A PDE-proof of the continuum limit of non-dominated sorting

Jeff Calder

Department of Mathematics
University of California, Berkeley

Monday, February 2, 2015
Outline

1 Background
 - Motivating example
 - Non-dominated sorting

2 Continuum limit of non-dominated sorting
 - Main Result
 - Non-rigorous derivation
 - Original variational proof

3 PDE proof
 - Monotonicity
 - Stability
 - Consistency
 - Proof

4 Current work
 - Convex hull peeling

5 References
Motivating example: Google Goggles

Query image

Retrieved images
Facial recognition

Problem: Retrieve images containing faces from a large database S.

One approach:

1. Look for features that are characteristic of faces. (Eyes, nose, mouth, ears, etc.)
2. For each of d features, define an objective function $f_i(I) = 1 - \text{Probability that image } I \text{ has feature } i$.
3. Solve the multi-objective optimization problem:
 $$\text{arg min}_{I \in S} (f_1(I), \ldots, f_d(I)).$$
Facial recognition

Problem: Retrieve images containing faces from a large database S.

One approach:

1. Look for features that are characteristic of faces.
 - Eyes, nose, mouth, ears, etc.
Facial recognition

Problem: Retrieve images containing faces from a large database S.

One approach:

1. Look for features that are characteristic of faces.
 - Eyes, nose, mouth, ears, etc.

2. For each of d features, define an objective function

$$f_i(I) = 1 - \text{Probability that image } I \text{ has feature } i,$$
Facial recognition

Problem: Retrieve images containing faces from a large database S.

One approach:

1. Look for features that are characteristic of faces.
 - Eyes, nose, mouth, ears, etc.

2. For each of d features, define an objective function

 $$f_i(I) = 1 - \text{Probability that image } I \text{ has feature } i,$$

3. Solve the multi-objective optimization problem:

 $$\arg \min_{I \in S} (f_1(I), \ldots, f_d(I)).$$
Multi-objective optimization

How do we solve the multi-objective optimization problem

$$\arg \min_{I \in S} (f_1(I), \ldots, f_d(I))?$$

Basic approach:
1. Choose some weights $\alpha_i \in [0, 1]$ with $\sum_{i=1}^d \alpha_i = 1$ and define $f_\alpha(I) = \alpha_1 f_1(I) + \alpha_2 f_2(I) + \cdots + \alpha_d f_d(I)$.

2. Solve the scalarized optimization problem $\arg \min_{I \in S} f_\alpha(I)$.

Problems:
1. Difficult to choose weights
2. Ignores relevant solutions
Multi-objective optimization

How do we solve the multi-objective optimization problem

$$\arg\min_{I \in S} (f_1(I), \ldots, f_d(I))?$$

Basic approach:

1. Choose some weights $\alpha_i \in [0, 1]$ with $\sum_{i=1}^{d} \alpha_i = 1$ and define

$$f_\alpha(I) = \alpha_1 f_1(I) + \alpha_2 f_2(I) + \cdots + \alpha_d f_d(I).$$
Multi-objective optimization

How do we solve the multi-objective optimization problem

$$\underset{I \in S}{\text{arg min}} \ (f_1(I), \ldots, f_d(I))?$$

Basic approach:

1. Choose some weights $\alpha_i \in [0, 1]$ with $\sum_{i=1}^{d} \alpha_i = 1$ and define

$$f_\alpha(I) = \alpha_1 f_1(I) + \alpha_2 f_2(I) + \cdots + \alpha_d f_d(I).$$

2. Solve the scalarized optimization problem

$$\underset{I \in S}{\text{arg min}} \ f_\alpha(I).$$
Multi-objective optimization

How do we solve the multi-objective optimization problem

$$\arg\min_{I \in S} (f_1(I), \ldots, f_d(I))?$$

Basic approach:

1. Choose some weights $\alpha_i \in [0, 1]$ with $\sum_{i=1}^d \alpha_i = 1$ and define

$$f_\alpha(I) = \alpha_1 f_1(I) + \alpha_2 f_2(I) + \cdots + \alpha_d f_d(I).$$

2. Solve the scalarized optimization problem

$$\arg\min_{I \in S} f_\alpha(I).$$

Problems:

1. Difficult to choose weights
2. Ignores relevant solutions
Basic approach
Basic approach
Basic approach
Basic approach
Non-dominated solutions
Non-dominated sorting

Let X_1, \ldots, X_n be points in \mathbb{R}^d and set $S = \{X_1, \ldots, X_n\}$.

Define the partial order

$$x \leq y \iff x_i \leq y_i \text{ for all } i \in \{1, \ldots, d\}.$$
Non-dominated sorting

Let X_1, \ldots, X_n be points in \mathbb{R}^d and set $S = \{X_1, \ldots, X_n\}$.

Define the partial order

$$x \preceq y \iff x_i \leq y_i \text{ for all } i \in \{1, \ldots, d\}.$$

Definition

Non-dominated sorting is the process of arranging S into layers $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \ldots$, defined by

$$\mathcal{F}_1 = \text{Minimal elements of } S,$$

$$\mathcal{F}_k = \text{Minimal elements of } S \setminus \bigcup_{j \leq k-1} \mathcal{F}_j.$$
Applications

Multi-objective optimization

- Genetic algorithms [Deb et al., 2002]
- Gene selection and ranking [Hero, 2003]
- Database systems [Papadias et al., 2005]
- Anomaly detection [Hsiao et al., 2012]
- Image retrieval [Hsiao et al., 2014]
Applications

Multi-objective optimization
- Genetic algorithms [Deb et al., 2002]
- Gene selection and ranking [Hero, 2003]
- Database systems [Papadias et al., 2005]
- Anomaly detection [Hsiao et al., 2012]
- Image retrieval [Hsiao et al., 2014]

Combinatorics and probability
- Longest chain in Euclidean space [Hammersley, 1972]
- Patience sorting [Aldous and Diaconis, 1999]
- Young Tableaux [Viennot, 1984]
- Graph theory [Lou and Sarrafzadeh, 1993]
- Polynuclear growth (crystals) [Prähofer and Spohn, 2000]
Applications

Multi-objective optimization
- Genetic algorithms [Deb et al., 2002]
- Gene selection and ranking [Hero, 2003]
- Database systems [Papadias et al., 2005]
- Anomaly detection [Hsiao et al., 2012]
- Image retrieval [Hsiao et al., 2014]

Combinatorics and probability
- Longest chain in Euclidean space [Hammersley, 1972]
- Patience sorting [Aldous and Diaconis, 1999]
- Young Tableaux [Viennot, 1984]
- Graph theory [Lou and Sarrafzadeh, 1993]
- Polynuclear growth (crystals) [Prähofer and Spohn, 2000]

