The Calculus of Variations

Jeff Calder

University of Minnesota
School of Mathematics
jwcalder@umn.edu

September 30, 2019
Contents

1 Introduction .. 5
1.1 Examples .. 6

2 The Euler-Lagrange equation 11
2.1 The gradient interpretation 15
2.2 The Lagrange multiplier 16
2.3 Gradient descent ... 18
2.4 Accelerated gradient descent 21

3 Applications .. 29
3.1 Shortest path ... 29
3.2 The brachistochrone problem 30
3.3 Minimal surfaces .. 34
3.4 Minimal surface of revolution 36
3.5 Isoperimetric inequality 42
3.6 Image restoration ... 45
3.6.1 Gradient descent and acceleration 46
3.6.2 Primal dual approach 49
3.6.3 The split Bregman method 51
3.6.4 Edge preservation properties of Total Variation restoration 53
3.7 Image segmentation ... 55
3.7.1 Ginzburg-Landau approximation 59

4 The direct method .. 61
4.1 Coercivity and lower semicontinuity 62
4.2 Brief review of Sobolev spaces 64
4.2.1 Definitions and basic properties 64
4.2.2 Weak compactness in L^p spaces 66
4.2.3 Compactness in Sobolev spaces 69
4.3 Sufficient conditions 71

5 Discrete to continuum in graph-based learning 73
<table>
<thead>
<tr>
<th>Mathematical preliminaries</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 Inequalities</td>
<td>75</td>
</tr>
<tr>
<td>A.2 Topology</td>
<td>77</td>
</tr>
<tr>
<td>A.3 Differentiation</td>
<td>78</td>
</tr>
<tr>
<td>A.3.1 Partial derivatives</td>
<td>78</td>
</tr>
<tr>
<td>A.3.2 Rules for differentiation</td>
<td>80</td>
</tr>
<tr>
<td>A.4 Taylor series</td>
<td>81</td>
</tr>
<tr>
<td>A.4.1 One dimension</td>
<td>81</td>
</tr>
<tr>
<td>A.4.2 Higher dimensions</td>
<td>83</td>
</tr>
<tr>
<td>A.5 Function spaces</td>
<td>85</td>
</tr>
<tr>
<td>A.6 Analysis</td>
<td>86</td>
</tr>
<tr>
<td>A.6.1 The Riemann integral</td>
<td>86</td>
</tr>
<tr>
<td>A.6.2 The Lebesgue integral</td>
<td>88</td>
</tr>
<tr>
<td>A.7 Integration by parts</td>
<td>90</td>
</tr>
<tr>
<td>A.8 Convex functions</td>
<td>92</td>
</tr>
<tr>
<td>A.9 Miscellaneous results</td>
<td>94</td>
</tr>
<tr>
<td>A.9.1 Vanishing lemma</td>
<td>94</td>
</tr>
<tr>
<td>A.9.2 Total variation of characteristic function is perimeter</td>
<td>95</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

The calculus of variations is a field of mathematics concerned with minimizing (or maximizing) functionals (that is, real-valued functions whose inputs are functions). The calculus of variations has a wide range of applications in physics, engineering, applied and pure mathematics, and is intimately connected to partial differential equations (PDEs).

For example, a classical problem in the calculus of variations is finding the shortest path between two points. The notion of length need not be Euclidean, or the path may be constrained to lie on a surface, in which case the shortest path is called a geodesic. In physics, Hamilton’s principle states that trajectories of a physical system are critical points of the action functional. Critical points may be minimums, maximums, or saddle points of the action functional. In computer vision, the problem of segmenting an image into meaningful regions is often cast as a problem of minimizing a functional over all possible segmentations—a natural problem in the calculus of variations. Likewise, in image processing, the problem of restoring a degraded or noisy images has been very successfully formulated as a problem in the calculus of variations.

