
Math 8590: Viscosity Solutions
Finite difference schemes

Instructor: Jeff Calder
Office: 538 Vincent

Email: jcalder@umn.edu
Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

jcalder@umn.edu
http://www-users.math.umn.edu/~jwcalder/8590F18


Finite difference approximations

Let’s start with a warmup:

(1)

{
ut + cux = 0 in R× (0,∞)

u = g on R× {t = 0}

The solution is given by
u(x, t) = g(x− ct).

Characteristics are the lines x = ct with speed dx/dt = c.

Question: How should we discretize (1)?



Finite difference approximations

(2)

{
ut + cux = 0 in R× (0,∞)

u = g on R× {t = 0}

Write unj ≈ u(n∆t, j∆x) on a grid of resolution (∆t,∆x). We use forward
differences for ut:

ut ≈
un+1
j − unj

∆t
.

For ux we have (at least) three choices

ux ≈
unj+1 − unj

∆x
, ux ≈

unj − unj−1
∆x

, or ux ≈
unj+1 − unj−1

2∆x
.

With any choice, the scheme is

un+1
j = unj − c∆tux.



Maximum principle

When c > 0, upwind scheme uses backward differences for ux:

un+1
j = unj −

c∆t

∆x
(unj − unj−1).

We can write scheme as

un+1
j = (1− s)unj + sunj−1,

where s = c∆t/∆x. If 1 − s ≥ 0, or ∆x/∆t ≥ c, this a convex combination
of unj and unj−1, hence the scheme satsifies the maximum principle. This
is the CFL stability condition ∆t ≤ c−1∆x or

∆x

∆t︸︷︷︸
Numerical speed of propagation

≥ c︸︷︷︸
Speed of characteristics

.



Numerical viscosity

When c > 0, upwind scheme uses backward differences for ux:

un+1
j = unj − c∆t

(
unj − unj−1

∆x

)
.

We can also write scheme as

un+1
j = unj − c∆t

(
unj+1 − unj−1

2∆x

)
+
c

2
∆t∆x

(
unj+1 − 2unj + unj−1

∆x2

)
.

This looks like a discretization of

ut = −cux +
c

2
∆xuxx.

This is called numerical viscosity. Note c > 0 is essential.



Numerical viscosity

A simple nonlinear example:

(3)


ut + |ux| = 2 in (0, 1)× (0,∞)

u = g on (0, 1)× {t = 0}
u(0) = u(1) = 0

We can think of the equation as

ut + cux = 0

where c = sign(ux). Therefore, we should choose

• Backward differences for ux when ux > 0.

• Forward differences for ux when ux < 0.

This is called upwinding.



Finite difference schemes

We consider finite difference schems for solving the Hamilton-Jacobi equation

(4)

{
H(Du, u, x) = 0 in (0, 1)n

u = g on ∂(0, 1)n.

Our goal is to design finite difference schemes for (4) that converge to the
viscosity solution of (4) as the grid resolution tends to zero.



Notation

• For h > 0 let Zh = {hz : z ∈ Z} and Znh = (Zh)n.

• For a set O ⊂ Rn we define Oh := O ∩ Znh, and ∂Oh := (∂O) ∩ Znh.

• We will always assume that 1/h is an integer.

• Given a function u : [0, 1]hn → R, we define the forward and backward
difference quotients by

(5) ∇±i u(x) := ±u(x± hei)− u(x)

h
,

and we set
∇±u(x) = (∇±1 u(x), . . . ,∇±n u(x)).



Basic example

Exercise 1. Consider the following finite difference scheme for the one di-
mensional eikonal equation

(6) |∇+
1 uh(x)| = 1 for x ∈ [0, 1)h, and uh(0) = uh(1) = 0.

Show that the scheme is not well-posed, that is, depending on whether 1/h
is even or odd, there is either no solution, or there is more than one solution.



Hamilton-Jacobi-Bellman Equation

Recall the Hamilton-Jacobi-Bellman equation

H(Du, x) = 0

where
H(p, x) = sup

|a|=1
{−p · a− L(a, x)} .