Other applications
- Molecular biology [Pevzner, 2000]
- Integrated circuit design [Adhar, 2007]
Demo: 50 Random samples
Demo: Uniform distribution
Demo: Gaussian distribution
Demo: Uniform distribution on $[0, 1]^2 \setminus [0, 0.5]^2$
Demo: Uniform distribution on \([0, 1]^2 \setminus [0, 0.5]^2\)
Demo: Uniform distribution on $[0, 1]^2 \setminus [0, 0.5]^2$
Demo: Uniform distribution on $[0, 1]^2 \setminus [0, 0.5]^2$
Demo: Uniform distribution on $[0, 1]^2 \setminus [0, 0.5]^2$
Question

Can we characterize the asymptotic shapes of the Pareto fronts?
Outline

1 Background
 - Motivating example
 - Non-dominated sorting

2 Continuum limit of non-dominated sorting
 - Main Result
 - Non-rigorous derivation
 - Original variational proof

3 PDE proof
 - Monotonicity
 - Stability
 - Consistency
 - Proof

4 Current work
 - Convex hull peeling

5 References
Assumptions

Let X_1, \ldots, X_n be i.i.d. random variables in $[0, \infty)^d$ with continuous density f.

Let $U_n : \mathbb{R}^d \to \mathbb{N}_0$ be the function that ‘counts’ the layers $\mathcal{F}_1, \mathcal{F}_2, \ldots$.
Main result

Theorem (Calder, Esedoḡlu, Hero, 2014)

Let \(X_1, \ldots, X_n \) be i.i.d. with continuous density \(f : [0, \infty)^d \rightarrow [0, \infty) \). Then

\[
n^{-\frac{1}{d}} U_n \longrightarrow u \quad \text{locally uniformly on } [0, \infty)^d
\]

almost surely, where \(u \in C^{0, \frac{1}{d}}([0, \infty)^d) \) is the unique Pareto-monotone \(^ag\) viscosity solution of

\[
(P) \begin{cases}
u_{x_1} \cdots v_{x_d} = \frac{c_d^d}{d^d} f & \text{in } \mathbb{R}_+^d \\ u = 0 & \text{on } \partial \mathbb{R}_+^d.
\end{cases}
\]

\(^ag\) \(x \leq y \implies u(x) \leq u(y) \)
Demo: $f = 1 - \chi_{[0,0.5]^2}$
Demo: Multimodal f
Non-rigorous derivation of (P)

Suppose we have X_1, \ldots, X_n i.i.d. with density $f \in C(\mathbb{R}^d)$.

Non-rigorous derivation of (P)

Suppose we have X_1, \ldots, X_n i.i.d. with density $f \in C(\mathbb{R}^d)$.

Let’s suppose that $n^{-\alpha} U_n \to u \in C^1$ for some $\alpha \in [0, 1]$. Then we should have

$$\mathcal{F}_i \approx \{x \in \mathbb{R}^d : u(x) = in^{-\alpha}\},$$

for n large.
Non-rigorous derivation of (P)

For small $|v|$, \(\langle Du,v \rangle \approx u(x + v) - u(x) \approx n(\text{fronts in } A) - \alpha \approx n(\text{samples in } A) - \alpha \approx \frac{|A|}{f(x)} \alpha n - \alpha \approx |A| \alpha f(x)^\alpha \). Using $|A| \approx \langle Du,v \rangle$ we have $\langle Du,v \rangle \approx (f(x)u_1 \cdots u_d) \alpha \langle Du,v \rangle^\alpha d$.

If $\alpha d = 1$, or $\alpha = 1/d$, then $u_1 \cdots u_d = f(x)$.

Calder (UC Berkeley)

PDE-proof continuum limit

Monday, February 2, 2015

42 / 85
Non-rigorous derivation of (P)

For small $|v|$

\[
\ell_1 = \frac{\langle Du, v \rangle}{u_{x_1}}
\]

\[
\ell_2 = \frac{\langle Du, v \rangle}{u_{x_2}}
\]

\[
\langle Du, v \rangle \approx u(x + v) - u(x)
\]
Non-rigorous derivation of (P)

For small $|v|$

\[
\langle Du, v \rangle \approx u(x + v) - u(x) \\
\approx (\# \text{ fronts in } A)n^{-\alpha}
\]
Non-rigorous derivation of (P)

For small $|v|$

$$\langle Du, v \rangle \approx u(x + v) - u(x)$$
$$\approx \left(\# \text{ fronts in } A \right) n^{-\alpha}$$
$$\approx \left(\# \text{ samples in } A \right)^\alpha n^{-\alpha}$$
Non-rigorous derivation of (P)

For small $|v|$

\[
\langle Du, v \rangle \approx u(x + v) - u(x)
\]

\[
\approx \left(\# \text{ fronts in } A \right) n^{-\alpha}
\]

\[
\approx \left(\# \text{ samples in } A \right) \alpha n^{-\alpha}
\]

\[
\approx \left(n |A| f(x) \right) \alpha n^{-\alpha}
\]
Non-rigorous derivation of (P)

For small $|v|$

\[\langle Du, v \rangle \approx u(x + v) - u(x) \]
\[\approx (\# \text{ fronts in } A) n^{-\alpha} \]
\[\approx (\# \text{ samples in } A)^{\alpha} n^{-\alpha} \]
\[\approx (n|A|f(x))^{\alpha} n^{-\alpha} \]
\[\approx |A|^\alpha f(x)^\alpha. \]
Non-rigorous derivation of (P)

For small $|v|

\langle Du, v \rangle \approx u(x + v) - u(x)
\approx (\# \text{ fronts in } A)n^{-\alpha}
\approx (\# \text{ samples in } A)\alpha n^{-\alpha}
\approx (n|A|f(x))^\alpha n^{-\alpha}
\approx |A|^\alpha f(x)^\alpha.

Using $|A| \approx \frac{\langle Du, v \rangle^d}{u_{x1} \cdots u_{xd}}$ we have

\langle Du, v \rangle \approx \left(\frac{f(x)}{u_{x1} \cdots u_{xd}} \right)^\alpha \langle Du, v \rangle^\alpha d
Non-rigorous derivation of (P)

For small $|v|$:

$$\langle Du, v \rangle \approx u(x + v) - u(x) \approx (\# \text{ fronts in } A)n^{-\alpha} \approx (\# \text{ samples in } A)^{\alpha}n^{-\alpha} \approx (n|A|f(x))^{\alpha}n^{-\alpha} \approx |A|^\alpha f(x)^\alpha.$$

Using $|A| \approx \frac{\langle Du, v \rangle^d}{u_{x_1} \cdots u_{x_d}}$ we have

$$\langle Du, v \rangle \approx \left(\frac{f(x)}{u_{x_1} \cdots u_{x_d}} \right)^\alpha \langle Du, v \rangle^\alpha^d$$

