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Second order equations

We consider in this section the comparison principle for viscosity solutions of
second order equations

(1) F (D2u,Du, u, x) = 0 in U,

where U ⊂ Rn, and F is degenerate elliptic and monotone.



Jensen’s Lemma

Lemma 1 (Jensen’s Lemma). Let ϕ : Rn → R be semiconvex and let x0 be a
strict local maximum of ϕ. For p ∈ Rn set ϕp(x) = ϕ(x)− p · (x− x0). Then
for r > 0 sufficiently small and all δ > 0 the set

K = {y ∈ B(x0, r) : ∃p ∈ B(0, δ) such that ϕp(x) ≤ ϕp(y) for x ∈ B(x0, r)}

has positive measure.



Jensen’s Lemma

Lemma 2 (Jensen’s Lemma). Let ϕ : Rn → R be semiconvex and let x0 be a
strict local maximum of ϕ. For p ∈ Rn set ϕp(x) = ϕ(x)− p · (x− x0). Then
for r > 0 sufficiently small and all δ > 0 the set

K = {y ∈ B(x0, r) : ∃p ∈ B(0, δ) such that ϕp(x) ≤ ϕp(y) for x ∈ B(x0, r)}

has positive measure.

Proposition 1. Let ϕ : Rn → R be semiconvex and let x0 be a local maximum
of ϕ. Then there exists xk → x0 such that ϕ is twice differentiable at xk,
Dϕ(xk)→ 0 as k →∞ and D2ϕ(xk) ≤ εkI for a sequence εk → 0.



Semiconvex comparison

We assume U ⊂ Rn is open and bounded, F is continuous, degenerate elliptic,
and monotone, and satisfies

(2) F (X, p, z, y)− F (X, p, z, x) ≤ ω(|x− y|(1 + |p|))

for all x, y ∈ U , z ∈ R, p ∈ Rn, and symmetric matrices X, where ω is a
modulus of continuity.

Lemma 3 (Semiconvex comparison). Let u ∈ C(U) be a semiconvex viscosity
solution of

F (D2u,Du, u, x) ≤ 0 in U,

and let v ∈ C(U) be a semiconcave viscosity solution of

F (D2v,Dv, v, x)− a ≥ 0 in U,

for some a > 0. If u ≤ v on ∂U then u ≤ v in U .



Continuous comparison

We now assume F has the form

(3) F (X, p, z, x) = λz +H(X, p)− f(x),

where λ ≥ 0.

Theorem 1 (Continuous comparison). Let u ∈ C(U) be a viscosity subsolu-
tion of

F (D2u,Du, u, x) ≤ 0 in U,

and let v ∈ C(U) be a viscosity solution of

F (D2v,Dv, v, x)− a ≥ 0 in U,

for some a > 0. If u ≤ v on ∂U then u ≤ v in U .



Subjets and superjets

Definition 1. Let O ⊂ Rn, u : O → R, and x0 ∈ O. The superjet J2,+
O u(x0)

is defined as the set of all (p,X) ∈ Rn × S(n) for which

u(x) ≤ u(x0) + p · (x− x0) +
1

2
(x− x0)TX(x− x0) + o(|x− x0|2)

as O 3 x→ x0.
Similarly, the subjet J2,−

O u(x0) is defined as the set of all (p,X) ∈ Rn ×
S(n) for which

u(x) ≥ u(x0) + p · (x− x0) +
1

2
(x− x0)TX(x− x0) + o(|x− x0|2)

as O 3 x→ x0.

Note: If x ∈ Interior(O) then we write just J2,+u(x) and J2,−u(x), since
the domain is unimportant.



Subjets and superjets

Example 1. Define u : R→ R by

u(x) =

{
0, if x ≤ 0

ax+ b
2x

2, if x ≥ 0.

Then J2,+
[−1,0]u(0) = ((−∞, 0)× R) ∪ ({0} × [0,∞)), while

J2,+
R u(0) =


∅, if a > 0

{0} × [max{0, b},∞), if a = 0

((a, 0)× R) ∪ ({0} × [0,∞)) ∪ ({a} × [b,∞)), if a < 0.



