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Graph-based semi-supervised learning

Graph: G = (X ,W )

X = {x1, . . . , xn} are the vertices of the graph

W = (wij )ni,j=1 are nonnegative and symmetric (wij = wji) edge weights.

wij ≈ 1 if xi , xj similar, and wij ≈ 0 when dissimilar.

Labels: We assume the first m � n vertices are given labels

y1, y2, . . . , ym ∈ {e1, e2, . . . , ek} ∈ Rk .

Task: Extend the labels to the rest of the vertices xm+1, . . . , xn .

Semi-supervised smoothness assumption
Similar points xi , xj ∈ X in high density regions of the graph should have similar labels.

Laplace Learning/Label Propagation:

Original work [Zhu et al., 2003]

Learning [Zhou et al., 2005]

Manifold ranking [He et al, 2006, Zhou et al., 2011, Xu et al., 2011]
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Laplace learning/Label propagation

Laplacian regularized semi-supervised learning solves the Laplace equation{Lu(xi) = 0, if m + 1 ≤ i ≤ n,

u(xi) = yi , if 1 ≤ i ≤ m,

where u : X → Rk , and L is the graph Laplacian

Lu(xi) =
n∑

j=1

wij (u(xi)− u(xj )).

The label decision for vertex xi is determined by the largest component of u(xi)

`(xi) = argmax
j∈{1,...,k}

{uj (x)}.
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Label propagation

The solution of Laplace learning satisfies

Lu(xi) =
n∑

j=1

wij (u(xi)− u(xj )) = 0. (m + 1 ≤ i ≤ n)

Re-arranging, we see that u satisfies the mean-property

u(xi) =

∑n
j=1 wiju(xj )∑n

j=1 wij
.

Label propagation [Zhu 2005] iterates

uk+1(xi) =

∑n
j=1 wiju

k (xj )∑n
j=1 wij

,

and at convergence is equivalent to Laplace learning.
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Ill-posed with small amount of labeled data
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Graph is n = 105 i.i.d. random variables uniformly drawn from [0, 1]2.

wxy = 1 if |x − y | < 0.01 and wxy = 0 otherwise.

Two labels: y1 = 0 at the Red point and y2 = 1 at the Green point.

Over 95% of labels in [0.4975, 0.5025].

[Nadler et al., 2009, El Alaoui et al., 2016]
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MNIST (70,000 28× 28 pixel images of digits 0-9)

[Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998.]
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Laplace learning on MNIST

# Labels/class 1 2 3 4 5

Laplace 16.1 (6.2) 28.2 (10) 42.0 (12) 57.8 (12) 69.5 (12)
Graph NN 58.8 (5.6) 66.6 (2.8) 70.2 (4) 71.3 (2.6) 73.4 (1.9)

# Labels/class 10 50 100 500 1000

Laplace 93.2 (2.3) 96.9 (0.1) 97.1 (0.1) 97.6 (0.1) 97.7 (0.0)
Graph NN 82.3 (1.0) 89.0 (0.5) 90.6 (0.4) 93.4 (0.1) 93.7 (0.1)

Average accuracy over 10 trials with standard deviation in brackets.

Graph NN: 1-nearest neighbor using graph geodesic distance.
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Recent work

A lot of work since [Nadler 2009] has attempted to address this issue:

Higher-order regularization: [Zhou and Belkin, 2011], [Dunlop et al., 2019]

p-Laplace regularization: [Alaoui et al., 2016], [Calder 2018,2019], [Slepcev &
Thorpe 2019]

Re-weighted Laplacians: [Shi et al., 2017], [Calder & Slepcev, 2019]

Centered kernel method: [Mai & Couillet, 2018]

In this talk:

1 We explain the degeneracy of Laplace learning in terms of random walks.

2 We propose a new algorithm: Poisson learning.

J. Calder, B. Cook, M. Thorpe, and D. Slepčev. Poisson Learning: Graph based
semi-supervised learning at very low label rates. International Conference on Machine
Learning (ICML), PMLR 119:1306–1316, 2020.
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Poisson learning

We propose to replace Laplace learning

(1) (Laplace equation)

{Lu(xi) = 0, if m + 1 ≤ i ≤ n,

u(xi) = yi , if 1 ≤ i ≤ m,

with Poisson learning

(Poisson equation) Lu(xi) =
m∑
j=1

(yj − y)δij for i = 1, . . . ,n

subject to
∑n

i=1 diu(xi) = 0, where y = 1
m

∑m
i=1 yi .