If $\alpha d = 1$, or $\alpha = 1/d$, then

$$u_{x_1} \cdots u_{x_d} = f$$
Non-rigorous derivation of (P)

Seems difficult to make this argument rigorous for two reasons

1. Convergence $n^{-\frac{1}{d}} U_n \rightarrow u$ not obvious
2. Requires $u \in C^1$
Original proof

Our original proof [Calder et al., 2014] was based on the continuum variational problem

\[
u(x) = c_d \cdot \sup \left\{ \int_0^1 f(\gamma(t))^{\frac{1}{d}} (\gamma'_1(t) \cdots \gamma'_d(t))^{\frac{1}{d}} dt : \gamma'(t) \in \mathbb{R}^d_+ \text{ and } \gamma(1) = x \right\}. \tag{1}
\]
Our original proof [Calder et al., 2014] was based on the continuum variational problem

\[u(x) = c_d \cdot \sup \left\{ \int_0^1 f(\gamma(t))^{\frac{1}{d}} (\gamma_1'(t) \cdots \gamma_d'(t))^{\frac{1}{d}} \, dt : \gamma'(t) \in \mathbb{R}_+^d \text{ and } \gamma(1) = x \right\}. \quad (1) \]

The Hamilton-Jacobi equation

\[
(P) \begin{cases}
 u_{x_1} \cdots u_{x_d} = \frac{c_d^d}{d^d} f & \text{in } \mathbb{R}_+^d \\
 u = 0 & \text{on } \partial \mathbb{R}_+^d,
\end{cases}
\]

is the Hamilton-Jacobi-Bellman equation for this variational problem (1).

The variational problem (1) appeared originally in [Deuschel and Zeitouni, 1995] in dimension \(d = 2 \).
Outline

1. Background
 - Motivating example
 - Non-dominated sorting

2. Continuum limit of non-dominated sorting
 - Main Result
 - Non-rigorous derivation
 - Original variational proof

3. PDE proof
 - Monotonicity
 - Stability
 - Consistency
 - Proof

4. Current work
 - Convex hull peeling

5. References
Towards a PDE-proof

We will give a new proof using only PDE techniques.

Main Ideas:
- View non-dominated sorting as a numerical scheme for (P).
- (Roughly) follow the [Barles and Souganidis, 1991] framework for convergence of numerical schemes to viscosity solutions.

Monotonicity + Consistency + Stability + Well-posedness \implies Convergence.
Towards a PDE-proof

We will give a new proof using only PDE techniques.

Main Ideas:
- View non-dominated sorting as a numerical scheme for (P).
- (Roughly) follow the [Barles and Souganidis, 1991] framework for convergence of numerical schemes to viscosity solutions.
 Monotonicity + Consistency + Stability + Well-posedness \implies Convergence.

Question: What do monotonicity, consistency, and stability refer to in this stochastic setting?
Key observation

\[\mathcal{F}_1 \quad \mathcal{F}_2 \quad \mathcal{F}_3 \quad \mathcal{F}_4 \quad \mathcal{F}_5 \quad \mathcal{F}_6 \]
Key observation
Key observation
Key observation
Key observation
Key observation
Alternative definition of U_n

A chain in S is a sequence x_1, \ldots, x_ℓ such that

$$x_1 \leq x_2 \leq x_3 \leq \cdots \leq x_\ell$$

For $S \subseteq \mathbb{R}^d$ let

$$\ell(S) = \text{Length of a longest chain in } S.$$
Alternative definition of U_n

A chain in S is a sequence x_1, \ldots, x_ℓ such that

$$x_1 \leq x_2 \leq x_3 \leq \cdots \leq x_\ell$$

For $S \subseteq \mathbb{R}^d$ let

$$\ell(S) = \text{Length of a longest chain in } S.$$

We can alternatively define $U_n : \mathbb{R}^d \rightarrow \mathbb{N}_0$ by

$$U_n(x) := \ell \left(\{ X_i : X_i \leq x \} \right).$$

![Diagram showing the function $U_n(x)$ with different values for U_n at various points in \mathbb{R}^d.](image)
Poisson point process

For convenience, we will model the data as a Poisson point process.

Given a locally integrable non-negative function $f : \mathbb{R}^d \to \mathbb{R}$, we denote by Π_f the associated Poisson point process with rate function f. This means:

1. Π_f is a random countable subset of \mathbb{R}^d.
2. For every $A \subseteq \mathbb{R}^d$, $N(A) := \#(\Pi_f \cap A)$ is a Poisson random variable with mean $\int_A f$.
3. For disjoint sets $A, B \subseteq \mathbb{R}^d$, $N(A)$ and $N(B)$ are independent.

Suppose $\int_{\mathbb{R}^d} f = 1$. Let X_1, X_2, X_3, \ldots i.i.d. with density f and let N be a Poisson random variable with mean n. Then $\Pi_{nf} = \{X_1, \ldots, X_N\}$.

We define $U_n(x) = \ell(\Pi_{nf} \cap [0, x])$, where $[0, x] = [0, x_1] \times \cdots \times [0, x_d]$.
Poisson point process

For convenience, we will model the data as a Poisson point process.

Given a locally integrable non-negative function $f : \mathbb{R}^d \to \mathbb{R}$, we denote by Π_f the associated Poisson point process with rate function f. This means:

1. Π_f is a random countable subset of \mathbb{R}^d.
Poisson point process

For convenience, we will model the data as a Poisson point process.

Given a locally integrable non-negative function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, we denote by Π_f the associated Poisson point process with rate function f. This means:

1. Π_f is a random countable subset of \mathbb{R}^d.
2. For every $A \subseteq \mathbb{R}^d$, $N(A) := \#\Pi_f \cap A$ is Poisson random variable with mean $\int_A f$.

Suppose $\int_{\mathbb{R}^d} f = 1$. Let X_1, X_2, X_3, \ldots i.i.d. with density f and let N be a Poisson random variable with mean n. Then $\Pi_{nf} = \{X_1, \ldots, X_N\}$.

We define $U_n(x) = \ell(\Pi_{nf} \cap [0, x])$, where $[0, x] = [0, x_1] \times \cdots \times [0, x_d]$.

Calder (UC Berkeley)
For convenience, we will model the data as a Poisson point process.

Given a locally integrable non-negative function \(f : \mathbb{R}^d \rightarrow \mathbb{R} \), we denote by \(\Pi_f \) the associated Poisson point process with rate function \(f \). This means:

1. \(\Pi_f \) is a random countable subset of \(\mathbb{R}^d \).
2. For every \(A \subseteq \mathbb{R}^d \), \(N(A) := \# \Pi_f \cap A \) is Poisson random variable with mean \(\int_A f \).
3. For disjoint sets \(A, B \subseteq \mathbb{R}^d \), \(N(A) \) and \(N(B) \) are independent.
Poisson point process

For convenience, we will model the data as a Poisson point process.

