Math 8590: Viscosity Solutions Method of Vanishing Viscosity

Instructor: Jeff Calder Office: 538 Vincent Email: jcalder@umn.edu Office Hours: TBD

http://www-users.math.umn.edu/~jwcalder/8590F18

Vanishing viscosity

Consider the viscous Hamilton-Jacobi equation

(1)
$$\begin{cases} u_{\varepsilon} + H(Du_{\varepsilon}, x) - \varepsilon \Delta u_{\varepsilon} = 0 & \text{in } U \\ u_{\varepsilon} = 0 & \text{on } \partial U. \end{cases}$$

We now examine convergence of the solution u_{ε} of (1) to the unique viscosity solution of

(2)
$$\begin{cases} u + H(Du, x) = 0 & \text{in } U \\ u = 0 & \text{on } \partial U. \end{cases}$$

Assumptions

 $U \subset \mathbb{R}^n$ is open and bounded, H(p,x) is continuous.

Coercivity:

(3)
$$\liminf_{|p| \to \infty} H(p, x) > 0 \quad \text{uniformly in } x \in U,$$

Nonnegativity:

(4)
$$-H(0,x) \ge 0 \quad \text{for all } x \in U.$$

Exterior sphere condition: There exists r > 0 such that for every $x_0 \in \partial U$ there is a point $x_0^* \in \mathbb{R}^n \setminus \overline{U}$ for which

(5)
$$B(x_0^*, r) \cap \overline{U} = \{x_0\}.$$

Basic estimates

(6)
$$\begin{cases} u_{\varepsilon} + H(Du_{\varepsilon}, x) - \varepsilon \Delta u_{\varepsilon} = 0 & \text{in } U \\ u_{\varepsilon} = 0 & \text{on } \partial U. \end{cases}$$

Lemma 1. Let $\varepsilon > 0$ and let $u_{\varepsilon} \in C^2(U) \cap C(\overline{U})$ be a solution of (6). Then

(7)
$$0 \le u_{\varepsilon} \le \sup_{x \in U} |H(0, x)| \quad in \ U.$$

Weak upper and lower limits

Definition 1. Let $\{u_{\varepsilon}\}_{\varepsilon>0}$ be a family of real-valued functions on \overline{U} . The upper weak limit $\overline{u}: \overline{U} \to \mathbb{R}$ of the family $\{u_{\varepsilon}\}_{\varepsilon>0}$ is defined by

(8)
$$\overline{u}(x) = \limsup_{(y,\varepsilon) \to (x,0^+)} u_{\varepsilon}(y).$$

Similarly, the lower weak limit $\underline{u}: \overline{U} \to \mathbb{R}$ is defined by

(9)
$$\underline{u}(x) = \liminf_{(y,\varepsilon) \to (x,0^+)} u_{\varepsilon}(y).$$

Lemma 2. Suppose the family $\{u_{\varepsilon}\}_{\varepsilon>0}$ is uniformly bounded. Then $\overline{u} \in USC(\overline{U})$ and $\underline{u} \in LSC(\overline{U})$.

Convergence of vanishing viscosity

(10)
$$\begin{cases} u_{\varepsilon} + H(Du_{\varepsilon}, x) - \varepsilon \Delta u_{\varepsilon} = 0 & \text{in } U \\ u_{\varepsilon} = 0 & \text{on } \partial U. \end{cases}$$

(11)
$$\begin{cases} u + H(Du, x) = 0 & \text{in } U \\ u = 0 & \text{on } \partial U. \end{cases}$$

Theorem 1. For each $\varepsilon > 0$ let $u_{\varepsilon} \in C^2(U) \cap C(\overline{U})$ solve (10). Then $u_{\varepsilon} \to u$ uniformly on \overline{U} as $\varepsilon \to 0^+$, where u is the unique viscosity solution of (11).

Lemma 3. Let $u \in USC(\overline{U})$ be a nonnegative viscosity subsolution of (12). Then there exists C depending only on H such that

$$|u(x) - u(y)| \le C|x - y|$$
 for all $x, y \in \overline{U}$.

(12)
$$\begin{cases} u + H(Du, x) = 0 & \text{in } U \\ u = 0 & \text{on } \partial U. \end{cases}$$

Proof. Fix $x \in U$ and define

$$w(y) := u(y) - C|y - x|.$$

Then w attains its maximum at some $y_0 \in \overline{U}$...

We assume that for every R > 0 there exists C_R such that

(13)
$$H(p,y) - H(p,x) \le C_R |x-y| \quad \text{for all } x, y \in U \text{ and } |p| \le R.$$

Theorem 2. For each $\varepsilon > 0$, let $u_{\varepsilon} \in C^2(U) \cap C(\overline{U})$ solve (14), and let u be the unique viscosity solution of (15). Then there exists C depending only on H such that

$$|u - u_{\varepsilon}| \le C\sqrt{\varepsilon}.$$

(14)
$$\begin{cases} u_{\varepsilon} + H(Du_{\varepsilon}, x) - \varepsilon \Delta u_{\varepsilon} = 0 & \text{in } U \\ u_{\varepsilon} = 0 & \text{on } \partial U. \end{cases}$$

(15)
$$\begin{cases} u + H(Du, x) = 0 & \text{in } U \\ u = 0 & \text{on } \partial U. \end{cases}$$