In both cases, the label decision is the same:

`(xi) = argmax
j∈{1,...,k}

{uj (x)}.

Calder et al. (UofM) Poisson Learning SIAM CSE 21 11 / 43



Poisson learning
We propose to replace Laplace learning

(2) (Laplace equation)

{Lu(xi) = 0, if m + 1 ≤ i ≤ n,

u(xi) = yi , if 1 ≤ i ≤ m,

with Poisson learning

(Poisson equation) Lu(xi) =
m∑
j=1

(yj − y)δij for i = 1, . . . ,n

subject to
∑n

i=1 diu(xi) = 0, where y = 1
m

∑m
i=1 yi .

For Poisson learning, unbalanced class sizes can be incorporated:

`(xi) = argmax
j∈{1,...,k}

{
pj
nj

uj (x)

}
,

pj = Fraction of data in class j

nj = Fraction of training data from class j .
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Random Walk Perspective

Suppose u solves the Laplace learning equation{Lu(xi) = 0, if m + 1 ≤ i ≤ n,

u(xi) = yi , if 1 ≤ i ≤ m.

Let x ∈ X and let X0,X1,X2, . . . be a random walk on X with transition probabilities

P(Xk = xj |Xk−1 = xi) =
wij

di
where di =

n∑
j=1

wij .

Define the stopping time to be the first time the walk hits a label, that is

τ = inf{k ≥ 0 : Xk ∈ {x1, x2, . . . , xm}}.

Let iτ ≤ m so that Xτ = xiτ . Then (by Doob’s optimal stopping theorem)

(3) u(x) = E[yiτ |X0 = x ].
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Classification experiment
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Random walk experiment
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Classification experiment
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The Random walk perspective

At low label rates, the random walker reaches the mixing time before hitting a label.

The label eventually hit is largely independent of where the walker starts.

After walking for a long time, the probability distribution of the walker approaches the
invariant distribution π given by

πi =
di∑n
j=1 dj

.

Thus, the solution of Laplace learning is approximately

u(xi) = E[yiτ |X0 = xi ] ≈
∑n

j=1 dj yj∑n
j=1 dj

=: c ∈ Rk .

Bottom line: Nearly everything is labeled by the one-hot vector closest to c!
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The random walk perspective

Let X
xj
0 ,X

xj
1 ,X

xj
2 be a random walk on the graph X starting from xj ∈ X , and define

uT (xi) = E

[
T∑

k=0

m∑
j=1

yj1{X
xj
k

=xi}

]
.

Idea: We release random walkers from the labeled nodes, and record how often each
label’s walker visits xi .

We can write

uT (xi) =
m∑
j=1

yj

T∑
k=0

P(X
xj
k = xi).

The inner term is a Green’s function for a random walk. As T →∞, uT →∞.

We center uT by its mean value:

n∑
i=1

uT (xi) =
T∑

k=0

m∑
j=1

yj =
T∑

k=0

my , where y =
1

m

m∑
j=1

yj .
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The random walk perspective
Subtracting off the mean of uT , and normalizing by di , we arrive at

uT (xi) := E

[
T∑

k=0

1

di

m∑
j=1

(yj − y)1{X
xj
k

=xi}

]
, where y =

1

m

m∑
j=1

yj .

Theorem

For every T ≥ 0 we have

uT+1(xi) = uT (xi) +
1

di

(
m∑
j=1

(yj − y)δij − LuT (xi)

)
.

If the graph G is connected and the Markov chain induced by the random walk is
aperiodic, then uT → u as T →∞, where u : X → R is the solution of

Lu(xi) =
m∑
j=1

(yj − y)δij for i = 1, . . . ,n

satisfying
∑n

i=1 diu(xi) = 0.
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The variational interpretation
We define the space of weighted mean-zero functions

`20(X ) =

{
u : X → R :

n∑
i=1

diu(xi) = 0

}
.

Consider the variational problem

(4) min
u∈`20(X )

{ n∑
i,j=1

wij |u(xi)− u(xj )|2 −
m∑
j=1

(yj − y) · u(xj )

}
,

where y = 1
m

∑m
i=1 yi .

