 1)_h^n \\ u_h = g & \text{on } \partial(0, 1)_h^n, \end{cases}$$

where

$$S_h: X_h \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R},$$

and X_h denotes the collection of real-valued functions on $[0,1]_h^n$.

Definition 1. We say the scheme S_h is monotone if

(11)
$$u \le v \implies S_h(u, t, x) \ge S_h(v, t, x)$$

for all $u, v \in X_h$, $t \in \mathbb{R}$ and $x \in \mathbb{R}^n$.

Note: Equation (10) can be any approximation scheme satisfying (11).

Barles-Souganidis framework [1]

Every **monotone**, **consitent**, and **stable** scheme converges to the viscosity solution, provided the PDE is well-posed.

• Well-posed here means the PDE satisfies a comparison principle with boundary conditions in the viscosity sense (called strong uniqueness in [1]).

Boundary conditions in the viscosity sense

(12)
$$\begin{cases} H(Du, u, x) = 0 & \text{in } U \\ u = g & \text{on } \partial U \end{cases}$$

Definition 2. We say $u \in \text{USC}(\overline{U})$ is a viscosity subsolution of (12) if for all $x \in \overline{U}$ and every $\varphi \in C^{\infty}(\mathbb{R}^n)$ such that $u - \varphi$ has a local maximum at xwith respect to \overline{U}

$$\begin{cases} H(D\varphi(x), u(x), x) \le 0, & \text{if } x \in U\\ \min \left\{ H(D\varphi(x), u(x), x), u(x) - g(x) \right\} \le 0 & \text{if } x \in \partial U. \end{cases}$$

Likewise, we say that $u \in \text{LSC}(\overline{U})$ is a viscosity supersolution of (12) if for all $x \in \overline{U}$ and every $\varphi \in C^{\infty}(\mathbb{R}^n)$ such that $u - \varphi$ has a local minimum at x with respect to \overline{U}

$$\begin{cases} H(D\varphi(x), u(x), x) \ge 0, & \text{if } x \in U\\ \max \left\{ H(D\varphi(x), u(x), x), u(x) - g(x) \right\} \ge 0 & \text{if } x \in \partial U. \end{cases}$$

Finally, we say that u is a viscosity solution of (12) if u is both a viscosity sub- and supersolution. In this case, we say that the boundary conditions in (12) hold in the viscosity sense

Strong uniqueness means if $u \in \text{USC}(\overline{U})$ is a subsolution (as above), and $v \in \text{LSC}(\overline{U})$ is a supersolution, then $u \leq v$ on \overline{U} .

Barles-Souganidis framework [1]

Definition 3. We say the scheme S_h is monotone if

(13)
$$u \le v \implies S_h(u, t, x) \ge S_h(v, t, x)$$

for all $u, v \in X_h$, $t \in \mathbb{R}$ and $x \in \mathbb{R}^n$.

Definition 4. We say the scheme S_h is *consistent* if

(14)
$$\lim_{\substack{y \to x \\ h \to 0^+ \\ \gamma \to 0}} S_h(\varphi + \gamma, \varphi(y) + \gamma, y) = H(D\varphi(x), \varphi(x), x)$$

for all $\varphi \in C^{\infty}(\mathbb{R}^n)$.

Definition 5. We say the scheme S_h is *stable* if the solutions u_h are uniformly bounded as $h \to 0^+$, that is, there exists C > 0 such that

$$\sup_{h>0} \sup_{x\in[0,1]_h^n} |u_h(x)| \le C.$$

Barles-Souganidis framework [1]

(15)
$$\begin{cases} H(Du, u, x) = 0 & \text{in } (0, 1)^n \\ u = g & \text{on } \partial(0, 1)^n. \end{cases}$$

(16)
$$\begin{cases} S_h(u_h, u_h(x), x) = 0 & \text{in } (0, 1)_h^n \\ u_h = g & \text{on } \partial(0, 1)_h^n, \end{cases}$$

Theorem 1. Suppose (15) enjoys strong uniqueness, and S_h is monotone, consistent, and stable. Then $u_h \to u$ uniformly on $[0,1]^n$ as $h \to 0^+$, where u is the unique viscosity solution of (4).