Given a locally integrable non-negative function $f : \mathbb{R}^d \to \mathbb{R}$, we denote by Π_f the associated Poisson point process with rate function f. This means:

1. Π_f is a random countable subset of \mathbb{R}^d.

2. For every $A \subseteq \mathbb{R}^d$, $N(A) := \#\Pi_f \cap A$ is Poisson random variable with mean $\int_A f$.

3. For disjoint sets $A, B \subseteq \mathbb{R}^d$, $N(A)$ and $N(B)$ are independent.

Suppose $\int_{\mathbb{R}^d} f = 1$. Let X_1, X_2, X_3, \ldots i.i.d. with density f and let N be a Poisson random variable with mean n. Then

$$\Pi_{nf} = \{X_1, \ldots, X_N\}.$$
Poisson point process

For convenience, we will model the data as a Poisson point process.

Given a locally integrable non-negative function \(f : \mathbb{R}^d \to \mathbb{R} \), we denote by \(\Pi_f \) the associated Poisson point process with rate function \(f \). This means:

1. \(\Pi_f \) is a random countable subset of \(\mathbb{R}^d \).
2. For every \(A \subseteq \mathbb{R}^d \), \(N(A) := \#(\Pi_f \cap A) \) is Poisson random variable with mean \(\int_A f \).
3. For disjoint sets \(A, B \subseteq \mathbb{R}^d \), \(N(A) \) and \(N(B) \) are independent.

Suppose \(\int_{\mathbb{R}^d} f = 1 \). Let \(X_1, X_2, X_3, \ldots \) i.i.d. with density \(f \) and let \(N \) be a Poisson random variable with mean \(n \). Then

\[
\Pi_{nf} = \{X_1, \ldots, X_N\}.
\]

We define

\[
U_n(x) = \ell(\Pi_{nf} \cap [0, x]),
\]

where \([0, x] = [0, x_1] \times \cdots \times [0, x_d] \).
Monotonicity

If $A \subseteq B$ then

$$\ell(\Pi_{nf} \cap A) \leq \ell(\Pi_{nf} \cap B).$$
Theorem ([Hammersley, 1972])

There exists a constant c_d such that

$$\ell \left(\Pi_n \cap [0,1]^d \right) \sim c_d n^{\frac{1}{d}} \text{ almost surely.}$$
Longest chain in a cube

Theorem ([Hammersley, 1972])

There exists a constant c_d such that

$$\ell \left(\prod_n \cap [0,1]^d \right) \sim c_d n^{1/d} \quad \text{almost surely.}$$

Longest chain problem has a long history in probability and combinatorics

- Ulam’s famous problem [Ulam, 1961]
- [Bollobás and Winkler, 1988]

$$\frac{d^2}{d! \sqrt{\frac{1}{d}} \Gamma \left(\frac{1}{d} \right)} \leq c_d < e \quad \text{for all } d \geq 1.$$

- [Deuschel and Zeitouni, 1995], [Aldous and Diaconis, 1995]
Some simple observations

1. For a rectangle $A = \prod_{i=1}^{d} [a_i, b_i]$, a scaling argument gives

$$\ell(\Pi_n \cap A) \sim c_d |A|^\frac{1}{d} n^\frac{1}{d}$$

almost surely,

where $|A| = (b_1 - a_1) \cdots (b_d - a_d)$.

Calder (UC Berkeley)
PDE-proof continuum limit
Monday, February 2, 2015 57 / 85
Some simple observations

1. For a rectangle $A = \prod_{i=1}^{d}[a_i, b_i]$, a scaling argument gives

 \[\ell(\Pi_n \cap A) \sim c_d |A|^{\frac{1}{d}} n^{\frac{1}{d}} \text{ almost surely,} \]

 where $|A| = (b_1 - a_1) \cdots (b_d - a_d)$.

2. For bounded $f : \mathbb{R}^d \to [0, \infty)$

 \[\ell(\Pi_n f \cap A) \leq \ell(\Pi_n \|f\|_{L^\infty} \cap A), \]

 which gives

 \[\ell(\Pi_n f \cap A) \lesssim c_d |A|^{\frac{1}{d}} \|f\|_{L^\infty}^{\frac{1}{d}} n^{\frac{1}{d}} \text{ almost surely.} \]

 \[X_n \lesssim Cn^{\frac{1}{d}} \iff \limsup_{n \to \infty} n^{-\frac{1}{d}} X_n \leq C. \]
\[U_n(x) = \ell \left(\Pi_{nf} \cap [0, x] \right) \]
Stability

\[U_n(x) = \ell (\Pi_{nf} \cap [0, x]) \]
Stability

\[U_n(x) = \ell(\Pi_{nf} \cap [0, x]) = \ell(c_1) + \ell(c_2) \]
Stability

\[U_n(x) = \ell(\Pi_{nf} \cap [0, x]) = \ell(c_1) + \ell(c_2) \leq U_n(y) + \ell(\Pi_{nf} \cap A). \]
Stability

For every \(x, y \in \mathbb{R}^d \)

\[
U_n(x) - U_n(y) \lesssim C(R) \|f\|_{L^\infty} \frac{1}{n} |x - y|^\frac{1}{d} n^\frac{1}{d},
\]

almost surely, where \(R = \max\{x_1, y_1, \ldots, x_d, y_d\} \).
Stability

For every $x, y \in \mathbb{R}^d$

$$U_n(x) - U_n(y) \lesssim C(R)\|f\|_{L^\infty} \frac{1}{d^n} |x - y|^{\frac{1}{d}} n^{\frac{1}{d}},$$

almost surely, where $R = \max\{x_1, y_1, \ldots, x_d, y_d\}$.

Using the monotonicity of U_n ($U_n(x + he_i) \geq U_n(x)$ for $h > 0$), this can be improved to

Theorem (Stability)

$$P \left(\forall x, y \in \mathbb{R}^d, U_n(x) - U_n(y) \lesssim C(R)\|f\|_{L^\infty} \frac{1}{d^n} |x - y|^{\frac{1}{d}} n^{\frac{1}{d}} \right) = 1.$$
Longest chain in a simplex

\[S = \{ x \in [0, 1]^d : x_1 + \cdots + x_d \geq d - 1 \} \]

\[\ell(\Pi_n \cap S) \sim \]

\[\ell(\Pi_n \cap S) \sim c_d d^n \text{ almost surely} \]
Longest chain in a simplex

\[S = \{ x \in [0, 1]^d : x_1 + \cdots + x_d \geq d - 1 \} \]

\[\ell(\Pi_n \cap S) \sim \]

\[\ell(\Pi_n \cap S) \sim \]