PDEs arise as the necessary conditions for minimizers of functionals. Recall in multi-variable calculus that if a function $u : \mathbb{R}^n \to \mathbb{R}$ has a minimum at $x \in \mathbb{R}^n$ then $\nabla u(x) = 0$. The necessary condition $\nabla u(x) = 0$ can be used to solve for candidate minimizers x. In the calculus of variations, if a function $u : \mathbb{R}^n \to \mathbb{R}$ is a minimizer of a functional $I(u)$ then the necessary condition $\nabla I(u) = 0$ turns out to be a PDE called the Euler-Lagrange equation. Studying the Euler-Lagrange equation allows us to explicitly compute minimizers and to study their properties. For this reason, there is a rich interplay between the calculus of variations and the theory of PDEs.

These notes aim to give a brief overview of the calculus of variations at the beginning graduate level. The first four sections are concerned with smooth solutions of the Euler-Lagrange equations, and finding explicit solutions of classical problems, like the Brachistochrone problem, and exploring applications to image processing and computer vision. These sections are written at an advanced undergraduate level, and
leave out some of the rigorous detail that is expected in a graduate course. These first four sections require some familiarity with ordinary differential equations (ODEs), and multi-variable calculus. The appendix contains some mathematical preliminaries and notational conventions that are important to review.

The level of rigour increases dramatically in Section 4, where we begin a study of the direct method in the Calculus of Variations for proving existence of minimizers. This section requires some basic background in functional analysis and, in particular, Sobolev spaces. We provide a very brief overview in Section 4.2, and refer the reader to [10] for more details.

Finally, in Section 5 we give an overview of applications of the calculus of variations to prove discrete to continuum results in graph-based semi-supervised learning. The ideas in this section are related to Γ-convergence, which is a notion of convergence for functionals that ensures minimizers converge to minimizers.

Finally, these notes are just a basic introduction. We refer the reader to [10, Chapter 8] and [8] for a more thorough exposition of the theory behind the Calculus of Variations.

1.1 Examples

We begin with a parade of examples.

Example 1.1 (Shortest path). Let A and B be two points in the plane. What is the shortest path between A and B? The answer depends on how we measure length! Suppose the length of a short line segment near (x, y) is the usual Euclidean length multiplied by a positive scale factor $g(x, y)$. For example, the length of a path could correspond to the length of time it would take a robot to navigate the path, and certain regions in space may be easier or harder to navigate, yielding larger or smaller values of g. Robotic navigation is thus a special case of finding the shortest path between two points.

Suppose A lies to the left of B and the path is a graph $u(x)$ over the x axis. See Figure 1.1. Then the “length” of the path between x and $x + \Delta x$ is approximately

$$L = g(x, u(x)) \sqrt{1 + u'(x)^2} \Delta x.$$

If we let $A = (0, 0)$ and $B = (a, b)$ where $a > 0$, then the length of a path $(x, u(x))$ connecting A to B is

$$I(u) = \int_0^a g(x, u(x)) \sqrt{1 + u'(x)^2} \, dx.$$

The problem of finding the shortest path from A to B is equivalent to finding the function u that minimizes the functional $I(u)$ subject to $u(0) = 0$ and $u(a) = b$. △
1.1. EXAMPLES

Figure 1.1: In our version of the shortest path problem, all paths must be graphs of functions \(u = u(x) \).

Example 1.2 (Brachistochrone problem). In 1696 Johann Bernoulli posed the following problem. Let \(A \) and \(B \) be two points in the plane with \(A \) lying above \(B \). Suppose we connect \(A \) and \(B \) with a thin wire and allow a bead to slide from \(A \) to \(B \) under the influence of gravity. Assuming the bead slides without friction, what is the shape of the wire that minimizes the travel time of the bead? Perhaps counter-intuitively, it turns out that the optimal shape is not a straight line! The problem is commonly referred to as the *brachistochrone problem*—the word brachistochrone derives from ancient Greek meaning “shortest time”.