Proof. We show that $u - u_{\varepsilon} \leq C\sqrt{\varepsilon}$. Define

$$\Phi(x,y) = u(x) - u_{\varepsilon}(y) - \frac{\alpha}{2}|x-y|^2,$$

where α is to be determined. Let $(x_{\alpha}, y_{\alpha}) \in \overline{U} \times \overline{U}$ such that

$$\max_{\overline{U}\times\overline{U}}\Phi=\Phi(x_{\alpha},y_{\alpha}).$$

It follows from Lipschitzness of u that

$$|x_{\alpha} - y_{\alpha}| \le \frac{C}{\alpha}.$$

Claim:

$$u(x_{\alpha}) - u_{\varepsilon}(y_{\alpha}) \le C\left(\frac{1}{\alpha} + \alpha\varepsilon\right).$$

Exercise 1. Show that the solution u_{ε} of

$$|u_{\varepsilon}'(x)| - \varepsilon u_{\varepsilon}''(x) = 1 \text{ for } x \in (-1, 1)$$

satisfying $u_{\varepsilon}(-1) = u_{\varepsilon}(1) = 0$ is

$$u_{\varepsilon}(x) = 1 - |x| - \varepsilon \left(e^{-\frac{1}{\varepsilon}|x|} - e^{-\frac{1}{\varepsilon}} \right).$$

In this case, $|u - u_{\varepsilon}| \leq C\varepsilon$, where u(x) = 1 - |x| is the viscosity solution of |u'(x)| = 1 on (-1, 1) with u(-1) = u(1) = 0.

Exercise 2. Show that if $u \in C^2(\overline{U})$, then

$$|u - u_{\varepsilon}| \le C\varepsilon.$$

(16)
$$\begin{cases} u_{\varepsilon} + H(Du_{\varepsilon}, x) - \varepsilon \Delta u_{\varepsilon} = 0 & \text{in } U \\ u_{\varepsilon} = 0 & \text{on } \partial U. \end{cases}$$

(17)
$$\begin{cases} u + H(Du, x) = 0 & \text{in } U \\ u = 0 & \text{on } \partial U. \end{cases}$$

C^2 -type estimates

Let G(p) be convex, and suppose $u \in C_c^{\infty}(\mathbb{R}^n)$ is a solution of

$$u + G(Du) = f$$
 in \mathbb{R}^n .

Exercise 3. Show that $D^2 u \leq cI$, where $c = \max_{\substack{x \in \mathbb{R}^n \\ |\xi|=1}} f_{\xi\xi}$.

Semiconcavity

Definition 2. We say $u \in C(\overline{U})$ is *semiconcave* with constant c if u is a viscosity solution of

(18)
$$-D^2u \ge -cI \quad \text{in } U.$$

Semiconcavity

Definition 3. We say $u \in C(\overline{U})$ is *semiconcave* with constant c if u is a viscosity solution of

(19)
$$-D^2u \ge -cI \quad \text{in } U.$$

• We say u is a viscosity solution of (19) provided $D^2\varphi(x) \leq cI$ whenever $\varphi \in C^{\infty}(\mathbb{R}^n)$ and $u - \varphi$ has a local minimum at x. Equivalently

$$-\max_{|\xi|=1} u_{\xi\xi} \ge -c \quad \text{in } \mathbb{R}^n.$$

- Notice that $v := u \frac{1}{2}c|x|^2$ is a viscosity solution of $-D^2v \ge 0$, hence v is concave (due to a generalization of a homework Exercise).
- We also note that (19) is equivalent to

$$u(x+h) - 2u(x) + u(x-h) \le c|h|^2 \quad \text{for all } x, h \in \mathbb{R}^n.$$

• A function u is called *semiconvex* if -u is semiconcave.

Semiconcavity

Theorem 3. Assume $p \mapsto G(p)$ is convex, G(0) = 0, and $f \in C_c^2(\mathbb{R}^n)$. Let $u \in C(\mathbb{R}^n)$ be a compactly supported viscosity solution of

(20)
$$u + G(Du) = f \quad in \ \mathbb{R}^n$$

Then u is a viscosity solution of

(21)
$$-D^2u \ge -cI \quad in \ \mathbb{R}^n,$$

where $c = \max_{\substack{x \in \mathbb{R}^n \\ |\xi|=1}} f_{\xi\xi}$. That is, u is semiconcave with constant c.

One-sided rate

Theorem 4. Assume $p \mapsto G(p)$ is convex and nonnegative with G(0) = 0, and $f \in C_c^2(U)$ is nonnegative. Let $u \in C(\overline{U})$ be the viscosity solution of

(22)
$$\begin{aligned} u + G(Du) &= f \quad in \ U \\ u &= 0 \quad on \ \partial U, \end{aligned} \right\}$$

and let $u_{\varepsilon} \in C^2(U) \cap C(\overline{U})$ solve

(23)
$$\begin{aligned} u_{\varepsilon} + G(Du_{\varepsilon}) - \varepsilon \Delta u_{\varepsilon} &= f \quad in \ U \\ u_{\varepsilon} &= 0 \quad on \ \partial U, \end{aligned}$$

Then there exists a constant C such that

$$u_{\varepsilon} - u \le C\varepsilon.$$