In this case, the solution u satisfies the dynamic programming principle

u(x) = inf
y∈∂B(x,r)

{u(y) + T (x, y)}.

The infimum on the right is attained at some y ∈ ∂B(x, r) so we have

u(x) = u(y) + T (x, y).

Key observation: u(x) depends only on u(y) with u(y) ≤ u(x).



Basic monotone scheme

We define the monotone finite differences

(7) ∇m
i u = m(∇+

i u,∇
−
i u),

where

m(a, b) =


a, if a+ b < 0 and a ≤ 0

b, if a+ b ≥ 0 and b ≥ 0

0, otherwise.

We also define the monotone gradient by

∇mu = (∇m
1 u, . . . ,∇m

n u).

Key property:

|∇m
i u(x)| = 1

h
max {u(x)− u(x+ hei), u(x)− u(x− hei), 0} .



Basic monotone scheme

Exercise 2. Consider the following monotone finite difference scheme for the
one dimensional eikonal equation:

|∇m
1 uh(x)| = 1 for x ∈ (0, 1)h, and uh(0) = uh(1) = 0.

Find the solution uh explicitly, and show that uh → 1
2 − |x| as h→ 0+.



Back to maximum principle

Proposition 1. If u(x) = v(x) and u ≤ v then

|∇m
i u(x)| ≥ |∇m

i v(x)| for all i.

Lemma 1. Suppose H is given by

H(p, x) = sup
|a|=1

{−p · a− L(a, x)}

and L satisfies

(8) L(a1, . . . , an, x) = L(|a1|, . . . , |an|, x) for all x.

If u(x) = v(x) and u ≤ v then

(9) H(∇mu(x), x) ≥ H(∇mv(x), x).



Back to maximum principle

A general finite difference scheme has the form

(10)

{
Sh(uh, uh(x), x) = 0 in (0, 1)nh

uh = g on ∂(0, 1)nh,

where
Sh : Xh × R× Rn → R,

and Xh denotes the collection of real-valued functions on [0, 1]nh.

Definition 1. We say the scheme Sh is monotone if

(11) u ≤ v =⇒ Sh(u, t, x) ≥ Sh(v, t, x)

for all u, v ∈ Xh, t ∈ R and x ∈ Rn.

Note: Equation (10) can be any approximation scheme satisfying (11).



Barles-Souganidis framework [1]

Every monotone, consitent, and stable scheme converges to the viscosity
solution, provided the PDE is well-posed.

• Well-posed here means the PDE satisfies a comparison principle with
boundary conditions in the viscosity sense (called strong uniqueness
in [1]).



Boundary conditions in the viscosity sense

(12)

{
H(Du, u, x) = 0 in U

u = g on ∂U

Definition 2. We say u ∈ USC(U) is a viscosity subsolution of (12) if for
all x ∈ U and every ϕ ∈ C∞(Rn) such that u− ϕ has a local maximum at x
with respect to U{

H(Dϕ(x), u(x), x) ≤ 0, if x ∈ U
min {H(Dϕ(x), u(x), x), u(x)− g(x)} ≤ 0 if x ∈ ∂U.



Likewise, we say that u ∈ LSC(U) is a viscosity supersolution of (12) if
for all x ∈ U and every ϕ ∈ C∞(Rn) such that u−ϕ has a local minimum at
x with respect to U{

H(Dϕ(x), u(x), x) ≥ 0, if x ∈ U
max {H(Dϕ(x), u(x), x), u(x)− g(x)} ≥ 0 if x ∈ ∂U.

Finally, we say that u is a viscosity solution of (12) if u is both a viscosity
sub- and supersolution. In this case, we say that the boundary conditions in
(12) hold in the viscosity sense

Strong uniqueness means if u ∈ USC(U) is a subsolution (as above),
and v ∈ LSC(U) is a supersolution, then u ≤ v on U .



