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Vanishing viscosity

Consider the viscous Hamilton-Jacobi equation

(1)

{
uε +H(Duε, x)− ε∆uε = 0 in U

uε = 0 on ∂U.

We now examine convergence of the solution uε of (1) to the unique viscosity
solution of

(2)

{
u+H(Du, x) = 0 in U

u = 0 on ∂U.



Assumptions

U ⊂ Rn is open and bounded, H(p, x) is continuous.

Coercivity:

(3) lim inf
|p|→∞

H(p, x) > 0 uniformly in x ∈ U,

Nonnegativity:

(4) −H(0, x) ≥ 0 for all x ∈ U.

Exterior sphere condition: There exists r > 0 such that for every x0 ∈ ∂U
there is a point x∗0 ∈ Rn \ U for which

(5) B(x∗0, r) ∩ U = {x0}.



Basic estimates

(6)

{
uε +H(Duε, x)− ε∆uε = 0 in U

uε = 0 on ∂U.

Lemma 1. Let ε > 0 and let uε ∈ C2(U) ∩C(U) be a solution of (6). Then

(7) 0 ≤ uε ≤ sup
x∈U
|H(0, x)| in U.



Weak upper and lower limits

Definition 1. Let {uε}ε>0 be a family of real-valued functions on U .
The upper weak limit u : U → R of the family {uε}ε>0 is defined by

(8) u(x) = lim sup
(y,ε)→(x,0+)

uε(y).

Similarly, the lower weak limit u : U → R is defined by

(9) u(x) = lim inf
(y,ε)→(x,0+)

uε(y).

Lemma 2. Suppose the family {uε}ε>0 is uniformly bounded. Then u ∈
USC(U) and u ∈ LSC(U).



Convergence of vanishing viscosity

(10)

{
uε +H(Duε, x)− ε∆uε = 0 in U

uε = 0 on ∂U.

(11)

{
u+H(Du, x) = 0 in U

u = 0 on ∂U.

Theorem 1. For each ε > 0 let uε ∈ C2(U)∩C(U) solve (10). Then uε → u
uniformly on U as ε→ 0+, where u is the unique viscosity solution of (11).



Convergence rate

Lemma 3. Let u ∈ USC(U) be a nonnegative viscosity subsolution of (12).
Then there exists C depending only on H such that

|u(x)− u(y)| ≤ C|x− y| for all x, y ∈ U.

(12)

{
u+H(Du, x) = 0 in U

u = 0 on ∂U.

Proof. Fix x ∈ U and define

w(y) := u(y)− C|y − x|.

Then w attains its maximum at some y0 ∈ U . . .



Convergence rate

We assume that for every R > 0 there exists CR such that

(13) H(p, y)−H(p, x) ≤ CR|x− y| for all x, y ∈ U and |p| ≤ R.

Theorem 2. For each ε > 0, let uε ∈ C2(U)∩C(U) solve (14), and let u be
the unique viscosity solution of (15). Then there exists C depending only on
H such that

|u− uε| ≤ C
√
ε.

(14)

{
uε +H(Duε, x)− ε∆uε = 0 in U

uε = 0 on ∂U.

(15)

{
u+H(Du, x) = 0 in U

u = 0 on ∂U.



Convergence rate

Proof. We show that u− uε ≤ C
√
ε. Define

Φ(x, y) = u(x)− uε(y)− α

2
|x− y|2,

where α is to be determined. Let (xα, yα) ∈ U × U such that

max
U×U

Φ = Φ(xα, yα).

It follows from Lipschitzness of u that

|xα − yα| ≤
C

α
.

Claim:
u(xα)− uε(yα) ≤ C

(
1

α
+ αε

)
.



Convergence rate

Exercise 1. Show that the solution uε of

|u′ε(x)| − εu′′ε(x) = 1 for x ∈ (−1, 1)

satisfying uε(−1) = uε(1) = 0 is

uε(x) = 1− |x| − ε
(
e−

1
ε
|x| − e−

1
ε

)
.

In this case, |u − uε| ≤ Cε, where u(x) = 1 − |x| is the viscosity solution of
|u′(x)| = 1 on (−1, 1) with u(−1) = u(1) = 0.



Convergence rate

Exercise 2. Show that if u ∈ C2(U), then

|u− uε| ≤ Cε.

(16)

{
uε +H(Duε, x)− ε∆uε = 0 in U

uε = 0 on ∂U.

(17)

{
u+H(Du, x) = 0 in U

u = 0 on ∂U.



C2-type estimates

Let G(p) be convex, and suppose u ∈ C∞c (Rn) is a solution of

u+G(Du) = f in Rn.

Exercise 3. Show that D2u ≤ cI, where c = maxx∈Rn

|ξ|=1
fξξ.



Semiconcavity

Definition 2. We say u ∈ C(U) is semiconcave with constant c if u is a
viscosity solution of

(18) −D2u ≥ −cI in U.



Semiconcavity

Definition 3. We say u ∈ C(U) is semiconcave with constant c if u is a
viscosity solution of

(19) −D2u ≥ −cI in U.

• We say u is a viscosity solution of (19) provided D2ϕ(x) ≤ cI whenever
ϕ ∈ C∞(Rn) and u− ϕ has a local minimum at x. Equivalently

−max
|ξ|=1

uξξ ≥ −c in Rn.

• Notice that v := u − 1
2c|x|

2 is a viscosity solution of −D2v ≥ 0, hence
v is concave (due to a generalization of a homework Exercise).

• We also note that (19) is equivalent to

u(x+ h)− 2u(x) + u(x− h) ≤ c|h|2 for all x, h ∈ Rn.

• A function u is called semiconvex if −u is semiconcave.



Semiconcavity

Theorem 3. Assume p 7→ G(p) is convex, G(0) = 0, and f ∈ C2
c (Rn). Let

u ∈ C(Rn) be a compactly supported viscosity solution of

(20) u+G(Du) = f in Rn.

Then u is a viscosity solution of

(21) −D2u ≥ −cI in Rn,

where c = maxx∈Rn

|ξ|=1
fξξ. That is, u is semiconcave with constant c.



One-sided rate

Theorem 4. Assume p 7→ G(p) is convex and nonnegative with G(0) = 0,
and f ∈ C2

c (U) is nonnegative. Let u ∈ C(U) be the viscosity solution of

(22)
u+G(Du) = f in U

u = 0 on ∂U,

}

and let uε ∈ C2(U) ∩ C(U) solve

(23)
uε +G(Duε)− ε∆uε = f in U

uε = 0 on ∂U,

}

Then there exists a constant C such that

uε − u ≤ Cε.