Theorem

Assume G is connected. Then there exists a unique solution u ∈ `20(X ) of (4), and
furthermore, u satisfies the Poisson equation

Lu(xi) =
m∑
j=1

(yj − y)δij .
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Poisson vs Laplace

The variational interpretation of Poisson learning is

min
u∈`20(X )

{ n∑
i,j=1

wij |u(xi)− u(xj )|2 −
m∑
j=1

(yj − y) · u(xj )

}
.

We compare this with the variational interpretation for Laplace learning, which is

min
u∈`2(X )

{ n∑
i,j=1

wij |u(xi)− u(xj )|2 : u(xi) = yi for i = 1, . . . ,m

}
.

Takeaway: Instead of hard constraints, Poisson equations use soft constraints that are
affine functions of the label values.

Calder et al. (UofM) Poisson Learning SIAM CSE 21 21 / 43



Outline

1 Introduction
Graph-based semi-supervised learning
Laplace learning/Label propagation
Degeneracy in Laplace learning

2 Poisson learning
Random walk perspective
Variational interpretation

3 Experimental results
GraphLearning Python Package
Datasets and algorithmic details
Volume Constraints

Calder et al. (UofM) Poisson Learning SIAM CSE 21 22 / 43



GraphLearning Python Package

https://github.com/jwcalder/GraphLearning
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Algorithmic details

Algorithm 1 Poisson Learning

1: Input: W,F,b,T {F ∈ Rk×m are label vectors, b ∈ Rk are class sizes.}
2: Output: U ∈ Rn×k

3: D← diag(W1)
4: L← D−W
5: c← 1

mF1
6: B← [F− c, zeros(k ,n −m)]
7: U← zeros(n, k)
8: for i = 1 to T do
9: U← U + D−1(BT − LU)

10: end for
11: U← U · diag(b/c) {Accounts for unbalanced class sizes.}

1 We only need about T = 100 iterations on MNIST, FashionMNIST, CIFAR-10, to
get good results. CPU Time: 8 seconds on CPU, 1 second on GPU.
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MNIST (70,000 28× 28 pixel images of digits 0-9)

[Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998.]
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FashionMNIST (70,000 28× 28 images of fashion items)

[Xiao, Han, Kashif Rasul, and Roland Vollgraf. “Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms.” arXiv preprint arXiv:1708.07747 (2017).]
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CIFAR-10

[Krizhevsky, Alex, and Geoffrey Hinton. “Learning multiple layers of features from tiny
images.” (2009): 7.]
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Autoencoders

For each dataset, we build the graph by training autoencoders.

www.compthree.com
Autoencoders are “Nonlinear versions of PCA”
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Building graphs from autoencoders

For MNIST and FashionMNIST, we use a 4-layer variational autoencoder with 30 latent
variables:

[Kingma and Welling. Auto-encoding variational Bayes. ICML 2014]

For CIFAR-10, we use the autoencoding framework from [Zhang et al. AutoEncoding
Transformations (AET), CVPR 2019] with 12,288 latent variables.
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Building graphs from autoencoders

After training autoencoders, we build a k = 10 nearest neighbor graphs in the latent
space with Gaussian weights

wij = exp

(
−4|xi − xj |2

dk (xi)2

)
,

where dk (xi) is the distance in the latent space between xi and its k th nearest neighbor.
The weight matrix was then symmetrized by replacing W with W + W T .

For CIFAR-10, the latent feature vectors were normalized to unit norm (equivalent to
using an angular similarity).
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First comparison

We compared against many other graph-based learning algorithms

Laplace/Label propagation: [Zhu et al., 2003]

Graph nearest neighbor (using Dijkstra)

Lazy random walks: [Zhou et al., 2004]

Mutli-class MBO: [Garcia-Cardona et al., 2014]

Centered kernel method: [Mai & Couillet, 2018]

Sparse Label Propagation: [Jung et al., 2016]