Calder (UC Berkeley)
Longest chain in a simplex

\[\ell(\Pi_n \cap S) \sim \]

\[S = \{x \in [0, 1]^d : x_1 + \cdots + x_d \geq d - 1\} \]
Longest chain in a simplex

\[S = \{ x \in [0, 1]^d : x_1 + \cdots + x_d \geq d - 1 \} \]

\[\ell(\Pi_n \cap S) \sim \ell \left(\Pi_n \cap [1 - 1/d, 1]^d \right) \]
Longest chain in a simplex

\[S = \{ x \in [0, 1]^d : x_1 + \cdots + x_d \geq d - 1 \} \]

\[\ell(\Pi_n \cap S) \sim \ell \left(\Pi_n \cap [1 - 1/d, 1]^d \right) \sim \frac{c_d}{d} n^{\frac{1}{d}} \text{ almost surely.} \]
Longest chain in a simplex

For a simplex S with side-lengths v_1, \ldots, v_d, a scaling argument yields

\[\ell(\Pi_n \cap S) \sim \frac{c_d}{d} (v_1 \cdots v_d)^{\frac{1}{d}} n^{\frac{1}{d}} \text{ a.s.} \]
Longest chain in a simplex

For a simplex S with side-lengths v_1, \ldots, v_d, a scaling argument yields

$$\ell(\Pi_n \cap S) \sim \frac{c_d}{d} (v_1 \cdots v_d)^{\frac{1}{d}} n^{\frac{1}{d}} \text{ a.s.}$$

Lemma

For bounded $f: \mathbb{R}^d \to \mathbb{R}$, we have

$$\frac{c_d}{d} (v_1 \cdots v_d)^{\frac{1}{d}} \left(\inf_{S} f \right)^{\frac{1}{d}} n^{\frac{1}{d}} \lesssim \ell(\Pi_{nf} \cap S) \lesssim \frac{c_d}{d} (v_1 \cdots v_d)^{\frac{1}{d}} \left(\sup_{S} f \right)^{\frac{1}{d}} n^{\frac{1}{d}},$$

almost surely.
Consistency

Let \(x \in [0, \infty)^d \) and \(\varphi \in C^2(\mathbb{R}^d) \) with \(\varphi_{x_i}(x) > 0 \) for all \(i \). Let \(\varepsilon > 0 \) and set

\[
S_\varepsilon = \left\{ y \in [0, x] : \varphi(y) \geq \varphi(x) - \varepsilon \right\}.
\]

\[
\{ y \in \mathbb{R}^d : \varphi(y) = \varphi(x) \}
\]

\[
\approx \varphi_{x_1}^{-1} \varepsilon
\]

\[
\approx \varphi_{x_2}^{-1} \varepsilon
\]

\[
\{ y \in \mathbb{R}^d : \varphi(y) = \varphi(x) - \varepsilon \}
\]

\[
D \varphi(x)
\]

\[
x
\]
Recall

\[S_\varepsilon = \left\{ y \in [0, x] : \varphi(y) \geq \varphi(x) - \varepsilon \right\}. \]

Applying the lemma, we have the following consistency statement

Theorem (Consistency)

Suppose \(f \) is continuous. Then

\[
P \left(\forall x \in \mathbb{R}^d \ \forall \varphi \in X, \ \ell \left(\prod_{nf} \cap S_\varepsilon \right) \sim \frac{c_d}{d} \left(\frac{f(x)}{\varphi_{x_1}(x) \cdots \varphi_{x_d}(x)} \right)^{\frac{1}{d}} \left(\varepsilon + O(\varepsilon^2) \right) n^{\frac{1}{d}} \right) = 1,
\]

where

\[X = \left\{ \varphi \in C^2(\mathbb{R}^d) : \varphi_{x_i} > 0 \right\}. \]
Proof

Recall

\[U_n(x) = \ell(\Pi_n \cap [0, x]). \]

Stability + Consistency

There exists a probability one event \(\Omega \) such that \(U_n^\omega \equiv 0 \) on \(\partial \mathbb{R}_+^d \),

\[U_n^\omega(x) - U_n^\omega(y) \lesssim C(R)\|f\|_{L^\infty}^{1/d} |x - y|^{1/d} n^{1/d}, \]

and

\[\ell(\Pi_n^\omega \cap S_\varepsilon) \sim \frac{c_d}{d} \left(\frac{f(x)}{\varphi_{x_1}(x) \cdots \varphi_{x_d}(x)} \right)^{1/d} (\varepsilon + O(\varepsilon^2)) n^{1/d} \]

for all \(\omega \in \Omega \), all \(x, y \in \mathbb{R}_+^d \), and all \(\varphi \in C^2(\mathbb{R}_+^d) \) with \(\varphi_{x_i} > 0 \) for all \(i \), where

\[S_\varepsilon = \left\{ y \in [0, x] : \varphi(y) \geq \varphi(x) - \varepsilon \right\}. \]
Proof

Stability:

\[U_n^\omega(x) - U_n^\omega(y) \lesssim C(R) \| f \|_{L^\infty} \frac{1}{n^{\frac{d}{d}}} |x - y|^{\frac{1}{d}} n^{\frac{1}{d}} \]

for all \(\omega \in \Omega \) and \(x, y \in \mathbb{R}^d \).
Proof

Stability:

\[U_n^\omega(x) - U_n^\omega(y) \lesssim C(R) \| f \|_{L^\infty} \frac{1}{n} |x - y| \frac{1}{d} n^\frac{1}{d} \]

for all \(\omega \in \Omega \) and \(x, y \in \mathbb{R}^d \).

Using an argument based on Arzelà-Ascoli, for every \(\omega \in \Omega \) there exists a subsequence \(U_{n_k}^\omega \) and a function \(U^\omega \in C^{\frac{1}{d}}(\mathbb{R}^d) \) such that

\[n_k^{-\frac{1}{d}} U_{n_k}^\omega \rightarrow U^\omega \quad \text{locally uniformly on } \mathbb{R}^d, \]

and \(U^\omega \equiv 0 \) on \(\partial \mathbb{R}^d_+ \).
Proof

Stability:

\[U_n^\omega(x) - U_n^\omega(y) \lesssim C(R) \| f \|_{L^\infty} \frac{1}{n^d} |x - y|^{\frac{1}{d}} \]

for all \(\omega \in \Omega \) and \(x, y \in \mathbb{R}^d \).

Using an argument based on Arzelà-Ascoli, for every \(\omega \in \Omega \) there exists a subsequence \(U_{n_k}^\omega \) and a function \(U^\omega \in C^{\frac{1}{d}}(\mathbb{R}^d) \) such that

\[n_k^{-\frac{1}{d}} U_{n_k}^\omega \to U^\omega \] locally uniformly on \(\mathbb{R}^d \),

and \(U^\omega \equiv 0 \) on \(\partial \mathbb{R}^d_+ \).

