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Second order equations

We consider in this section the comparison principle for viscosity solutions of
second order equations

(1) F(D*u, Du,u,z) =0 in U,

where U C R", and F' is degenerate elliptic and monotone.



Jensen’s Lemma

Lemma 1 (Jensen’s Lemma). Let ¢ : R" — R be semiconvex and let xo be a
strict local mazimum of p. For p € R" set ¢,(x) = p(x) —p- (x —x0). Then
for r > 0 sufficiently small and all 6 > 0 the set

K = {y € B(xo,r) : 3p € B(0,0) such that ¢,(x) < ¢p(y) for x € B(zo,7)}

has positive measure.



Jensen’s Lemma

Lemma 2 (Jensen’s Lemma). Let ¢ : R" — R be semiconvex and let xo be a
strict local mazimum of p. For p € R" set ¢,(x) = p(x) —p- (x —x0). Then
for r > 0 sufficiently small and all 6 > 0 the set

K = {y € B(xo,r) : 3p € B(0,0) such that ¢,(x) < ¢p(y) for x € B(zo,7)}
has positive measure.

Proposition 1. Let p : R® = R be semiconvex and let xy be a local mazimum
of w. Then there exists x, — xg such that ¢ is twice differentiable at xy,
Dy(zr) — 0 as k — oo and D*¢(xy) < exl for a sequence g, — 0.



Semiconvex comparison

We assume U C R” is open and bounded, F' is continuous, degenerate elliptic,
and monotone, and satisfies

(2) F(X,p,z,y) = F(X,p,z,2) < w(lz —yl(1+|p]))

for all z,y € U, z € R, p € R”, and symmetric matrices X, where w is a
modulus of continuity.

Lemma 3 (Semiconvex comparison). Let u € C(U) be a semiconvex viscosity

solution of
F(D?*u, Du,u,z) <0 in U,

and let v € C(U) be a semiconcave viscosity solution of
F(D*v,Dv,v,z) —a >0 inU,

for some a > 0. If u<<v on dU then u <v in U.



Continuous comparison

We now assume F' has the form

(3) F(X,p,z,x) = Az + H(X,p) — f(z),
where A > 0.

Theorem 1 (Continuous comparison). Let u € C(U) be a viscosity subsolu-

tion of
F(D?*u, Du,u,z) <0 in U,

and let v € C(U) be a viscosity solution of
F(D*v,Dv,v,z) —a >0 inU,

for some a > 0. If u <<v on U then u <v in U.



Subjets and superjets

Definition 1. Let O CR", u: O — R, and zg € O. The superjet J(29’+u(:c0)
is defined as the set of all (p, X) € R" x S(n) for which

1
u(x) <u(zg) +p- (x—x0) + §(x — J:O)TX(x —xo) + o]z — xo\Q)
as O 5z — xp.

Similarly, the subjet J(Qo’_u(a:o) is defined as the set of all (p, X) € R™ x
S(n) for which

u(x) > u(zo) +p- (x —x0) + %(l‘ —20)T X (z — z0) + o(|z — zo|?)

as O > — xp.

Note: If x € Interior(O) then we write just J2Fu(z) and J* u(z), since
the domain is unimportant.



Subjets and superjets
Example 1. Define v : R — R by

0, ifz<0
u(z) = b2
ar + gx=, if x> 0.

Then J7 u(0) = ((=00,0) x R) U ({0} x [0, 00)), while

, ifa>0
Jé’Jru(O) = ¢ {0} x [max{0, b}, 00), ifa=0
((a,0) x R) U ({0} x [0,00)) U ({a} x [b,00)), if a <O.



Subjets and superjets

Proposition 2. Let u: U — R where U C R" is open. We have

T3 u(zo) = {(Dyp(x0), D*¢(20)) : ¢ € C*(R™) and u — ¢ has a local maz at xo}
and

J* u(z) = {(Dp(x0), D*p(w0)) : p € C*(R™) and u — ¢ has a local min at z} .



Subjets and superjets
We consider the general second order equation
(4) F(D*u, Du,u,z) =0 in U.

Theorem 2. Let U C R™ be open and assume F is continuous in all variables.

If u e USC(U) is a viscosity subsolution of (4) then
F(X,p,u(z),z) <0 forallz €U and (p,X) € J>Tu(x).
Similarly, if v € LSC(U) is a viscosity supersolution (4) then
F(X,p,v(z),z) >0 forallzcU and (p,X) € J> v(z).

Note: This gives an alternative definition of viscosity solutions that is
sometimes used in practice.



Consistency

Corollary 1. Let U C R" be open and assume F' is continuous in all vari-

ables. If w € USC(U) s a viscosity subsolution of (4) and w is twice differ-
entiable at some x € U then

F(D*u(z), Du(z),u(z),z) < 0.

Similarly, if v € LSC(U) is a viscosity supersolution of (4) and v is twice
differentiable at some x € U then

F(D*v(z), Dv(x),v(x),z) > 0.



Closures of jets

We define

Jo u(z) = {(p,X) eR" xS(n) : Jx, € O, (pn, Xyn) € Ji5 u(x,) such that
(xna u(xn),pn, Xn) — ({L‘, u(x),p, X)}

and

7?9’_u(x) = {(p,X) eR"x S8(n) : Jx, € O, (pp, Xp) € J(Qg’_u(xn) such that
(I’n, U(.In),pn,Xn) — ('1"’ U(CE),p,X)}



Theorem on sums

Theorem 3. Let O C R™ be locally compact. Let uw € USC(O), v € LSC(O),
and let p € C?(R™ x R™). Suppose (z9,v0) € O x O is a local mazimum of

u(z) —v(y) — v(z,9)

relative to O x O. Then for each k with kD*p(xq,y0) < I there exists X,Y €
S(n) such that

—2, —2,—
(Dep(x0,90), X) € T3 u(xo), (—Dyp(x0,40),Y) € T& v(w0),

and the block diagonal matriz with entries X, —Y satisfies

1 X 0 _
——I< {0 —Y] < (I = kD?@(0,40)) " D*p(z0, yo)-

K



Semi-continuous comparison

We assume U C R” is open and bounded, F' is continuous, degenerate elliptic,
and monotone, and satisfies

(5) F(X,p,z,y) = F(X,p,z,2) < w(lz —yl(1+|p]))

for all z,y € U, z € R, p € R", and X € S(n), where w is a modulus of
continuity.

Theorem 4. Let uw € USC(U) be a wiscosity subsolution of (1), and let

v e LSC(U) be a viscosity solution of
F(D*v,Dv,v,z) —a >0 inU,

for some a > 0. If u <v ondU then u <v in U.



Some preparations
Proposition 3. Let € > 0, u € USC(R"™), and zo € R™. Let ¢ € C>*(R")

such that u® — ¢ has a local max at xg, and let x. € R™ such that

1

g\xo —m6]2.

(6) u (o) = ulze) —

Then u — v has a local max at x- and

g Di(z) = Do) = < — o).



Some preparations

Exercise 1. Define
o 2
wiz,y) = Sl -y,

Show that the sup-convolution

1 1
w(ay) = sup {O‘wy'r?\xz’ﬁwy'r?}
(:c’,y’)GR" < R™ 2 26 25

is given by
e
w(a,y) = (1 - 20e) 1Sz — yl?

provided 1 — 2ae # 0.