Barles-Souganidis framework [1]

Definition 3. We say the scheme Sh is monotone if

(13) u ≤ v =⇒ Sh(u, t, x) ≥ Sh(v, t, x)

for all u, v ∈ Xh, t ∈ R and x ∈ Rn.

Definition 4. We say the scheme Sh is consistent if

(14) lim
y→x
h→0+
γ→0

Sh(ϕ+ γ, ϕ(y) + γ, y) = H(Dϕ(x), ϕ(x), x)

for all ϕ ∈ C∞(Rn).

Definition 5. We say the scheme Sh is stable if the solutions uh are uniformly
bounded as h→ 0+, that is, there exists C > 0 such that

sup
h>0

sup
x∈[0,1]nh

|uh(x)| ≤ C.



Barles-Souganidis framework [1]

(15)

{
H(Du, u, x) = 0 in (0, 1)n

u = g on ∂(0, 1)n.

(16)

{
Sh(uh, uh(x), x) = 0 in (0, 1)nh

uh = g on ∂(0, 1)nh,

Theorem 1. Suppose (15) enjoys strong uniqueness, and Sh is monotone,
consistent, and stable. Then uh → u uniformly on [0, 1]n as h → 0+, where
u is the unique viscosity solution of (4).



Monotone schemes are first order (at best)

Write our monotone scheme as

F [u](x) = F (∇−1 u(x),−∇+
1 u(x), . . . ,∇−n u(x),−∇+

n u(x), u(x), x),

where F = F (a1, . . . , a2n, z, x). Recall from HW that F is monotone if and
only if F is nondecreasing in each ai, i.e., Fai ≥ 0 for all i. Let M > 0 and
define

SM :=
{
ϕ ∈ C∞(Rn) : ‖ϕ‖C3(Rn) ≤M

}
.

We define the local truncation error by

err(M,h) := sup
ϕ∈SM
x∈[0,1]n

|F [ϕ](x)−H(Dϕ(x), ϕ(x), x)|.



Monotone schemes are first order (at best)

Theorem 2. Let F be monotone and smooth, and assume H is smooth.
Suppose that for some p ∈ Rn, z ∈ R, x ∈ [0, 1]n, and i ∈ {1, . . . , n}

(17) Hpi(p, z, x) 6= 0.

Then there exists M > 0, C > 0, c > 0 and h > 0 such that for all 0 < h < h

(18) ch ≤ err(M,h) ≤ Ch.

Note: In this case, consistency of the scheme states that

(19) F (p1,−p1, . . . , pn,−pn, z, x) = H(p, z, x).



Convergence rates

Let u ∈ C0,1([0, 1]n) be the unique viscosity solution of

(20)

{
H(Du, x) = 0 in (0, 1)n

u = 0 on ∂(0, 1)n,

and consider the monotone finite difference scheme

(21)

{
H(∇muh(x), x) = 0 in (0, 1)nh

uh = 0 on ∂(0, 1)nh.

We consider the Hamilton-Jacobi-Bellman equation where

(22) H(p, x) = sup
|a|=1

{−p · a− L(a, x)} .

We assume L is Lipschitz and satisfies all prior assumptions.



Convergence rates

We first consider existence/uniqueness of solutions to our scheme.

(23)

{
H(∇muh(x), x) = 0 in (0, 1)nh

uh = 0 on ∂(0, 1)nh.

We use the Perron method.

Definition 6. We say that uh : [0, 1]nh → R is a subsolution of (23) if
H(∇muh, x) ≤ 0 in (0, 1)nh and uh ≤ 0 on ∂(0, 1)nh. We define supersolu-
tions analogously.

Lemma 2. If u and v are sub- and supersolutions of (21), respectively, then
u ≤ v on [0, 1]nh.

Lemma 3. There exists a unique grid function uh : [0, 1]nh → R satisfying
the monotone scheme (21). Furthermore, the sequence uh is nonnegative and
uniformly bounded.



Convergence rates

Proposition 2. The Hamiltonian H is Lipschitz continuous.

Theorem 3. There exists a constant C > 0 such that

|u− uh| ≤ C
√
h.
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