We will show that \(U^\omega \) is a viscosity solution of (P) for every \(\omega \in \Omega \).
Recall: Viscosity solution

Consider the Hamilton-Jacobi equation

\[H(Du) = f \quad \text{on } \mathcal{O}, \quad (2) \]

where \(\mathcal{O} \subseteq \mathbb{R}^d \) is open, and \(H : \mathbb{R}^d \rightarrow \mathbb{R} \) and \(f : \mathcal{O} \rightarrow \mathbb{R} \) are continuous.

A continuous function \(U : \mathcal{O} \rightarrow \mathbb{R} \) is a viscosity solution of (2) if

1. **Subsolution:** For every \(x \in \mathcal{O} \) and \(\varphi \in C^\infty(\mathcal{O}) \) such that \(U - \varphi \) has a local maximum at \(x \)

 \[H(D\varphi(x)) \leq f(x). \]

2. **Supersolution:** For every \(x \in \mathcal{O} \) and \(\varphi \in C^\infty(\mathcal{O}) \) such that \(U - \varphi \) has a local minimum at \(x \)

 \[H(D\varphi(x)) \geq f(x). \]
Proof

U^ω subsolution of (P):

Fix $\omega \in \Omega$. Let $x \in (0, R)^d$ and $\varphi \in C^2(\mathbb{R}^d)$ such that $U^\omega - \varphi$ has a strict maximum at x relative to $[0, R]^d$. Then there exists $x_n \to x$ such that $n^{-\frac{1}{d}} U_n^\omega - \varphi$ has a maximum at x_n relative to $[0, R]^d$.

Since $x_n \to x$ and $n^{-\frac{1}{d}} U_n^\omega \to U^\omega$ locally uniformly, for large enough n we have $n^{-\frac{1}{d}} U_n^\omega(y) - n^{-\frac{1}{d}} U_n^\omega(x) \leq \varphi(y) - \varphi(x) + \epsilon$. Therefore $S_n,\epsilon \subseteq \{y \in [0, x] : \varphi(y) \geq \varphi(x) - \epsilon - \epsilon/2\} =: S_\epsilon$.

Calder (UC Berkeley)
Proof

U^ω subsolution of (P):
Fix $\omega \in \Omega$. Let $x \in (0, R)^d$ and $\varphi \in C^2(\mathbb{R}^d)$ such that $U^\omega - \varphi$ has a strict maximum at x relative to $[0, R]^d$. Then there exists $x_n \to x$ such that $n^{-\frac{1}{d}} U_n^\omega - \varphi$ has a maximum at x_n relative to $[0, R]^d$. For $\varepsilon > 0$ set

$$S_{n, \varepsilon} = \left\{ y \in [0, x] : n^{-\frac{1}{d}} U_n^\omega (y) \geq n^{-\frac{1}{d}} U_n^\omega (x) - \varepsilon \right\}.$$
Proof

U^ω subsolution of (P):

Fix $\omega \in \Omega$. Let $x \in (0, R)^d$ and $\varphi \in C^2(\mathbb{R}^d)$ such that $U^\omega - \varphi$ has a strict maximum at x relative to $[0, R]^d$. Then there exists $x_n \to x$ such that $n^{-\frac{1}{d}} U^\omega_n - \varphi$ has a maximum at x_n relative to $[0, R]^d$. For $\varepsilon > 0$ set

$$S_{n, \varepsilon} = \left\{ y \in [0, x] : n^{-\frac{1}{d}} U^\omega_n(y) \geq n^{-\frac{1}{d}} U^\omega_n(x) - \varepsilon \right\}.$$

Since

$$n^{-\frac{1}{d}} U^\omega_n(y) - \varphi(y) \leq n^{-\frac{1}{d}} U^\omega_n(x_n) - \varphi(x_n) \quad \text{for all } y \in [0, R]^d,$$

We have

$$n^{-\frac{1}{d}} U^\omega_n(y) - n^{-\frac{1}{d}} U^\omega_n(x) \leq \varphi(y) - \varphi(x) + \varphi(x) - \varphi(x_n) + n^{-\frac{1}{d}} U^\omega_n(x_n) - n^{-\frac{1}{d}} U^\omega_n(x).$$
Proof

U^ω subsolution of (P):
Fix $\omega \in \Omega$. Let $x \in (0, R)^d$ and $\varphi \in C^2(\mathbb{R}^d)$ such that $U^\omega - \varphi$ has a strict maximum at x relative to $[0, R]^d$. Then there exists $x_n \to x$ such that $n^{-\frac{1}{d}} U_n^\omega - \varphi$ has a maximum at x_n relative to $[0, R]^d$. For $\varepsilon > 0$ set

$$S_{n,\varepsilon} = \left\{ y \in [0, x] : n^{-\frac{1}{d}} U_n^\omega(y) \geq n^{-\frac{1}{d}} U_n^\omega(x) - \varepsilon \right\}.$$

Since

$$n^{-\frac{1}{d}} U_n^\omega(y) - \varphi(y) \leq n^{-\frac{1}{d}} U_n^\omega(x_n) - \varphi(x_n) \text{ for all } y \in [0, R]^d,$$

We have

$$n^{-\frac{1}{d}} U_n^\omega(y) - n^{-\frac{1}{d}} U_n^\omega(x) \leq \varphi(y) - \varphi(x) + \varphi(x) - \varphi(x_n) + n^{-\frac{1}{d}} U_n^\omega(x_n) - n^{-\frac{1}{d}} U_n^\omega(x).$$

Since $x_n \to x$ and $n^{-\frac{1}{d}} U_n^\omega \to U^\omega$ locally uniformly, for large enough n we have

$$n^{-\frac{1}{d}} U_n^\omega(y) - n^{-\frac{1}{d}} U_n^\omega(x) \leq \varphi(y) - \varphi(x) + \varepsilon^2.$$
Proof

U^ω subsolution of (P):
Fix $\omega \in \Omega$. Let $x \in (0, R)^d$ and $\varphi \in C^2(\mathbb{R}^d)$ such that $U^\omega - \varphi$ has a strict maximum at x relative to $[0, R]^d$. Then there exists $x_n \to x$ such that $n^{-\frac{1}{d}} U_n^\omega - \varphi$ has a maximum at x_n relative to $[0, R]^d$. For $\varepsilon > 0$ set

$$S_{n,\varepsilon} = \{ y \in [0, x] : n^{-\frac{1}{d}} U_n^\omega(y) \geq n^{-\frac{1}{d}} U_n^\omega(x) - \varepsilon \}.$$

Since

$$n^{-\frac{1}{d}} U_n^\omega(y) - \varphi(y) \leq n^{-\frac{1}{d}} U_n^\omega(x_n) - \varphi(x_n) \quad \text{for all } y \in [0, R]^d,$$

We have

$$n^{-\frac{1}{d}} U_n^\omega(y) - n^{-\frac{1}{d}} U_n^\omega(x) \leq \varphi(y) - \varphi(x) + \varphi(x) - \varphi(x_n) + n^{-\frac{1}{d}} U_n^\omega(x_n) - n^{-\frac{1}{d}} U_n^\omega(x).$$