Monotone schemes are first order (at best)

Write our monotone scheme as

$$F[u](x) = F(\nabla_1^- u(x), -\nabla_1^+ u(x), \dots, \nabla_n^- u(x), -\nabla_n^+ u(x), u(x), x),$$

where $F = F(a_1, \ldots, a_{2n}, z, x)$. Recall from HW that F is monotone if and only if F is nondecreasing in each a_i , i.e., $F_{a_i} \ge 0$ for all i. Let M > 0 and define

$$\mathcal{S}_M := \left\{ \varphi \in C^{\infty}(\mathbb{R}^n) : \|\varphi\|_{C^3(\mathbb{R}^n)} \le M \right\}.$$

We define the local truncation error by

$$\operatorname{err}(M,h) := \sup_{\substack{\varphi \in \mathcal{S}_M \\ x \in [0,1]^n}} |F[\varphi](x) - H(D\varphi(x),\varphi(x),x)|.$$

Monotone schemes are first order (at best)

Theorem 2. Let F be monotone and smooth, and assume H is smooth. Suppose that for some $p \in \mathbb{R}^n$, $z \in \mathbb{R}$, $x \in [0,1]^n$, and $i \in \{1,\ldots,n\}$

(17)
$$H_{p_i}(p, z, x) \neq 0$$

Then there exists M > 0, C > 0, c > 0 and $\overline{h} > 0$ such that for all $0 < h < \overline{h}$

(18)
$$ch \le err(M,h) \le Ch$$

Note: In this case, consistency of the scheme states that

(19)
$$F(p_1, -p_1, \dots, p_n, -p_n, z, x) = H(p, z, x).$$

Convergence rates

Let $u \in C^{0,1}([0,1]^n)$ be the unique viscosity solution of

(20)
$$\begin{cases} H(Du, x) = 0 & \text{in } (0, 1)^n \\ u = 0 & \text{on } \partial(0, 1)^n, \end{cases}$$

and consider the monotone finite difference scheme

(21)
$$\begin{cases} H(\nabla^{\mathbf{m}} u_h(x), x) = 0 & \text{in } (0, 1)_h^n \\ u_h = 0 & \text{on } \partial(0, 1)_h^n. \end{cases}$$

We consider the Hamilton-Jacobi-Bellman equation where

(22)
$$H(p,x) = \sup_{|a|=1} \left\{ -p \cdot a - L(a,x) \right\}.$$

We assume L is Lipschitz and satisfies all prior assumptions.

Convergence rates

We first consider existence/uniqueness of solutions to our scheme.

(23)
$$\begin{cases} H(\nabla^{\mathbf{m}} u_h(x), x) = 0 & \text{in } (0, 1)_h^n \\ u_h = 0 & \text{on } \partial(0, 1)_h^n. \end{cases}$$

We use the Perron method.

Definition 6. We say that $u_h : [0,1]_h^n \to \mathbb{R}$ is a subsolution of (23) if $H(\nabla^{\mathbf{m}} u_h, x) \leq 0$ in $(0,1)_h^n$ and $u_h \leq 0$ on $\partial(0,1)_h^n$. We define supersolutions analogously.

Lemma 2. If u and v are sub- and supersolutions of (21), respectively, then $u \leq v$ on $[0, 1]_h^n$.

Lemma 3. There exists a unique grid function $u_h : [0,1]_h^n \to \mathbb{R}$ satisfying the monotone scheme (21). Furthermore, the sequence u_h is nonnegative and uniformly bounded.

Convergence rates

Proposition 2. The Hamiltonian H is Lipschitz continuous.

Theorem 3. There exists a constant C > 0 such that

$$|u - u_h| \le C\sqrt{h}.$$

References

 G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear second order equations. *Asymptotic analysis*, 4(3):271– 283, 1991.