Math 8590: Viscosity Solutions The Perron Method

Instructor: Jeff Calder Office: 538 Vincent Email: jcalder@umn.edu Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

Definition 1. We define the upper semicontinuous envelope of a function $u: \mathcal{O} \to \mathbb{R}$ by

 $u^*(x) := \limsup_{\mathcal{O} \ni y \to x} u(y).$

The lower semicontinuous envelope of u is defined by

 $u_*(x) := \liminf_{\mathcal{O} \ni y \to x} u(y).$

- Note $u_* = -(-u)^*$.
- The function u^* is the smallest upper semicontinuous function that is pointwise greater than or equal to u.
- The function u_* is the greatest lower semicontinuous function that is less than u.
- Note that $u_* \leq u \leq u^*$, and $u^* = u_* = u$ if and only if u is continuous.

Consider the second order nonlinear equation

(1)
$$H(D^2u, Du, u, x) = 0 \quad \text{in } U,$$

where H is continuous and $U \subset \mathbb{R}^n$ is open. Let $w \in \text{LSC}(\overline{U})$ be a viscosity supersolution of (1) and define

$$\mathcal{F} := \Big\{ v \in \mathrm{USC}(\overline{U}) : v \text{ is a subsolution of } (1) \text{ and } v \le w \text{ in } \overline{U} \Big\},\$$

and

(2)
$$u(x) := \sup\{v(x) : v \in \mathcal{F}\}.$$

Two key lemmas:

Lemma 1. Suppose \mathcal{F} is nonempty. Then the upper semicontinuous function u^* is a viscosity subsolution of (1)

Lemma 2. Let $u \in \mathcal{F}$. If u_* is not a viscosity supersolution of (1), then there exists $v \in \mathcal{F}$ such that v(x) > u(x) for some $x \in U$.

$$\mathcal{F} := \Big\{ v \in \mathrm{USC}(\overline{U}) \, : \, v \text{ is a subsolution of } (1) \text{ and } v \leq w \text{ in } \overline{U} \Big\},$$
$$u(x) := \sup\{v(x) \, : \, v \in \mathcal{F}\}.$$

Assume ${\cal H}$ is continuous and satisfies all monotonicity and regularity requirements of previous theorems.

Theorem 1. Let $g : \mathbb{R}^n \to \mathbb{R}$ be bounded and Lipschitz continuous, and suppose that

$$K := \sup\left\{ |H(p, x)| : |p| \le Lip(g) \text{ and } x \in \mathbb{R}^n \right\} < \infty.$$

Then for every T>0 there exists a unique bounded viscosity solution $u\in C(\mathbb{R}^n\times[0,T])$ of

(3)
$$\begin{cases} u_t + H(Du, x) = 0 & in \ \mathbb{R}^n \times (0, T) \\ u = g & on \ \mathbb{R}^n \times \{t = 0\}. \end{cases}$$