Weighted Nonlocal Laplacian (WNLL): [Shi et al., 2017]

p-Laplace regularization: [Flores et al. 2019]
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MNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)
Nearest Neighbor 65.4 (5.2) 74.2 (3.3) 77.8 (2.6) 80.7 (2.0) 82.1 (2.0)
Random Walk 66.4 (5.3) 76.2 (3.3) 80.0 (2.7) 82.8 (2.3) 84.5 (2.0)
MBO 19.4 (6.2) 29.3 (6.9) 40.2 (7.4) 50.7 (6.0) 59.2 (6.0)
Centered Kernel 19.1 (1.9) 24.2 (2.3) 28.8 (3.4) 32.6 (4.1) 35.6 (4.6)
Sparse Label Prop. 14.0 (5.5) 14.0 (4.0) 14.5 (4.0) 18.0 (5.9) 16.2 (4.2)
WNLL 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)
p-Laplace 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)
Poisson 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)
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FashionMNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)
Nearest Neighbor 46.6 (4.7) 53.5 (3.6) 57.2 (3.0) 59.3 (2.6) 61.1 (2.8)
Random Walk 49.0 (4.4) 55.6 (3.8) 59.4 (3.0) 61.6 (2.5) 63.4 (2.5)
MBO 15.7 (4.1) 20.1 (4.6) 25.7 (4.9) 30.7 (4.9) 34.8 (4.3)
Centered Kernel 11.8 (0.4) 13.1 (0.7) 14.3 (0.8) 15.2 (0.9) 16.3 (1.1)
Sparse Label Prop. 14.1 (3.8) 16.5 (2.0) 13.7 (3.3) 13.8 (3.3) 16.1 (2.5)
WNLL 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)
p-Laplace 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)
Poisson 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2 (2.2) 72.4 (2.3)

Compare to clustering result of 67.2% [McConville et al., 2019]
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CIFAR-10 results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 10.4 (1.3) 11.0 (2.1) 11.6 (2.7) 12.9 (3.9) 14.1 (5.0)
Nearest Neighbor 33.1 (4.3) 37.3 (4.1) 39.7 (3.0) 41.7 (2.8) 43.0 (2.5)
Random Walk 36.4 (4.9) 42.0 (4.4) 45.1 (3.3) 47.5 (2.9) 49.0 (2.6)
MBO 14.2 (4.1) 19.3 (5.2) 24.3 (5.6) 28.5 (5.6) 33.5 (5.7)
Centered Kernel 15.4 (1.6) 16.9 (2.0) 18.8 (2.1) 19.9 (2.0) 21.7 (2.2)
Sparse Label Prop. 11.8 (2.4) 12.3 (2.4) 11.1 (3.3) 14.4 (3.5) 11.0 (2.9)
WNLL 16.6 (5.2) 26.2 (6.8) 33.2 (7.0) 39.0 (6.2) 44.0 (5.5)
p-Laplace 26.0 (6.7) 35.0 (5.4) 42.1 (3.1) 48.1 (2.6) 49.7 (3.8)
Poisson 40.7 (5.5) 46.5 (5.1) 49.9 (3.4) 52.3 (3.1) 53.8 (2.6)

Compare to clustering result of 41.2% [Mukherjee et al., ClusterGAN, CVPR 2019].
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Varying number of neighbors k
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Unbalanced training data
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Volume constrained semi-supervised learning

Classification results can be improved by incorporating prior knowledge of class sizes
through volume constraints.
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PoissonMBO: Volume constrained Poisson learning

Observation 1: The Poisson learning iteration with a fixed time step

uT+1(x) = uT (x) + dt

∑
y∈Γ

(g(y)− y)δij − LuT (x)


is volume preserving. That is

∑
x∈X uT+1(x) =

∑
x∈X uT (x).

Observation 2: We can easily perform a volume constrained label projection

`(xi) = argmax
j∈{1,...,k}

{sjuj (x)} .

We adjust the weights sj to grow/shrink each region to achieve the correct class sizes.

Named after the Merriman-Bence-Osher (MBO) scheme for curvature motion, which has
been used before in graph-based learning [Garcia, et al., 2014, Jacobs et al., 2018].
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Easy to add volume constraints

Algorithm 2 Poisson MBO

1: Input: W,F,Ninner,Nouter,b, µ,T > 0
2: Output: U ∈ Rn×k

3: U← PoissonLearning(W,F,b,T )
4: dt ← 1/max1≤i≤n Dii

5: for i = 1 to Nouter do
6: for j = 1 to Ninner do
7: U← U− dt(LU− µBT )
8: end for
9: U← VolumeConstrainedLabelProjection(U, b)