Since $x_n \to x$ and $n^{-\frac{1}{d}} U_n^\omega \to U^\omega$ locally uniformly, for large enough n we have

$$n^{-\frac{1}{d}} U_n^\omega(y) - n^{-\frac{1}{d}} U_n^\omega(x) \leq \varphi(y) - \varphi(x) + \varepsilon^2.$$

Therefore

$$S_{n,\varepsilon} \subseteq \{ y \in [0, x] : \varphi(y) \geq \varphi(x) - \varepsilon - \varepsilon^2 \} =: S_\varepsilon.$$
Proof

Recall

\[S_{n,\varepsilon} = \left\{ y \in [0, x] : n^{-\frac{1}{d}} U_n^\omega (y) \geq n^{-\frac{1}{d}} U_n^\omega (x) - \varepsilon \right\}. \]

By monotonicity

\[\ell \left(\Pi_{nf}^\omega \cap \left\{ y \in [0, x] : \varphi (y) \geq \varphi (x) - \varepsilon - \varepsilon^2 \right\} \right) \geq \ell (\Pi_{nf}^\omega \cap S_{n,\varepsilon}) \]
Proof

Recall

\[S_{n,\varepsilon} = \left\{ y \in [0, x] : n^{-\frac{1}{d}} U_n^{\omega}(y) \geq n^{-\frac{1}{d}} U_n^{\omega}(x) - \varepsilon \right\}. \]

By monotonicity

\[\ell \left(\Pi_{nf}^{\omega} \cap \left\{ y \in [0, x] : \varphi(y) \geq \varphi(x) - \varepsilon - \varepsilon^2 \right\} \right) \geq \ell (\Pi_{nf}^{\omega} \cap S_{n,\varepsilon}) \geq \varepsilon n^{\frac{1}{d}}. \]
Proof

Recall

\[S_{n,\varepsilon} = \left\{ y \in [0, x] : n^{-\frac{1}{d}} U_n^\omega(y) \geq n^{-\frac{1}{d}} U_n^\omega(x) - \varepsilon \right\}. \]

By monotonicity

\[\ell \left(\Pi_{nf}^\omega \cap \left\{ y \in [0, x] : \varphi(y) \geq \varphi(x) - \varepsilon - \varepsilon^2 \right\} \right) \geq \ell(\Pi_{nf}^\omega \cap S_{n,\varepsilon}) \geq \varepsilon n^{\frac{1}{d}}. \]

By consistency

\[\varepsilon \leq \limsup_{n \to \infty} n^{-\frac{1}{d}} \ell \left(\Pi_{nf}^\omega \cap \left\{ y \in [0, x] : \varphi(y) \geq \varphi(x) - \varepsilon - \varepsilon^2 \right\} \right) \leq \frac{c_d}{d} \left(\frac{f(x)}{\varphi_{x_1}(x) \cdots \varphi_{x_d}(x)} \right)^{\frac{1}{d}} (\varepsilon + O(\varepsilon^2)). \]
Proof

Recall

\[S_{n, \varepsilon} = \left\{ y \in [0, x] : n^{-\frac{1}{d}} U_n^\omega(y) \geq n^{-\frac{1}{d}} U_n^\omega(x) - \varepsilon \right\}. \]

By monotonicity

\[
\ell \left(\Pi_{n_f}^\omega \cap \{ y \in [0, x] : \varphi(y) \geq \varphi(x) - \varepsilon - \varepsilon^2 \} \right) \geq \ell(\Pi_{n_f}^\omega \cap S_{n, \varepsilon}) \geq \varepsilon n^{\frac{1}{d}}.
\]

By consistency

\[
\varepsilon \leq \limsup_{n \to \infty} n^{-\frac{1}{d}} \ell \left(\Pi_{n_f}^\omega \cap \left\{ y \in [0, x] : \varphi(y) \geq \varphi(x) - \varepsilon - \varepsilon^2 \right\} \right)
\leq \frac{c_d}{d} \left(\frac{f(x)}{\varphi_{x_1}(x) \cdots \varphi_{x_d}(x)} \right)^{\frac{1}{d}} (\varepsilon + O(\varepsilon^2)).
\]

Sending \(\varepsilon \to 0^+ \) we find that

\[
\varphi_{x_1}(x) \cdots \varphi_{x_d}(x) \leq \frac{c_d}{d^d} f(x).
\]
Proof

\(U^\omega \) a supersolution of (P): Similar proof, but an additional lemma is needed:

Lemma

There exists a, possibly smaller, probability one event \(\Omega \) such that for all \(\omega \in \Omega \), all \(x \in [0, \infty)^d \) such that \(f(x) > 0 \), and all \(\varphi \in C^2(\mathbb{R}^d) \) such that \(U^\omega - \varphi \) has a strict minimum at \(x \), we have

\[
\varphi_{x_i}(x) > 0 \quad \text{for all } i.
\]
Proof

U^ω a supersolution of (P): Similar proof, but an additional lemma is needed:

Lemma

There exists a, possibly smaller, probability one event Ω such that for all $\omega \in \Omega$, all $x \in [0, \infty)^d$ such that $f(x) > 0$, and all $\varphi \in C^2(\mathbb{R}^d)$ such that $U^\omega - \varphi$ has a strict minimum at x, we have

$$\varphi_x(x) > 0 \quad \text{for all } i.$$

Therefore $U^\omega = u$ for all $\omega \in \Omega$, where u is the unique viscosity solution of

\[
\begin{aligned}
(P) \quad \left\{
\begin{array}{ll}
 u_{x_1} \cdots u_{x_d} = \frac{c_d}{d!} f & \quad \text{in } \mathbb{R}^d_+ \\
 u = 0 & \quad \text{on } \partial \mathbb{R}^d_+.
\end{array}
\right.
\end{aligned}
\]

This completes the proof. \square
Outline

1 Background
 - Motivating example
 - Non-dominated sorting

2 Continuum limit of non-dominated sorting
 - Main Result
 - Non-rigorous derivation
 - Original variational proof

3 PDE proof
 - Monotonicity
 - Stability
 - Consistency
 - Proof

4 Current work
 - Convex hull peeling

5 References
The ordering of multivariate data is an important and challenging problem.
Ordering of multivariate data

- The ordering of multivariate data is an important and challenging problem.
- No obvious candidate for concepts like ‘median’ in dimensions $d \geq 2$.