Subjets and superjets

Proposition 2. Let u : U → R where U ⊂ Rn is open. We have

J2,+u(x0) =
{
(Dϕ(x0), D

2ϕ(x0)) : ϕ ∈ C2(Rn) and u− ϕ has a local max at x0
}
.

and

J2,−u(x0) =
{
(Dϕ(x0), D

2ϕ(x0)) : ϕ ∈ C2(Rn) and u− ϕ has a local min at x0
}
.



Subjets and superjets

We consider the general second order equation

(4) F (D2u,Du, u, x) = 0 in U.

Theorem 2. Let U ⊂ Rn be open and assume F is continuous in all variables.
If u ∈ USC(U) is a viscosity subsolution of (4) then

F (X, p, u(x), x) ≤ 0 for all x ∈ U and (p,X) ∈ J2,+u(x).

Similarly, if v ∈ LSC(U) is a viscosity supersolution (4) then

F (X, p, v(x), x) ≥ 0 for all x ∈ U and (p,X) ∈ J2,−v(x).

Note: This gives an alternative definition of viscosity solutions that is
sometimes used in practice.



Consistency

Corollary 1. Let U ⊂ Rn be open and assume F is continuous in all vari-
ables. If u ∈ USC(U) is a viscosity subsolution of (4) and u is twice differ-
entiable at some x ∈ U then

F (D2u(x), Du(x), u(x), x) ≤ 0.

Similarly, if v ∈ LSC(U) is a viscosity supersolution of (4) and v is twice
differentiable at some x ∈ U then

F (D2v(x), Dv(x), v(x), x) ≥ 0.



Closures of jets

We define

J
2,+
O u(x) =

{
(p,X) ∈ Rn × S(n) : ∃xn ∈ O, (pn, Xn) ∈ J2,+

O u(xn) such that

(xn, u(xn), pn, Xn)→ (x, u(x), p,X).
}

and

J
2,−
O u(x) =

{
(p,X) ∈ Rn × S(n) : ∃xn ∈ O, (pn, Xn) ∈ J2,−

O u(xn) such that

(xn, u(xn), pn, Xn)→ (x, u(x), p,X).
}



Theorem on sums

Theorem 3. Let O ⊂ Rn be locally compact. Let u ∈ USC(O), v ∈ LSC(O),
and let ϕ ∈ C2(Rn × Rn). Suppose (x0, y0) ∈ O ×O is a local maximum of

u(x)− v(y)− ϕ(x, y)

relative to O×O. Then for each κ with κD2ϕ(x0, y0) < I there exists X,Y ∈
S(n) such that

(Dxϕ(x0, y0), X) ∈ J2,+
O u(x0), (−Dyϕ(x0, y0), Y ) ∈ J2,−

O v(y0),

and the block diagonal matrix with entries X,−Y satisfies

−1

κ
I ≤

[
X 0
0 −Y

]
≤ (I − κD2ϕ(x0, y0))

−1D2ϕ(x0, y0).



Semi-continuous comparison

We assume U ⊂ Rn is open and bounded, F is continuous, degenerate elliptic,
and monotone, and satisfies

(5) F (X, p, z, y)− F (X, p, z, x) ≤ ω(|x− y|(1 + |p|))

for all x, y ∈ U , z ∈ R, p ∈ Rn, and X ∈ S(n), where ω is a modulus of
continuity.

Theorem 4. Let u ∈ USC(U) be a viscosity subsolution of (1), and let
v ∈ LSC(U) be a viscosity solution of

F (D2v,Dv, v, x)− a ≥ 0 in U,

for some a > 0. If u ≤ v on ∂U then u ≤ v in U .



Some preparations

Proposition 3. Let ε > 0, u ∈ USC(Rn), and x0 ∈ Rn. Let ϕ ∈ C∞(Rn)
such that uε − ϕ has a local max at x0, and let xε ∈ Rn such that

(6) uε(x0) = u(xε)−
1

2ε
|x0 − xε|2.

Then u− ψ has a local max at xε and

(7) Dψ(xε) = Dϕ(x0) =
1

ε
(xε − x0).



Some preparations

Exercise 1. Define
w(x, y) =

α

2
|x− y|2.

Show that the sup-convolution

wε(x, y) = sup
(x′,y′)∈Rn×Rn

{
α

2
|x′ − y′|2 − 1

2ε
|x− x′|2 − 1

2ε
|y − y′|2

}
is given by

wε(x, y) = (1− 2αε)−1
α

2
|x− y|2,

provided 1− 2αε 6= 0.