10: end for

1 The iterations in Steps 7-9 are volume preserving.
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MNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)
WNLL 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)
p-Laplace 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)
VolumeMBO 89.9 (7.3) 95.6 (1.9) 96.2 (1.2) 96.6 (0.6) 96.7 (0.6)
Poisson 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)
PoissonMBO 96.5 (2.6) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)

# Labels per class 10 20 40 80 160

Laplace/LP 91.3 (3.7) 95.8 (0.6) 96.5 (0.2) 96.8 (0.1) 97.0 (0.1)
WNLL 95.6 (0.5) 96.1 (0.3) 96.3 (0.2) 96.4 (0.1) 96.3 (0.1)
p-Laplace 94.0 (0.8) 95.1 (0.4) 95.5 (0.1) 96.0 (0.2) 96.2 (0.1)
VolumeMBO 96.9 (0.2) 97.0 (0.1) 97.1 (0.1) 97.2 (0.1) 97.3 (0.1)
Poisson 95.9 (0.4) 96.3 (0.3) 96.6 (0.2) 96.8 (0.1) 96.9 (0.1)
PoissonMBO 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)
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FashionMNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)
WNLL 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)
p-Laplace 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)
VolumeMBO 54.7 (5.2) 61.7 (4.4) 66.1 (3.3) 68.5 (2.8) 70.1 (2.8)
Poisson 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2 (2.2) 72.4 (2.3)
PoissonMBO 62.0 (5.7) 67.2 (4.8) 70.4 (2.9) 72.1 (2.5) 73.1 (2.7)

# Labels per class 10 20 40 80 160

Laplace/LP 70.6 (3.1) 76.5 (1.4) 79.2 (0.7) 80.9 (0.5) 82.3 (0.3)
WNLL 74.4 (1.6) 77.6 (1.1) 79.4 (0.6) 80.6 (0.4) 81.5 (0.3)
p-Laplace 73.0 (0.9) 76.2 (0.8) 78.0 (0.3) 79.7 (0.5) 80.9 (0.3)
VolumeMBO 74.4 (1.5) 77.4 (1.0) 79.5 (0.7) 81.0 (0.5) 82.1 (0.3)
Poisson 75.2 (1.5) 77.3 (1.1) 78.8 (0.7) 79.9 (0.6) 80.7 (0.5)
PoissonMBO 76.1 (1.4) 78.2 (1.1) 79.5 (0.7) 80.7 (0.6) 81.6 (0.5)
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Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 10.4 (1.3) 11.0 (2.1) 11.6 (2.7) 12.9 (3.9) 14.1 (5.0)
WNLL 16.6 (5.2) 26.2 (6.8) 33.2 (7.0) 39.0 (6.2) 44.0 (5.5)
p-Laplace 26.0 (6.7) 35.0 (5.4) 42.1 (3.1) 48.1 (2.6) 49.7 (3.8)
VolumeMBO 38.0 (7.2) 46.4 (7.2) 50.1 (5.7) 53.3 (4.4) 55.3 (3.8)
Poisson 40.7 (5.5) 46.5 (5.1) 49.9 (3.4) 52.3 (3.1) 53.8 (2.6)
PoissonMBO 41.8 (6.5) 50.2 (6.0) 53.5 (4.4) 56.5 (3.5) 57.9 (3.2)

# Labels per class 10 20 40 80 160

Laplace/LP 21.8 (7.4) 38.6 (8.2) 54.8 (4.4) 62.7 (1.4) 66.6 (0.7)
WNLL 54.0 (2.8) 60.3 (1.6) 64.2 (0.7) 66.6 (0.6) 68.2 (0.4)
p-Laplace 56.4 (1.8) 60.4 (1.2) 63.8 (0.6) 66.3 (0.6) 68.7 (0.3)
VolumeMBO 59.2 (3.2) 61.8 (2.0) 63.6 (1.4) 64.5 (1.3) 65.8 (0.9)
Poisson 58.3 (1.7) 61.5 (1.3) 63.8 (0.8) 65.6 (0.6) 67.3 (0.4)
PoissonMBO 61.8 (2.2) 64.5 (1.6) 66.9 (0.8) 68.7 (0.6) 70.3 (0.4)
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Code: https://github.com/jwcalder/GraphLearning (pip install graphlearning)
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