Let \(g \) denote the acceleration due to gravity. Suppose that \(A = (0,0) \) and \(B = (a,b) \) where \(a > 0 \) and \(b < 0 \). Let \(u(x) \) for \(0 \leq x \leq a \) describe the shape of the wire, so \(u(0) = 0 \) and \(u(a) = b \). Let \(v(x) \) denote the speed of the bead when it is at position \(x \). When the bead is at position \((x, u(x))\) along the wire, the potential energy stored in the bead is \(PE = mg u(x) \) (relative to height zero), and the kinetic energy is \(KE = \frac{1}{2} mv(x)^2 \), where \(m \) is the mass of the bead. By conservation of energy

\[
\frac{1}{2} mv(x)^2 + mg u(x) = 0,
\]

since the bead starts with zero total energy at point \(A \). Therefore

\[
v(x) = \sqrt{-2gu(x)}.
\]

Between \(x \) and \(x + \Delta x \), the bead slides a distance of approximately \(\sqrt{1 + u'(x)^2} \Delta x \) with a speed of \(v(x) = \sqrt{-2gu(x)} \). Hence it takes approximately

\[
t = \frac{\sqrt{1 + u'(x)^2}}{\sqrt{-2gu(x)}} \Delta x
\]
time for the bead to move from position x to $x + \Delta x$. Therefore the total time taken for the bead to slide down the wire is given by

$$I(u) = \frac{1}{\sqrt{2g}} \int_a^0 \sqrt{\frac{1 + u'(x)^2}{-u(x)}} \, dx.$$

The problem of determining the optimal shape of the wire is therefore equivalent to finding the function $u(x)$ that minimizes $I(u)$ subject to $u(0) = 0$ and $u(a) = b$. △

Example 1.3 (Minimal surfaces). Suppose we bend a piece of wire into a loop of any shape we wish, and then dip the wire loop into a solution of soapy water. A soap bubble will form across the loop, and we may naturally wonder what shape the bubble will take. Physics tells us that soap bubble formed will be the one with least surface area, at least locally, compared to all other surfaces that span the wire loop. Such a surface is called a minimal surface.

To formulate this mathematically, suppose the loop of wire is the graph of a function $g : \partial U \to \mathbb{R}$, where $U \subset \mathbb{R}^2$ is open and bounded. We also assume that all possible surfaces spanning the wire can be expressed as graphs of functions $u : \overline{U} \to \mathbb{R}$. To ensure the surface connects to the wire we ask that $u = g$ on ∂U. The surface area of a candidate soap film surface u is given by

$$I(u) = \int_U \sqrt{1 + |\nabla u|^2} \, dx.$$

Thus, the minimal surface problem is equivalent to finding a function u that minimizes I subject to $u = g$ on ∂U. △

Example 1.4 (Image restoration). A grayscale image is a function $u : [0, 1]^2 \to [0, 1]$. For $x \in \mathbb{R}^2$, $u(x)$ represents the brightness of the pixel at location x. In real-world
applications, images are often corrupted in the acquisition process or thereafter, and we observe a noisy version of the image. The task of image restoration is to recover the true noise-free image from a noisy observation.

Let \(f(x) \) be the observed noisy image. A widely used and very successful approach to image restoration is the so-called total variation (TV) restoration, which minimizes the functional

\[
I(u) = \int_U \frac{1}{2} (u - f)^2 + \lambda |\nabla u| \, dx,
\]

where \(\lambda > 0 \) is a parameter and \(U = (0,1)^2 \). The restored image is the function \(u \) that minimizes \(I \) (we do not impose boundary conditions on the minimizer). The first term \(\frac{1}{2} (u - f)^2 \) is called a fidelity term, and encourages the restored image to be close to the observed noisy image \(f \). The second term \(|\nabla u| \) measures the amount of noise in the image and minimizing this term encourages the removal of noise in the restored image. The name TV restoration comes from the fact that \(\int_U |\nabla u| \, dx \) is called the total variation of \(u \). Total variation image restoration was pioneered by Rudin, Osher, and Fatemi [17].