Barnett [Barnett, 1976] introduced the idea of convex hull ordering

▶ Idea is to sort points in Euclidean space into layers by repeatedly removing the vertices of the convex hull.
▶ Also known as convex hull peeling or onion peeling (or ‘the onion’).
▶ Convex hull peeling median is the ‘center’ of the onion

Many different types of orderings and definitions of median exist in the literature

▶ [Barnett, 1976], [Small, 1990], [Liu et al., 1999]
Ordering of multivariate data

- The ordering of multivariate data is an important and challenging problem.
- No obvious candidate for concepts like ‘median’ in dimensions $d \geq 2$.
- Barnett [Barnett, 1976] introduced the idea of convex hull ordering
 - Idea is to sort points in Euclidean space into layers by repeatedly removing the vertices of the convex hull.
Ordering of multivariate data

- The ordering of multivariate data is an important and challenging problem.
- No obvious candidate for concepts like ‘median’ in dimensions $d \geq 2$.
- Barnett [Barnett, 1976] introduced the idea of convex hull ordering
 - Idea is to sort points in Euclidean space into layers by repeatedly removing the vertices of the convex hull.
 - Also known as convex hull peeling or onion peeling (or ‘the onion’).
 - Convex hull peeling median is the ‘center’ of the onion.
The ordering of multivariate data is an important and challenging problem.

No obvious candidate for concepts like ‘median’ in dimensions $d \geq 2$.

Barnett [Barnett, 1976] introduced the idea of convex hull ordering

- Idea is to sort points in Euclidean space into layers by repeatedly removing the vertices of the convex hull.
- Also known as convex hull peeling or onion peeling (or ‘the onion’).
- Convex hull peeling median is the ‘center’ of the onion

Many different types of orderings and definitions of median exist in the literature

- [Barnett, 1976], [Small, 1990], [Liu et al., 1999]
Convex hull peeling

Let X_1, \ldots, X_n be points in \mathbb{R}^d and set $S = \{X_1, \ldots, X_n\}$.

Recall: Convex hull of a set \mathcal{O} is the intersection of all convex sets containing \mathcal{O}.
Convex hull peeling

Let X_1, \ldots, X_n be points in \mathbb{R}^d and set $S = \{X_1, \ldots, X_n\}$.

Recall: Convex hull of a set O is the intersection of all convex sets containing O.

Definition

Convex hull peeling is the process of arranging S into convex layers C_1, C_2, C_3, \ldots, defined by

$$
C_1 = \text{Vertices of convex hull of } S,
$$
$$
C_k = \text{Vertices of convex hull of } S \setminus \bigcup_{j \leq k-1} C_j.
$$
Convex hull peeling

Figure: Depiction of convex layers for (a) \(n = 10^2 \) and (b) \(n = 10^4 \) independent and uniformly distributed points \(X_1, \ldots, X_n \) on \([0, 1]^2\).
Applications

Convex hull peeling is widely used in robust statistics, machine learning, etc.

- [Rousseeuw and Struyf, 2004], [Donoho and Gasko, 1992], [Hodge and Austin, 2004].

Matching of deformed pointclouds [Suk and Flusser, 1999].

Convex layers invariant under affine transformations.

Fingerprint identification [Poulos et al., 2005].

Algorithmic drawing [Damian et al., 2006].
Applications

- Convex hull peeling is widely used in robust statistics, machine learning, etc.
 - [Rousseeuw and Struyf, 2004], [Donoho and Gasko, 1992], [Hodge and Austin, 2004].

- Matching of deformed pointclouds [Suk and Flusser, 1999].
 - Convex layers invariant under affine transformations.
Applications

- Convex hull peeling is widely used in robust statistics, machine learning, etc.
 - [Rousseeuw and Struyf, 2004], [Donoho and Gasko, 1992], [Hodge and Austin, 2004].

- Matching of deformed pointclouds [Suk and Flusser, 1999].
 - Convex layers invariant under affine transformations.

- Fingerprint identification [Poulos et al., 2005].

- Algorithmic drawing [Damian et al., 2006].
Let X_1, \ldots, X_n be i.i.d. on a convex open and bounded set $\Omega \subseteq \mathbb{R}^2$ with density $f : \Omega \to [0, \infty)$. Let C_1, C_2, \ldots denote the associated convex layers. Define

$$U_n(x) = \sup \left\{ k \in \mathbb{N} : x \in \text{ConvHull}(C_k) \right\}.$$
Conjectured continuum limit

Let X_1, \ldots, X_n be i.i.d. on a convex open and bounded set $\Omega \subseteq \mathbb{R}^2$ with density $f : \Omega \rightarrow [0, \infty)$. Let C_1, C_2, \ldots denote the associated convex layers. Define

$$U_n(x) = \sup \left\{ k \in \mathbb{N} : x \in \text{ConvHull}(C_k) \right\}.$$

According to [Dalal, 2004], there are in expectation $O\left(n^{\frac{2}{3}} \right)$ convex layers.
If we assume that $n^{-\frac{2}{3}} U_n \to u$, some basic heuristic scaling arguments can be made that suggest

$$n^{-\frac{2}{3}} U_n \to u \quad \text{uniformly on } \overline{\Omega}$$

almost surely, where u is the viscosity solution of

$$|Du| \left(\text{div} \left(\frac{Du}{|Du|} \right) \right)^{\frac{1}{3}} + cf(x, y)^{\frac{2}{3}} = 0, \quad \text{in } \Omega, \quad U = 0, \quad \text{on } \partial \Omega. \quad \text{(3)}$$

This is Affine Invariant Curvature Motion.
Conjectured continuum limit

Figure: Visual comparison of convex layers and affine invariant curvature motion for $n = 5 \times 10^3$ i.i.d. samples from (a) a circular and (b) a triangular domain Ω.
Figure: (a) L^1 and (b) L^∞ errors between the solution u of the affine invariant curvature motion PDE (3) and the convex depth function U_n, both normalized to range from 0 to 1. The errors appear to be $O(n^{-\frac{1}{2}})$ in all test cases.
Thanks!
Outline

1. Background
 - Motivating example
 - Non-dominated sorting

2. Continuum limit of non-dominated sorting
 - Main Result
 - Non-rigorous derivation
 - Original variational proof

3. PDE proof
 - Monotonicity
 - Stability
 - Consistency
 - Proof

4. Current work
 - Convex hull peeling

5. References

A Hamilton-Jacobi equation for the continuum limit of non-dominated sorting.

Counting the onion.

Damian, M., Demaine, E. D., Demaine, M. L., Dujmovic, V., El-Khechen, D.,
Flatland, R., Iacono, J., Langerman, S., Meijer, H., Ramaswami, S., Souvaine,
Curves in the sand: Algorithmic drawing.
In Canadian Conference on Computational Geometry.

A fast and elitist multiobjective genetic algorithm: NSGA-II.

Limiting curves for i.i.d. records.

Breakdown properties of location estimates based on halfspace depth and projected outlyingness.

A survey of multidimensional medians.

Convex layers: a new tool for recognition of projectively deformed point sets.

Monte carlo calculations in problems of mathematical physics.

Chain and antichain families, grids and Young tableaux.