Example 1.5 (Image segmentation). A common task in computer vision is the segmentation of an image into meaningful regions. Let \(f: [0,1]^2 \rightarrow [0,1] \) be a grayscale image we wish to segment. We represent possible segmentations of the image by the level sets of functions \(u: [0,1]^2 \rightarrow \mathbb{R} \). Each function \(u \) divides the domain \([0,1]^2 \) into two regions defined by

\[
R^+(u) = \{ x \in [0,1]^2 : u(x) > 0 \} \quad \text{and} \quad R^-(u) = \{ x \in [0,1]^2 : u(x) \leq 0 \}.
\]

The boundary between the two regions is the level set \(\{ x \in [0,1]^2 : u(x) = 0 \} \).

At a very basic level, we might assume our image is composed of two regions with different intensity levels \(f = a \) and \(f = b \), corrupted by noise. Thus, we might propose to segment the image by minimizing the functional

\[
I(u,a,b) = \int_{R^+(u)} (f(x) - a)^2 \, dx + \int_{R^-(u)} (f(x) - b)^2 \, dx,
\]

over all possible segmentations \(u \) and real numbers \(a \) and \(b \). However, this turns out not to work very well since it does not incorporate the geometry of the region in any way. Intuitively, a semantically meaningful object in an image is usually concentrated in some region of the image, and might have a rather smooth boundary. The minimizers of \(I \) could be very pathological and oscillate rapidly trying to capture every pixel near \(a \) in one region and those near \(b \) in another region. For example, if \(f \) only takes the values 0 and 1, then minimizing \(I \) will try to put all the pixels in the image where \(f \) is 0 into one region, and all those where \(f \) is 1 into the other region, and will choose \(a = 0 \) and \(b = 1 \). This is true regardless of whether the region where \(f \) is zero is a nice circle in the center of the image, or if we randomly choose each
pixel to be 0 or 1. In the later case, the segmentation u will oscillate wildly and does not give a meaningful result.

A common approach to fixing this issue is to include a penalty on the length of the boundary between the two regions. Let us denote the length of the boundary between $R^+(u)$ and $R^-(u)$ (i.e., the zero level set of u) by $L(u)$. Thus, we seek instead to minimize the functional

$$I(u, a, b) = \int_{R^+(u)} (f(x) - a)^2 \, dx + \int_{R^-(u)} (f(x) - b)^2 \, dx + \lambda L(u),$$

where $\lambda > 0$ is a parameter. Segmentation of an image is therefore reduced to finding a function $u(x)$ and real numbers a and b minimizing $I(u, a, b)$, which is a problem in the calculus of variations. This widely used approach was proposed by Chan and Vese in 2001 and is called Active Contours Without Edges [7].

The dependence of I on u is somewhat obscured in the form above. Let us write the functional in another way. Recall the Heaviside function H is defined as

$$H(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x \leq 0. \end{cases}$$

Then the region $R^+(u)$ is precisely the region where $H(u(x)) = 1$, and the region $R^-(u)$ is precisely where $H(u(x)) = 0$. Therefore

$$\int_{R^+(u)} (f(x) - a)^2 \, dx = \int_U H(u(x))(f(x) - a)^2 \, dx,$$

where $U = (0, 1)^2$. Likewise

$$\int_{R^-(u)} (f(x) - b)^2 \, dx = \int_U (1 - H(u(x)))(f(x) - b)^2 \, dx.$$

We also have the identity (see Section A.9.2)

$$L(u) = \int_U |\nabla H(u(x))| \, dx = \int_U \delta(u(x))|\nabla u(x)| \, dx.$$

Therefore we have

$$I(u, a, b) = \int_U H(u)(f - a)^2 + (1 - H(u)) (f - b)^2 + \lambda \delta(u)|\nabla u| \, dx.$$

\triangle
Chapter 2

The Euler-Lagrange equation

We aim to study general functionals of the form

\[(2.1) \quad I(u) = \int_U L(x, u(x), \nabla u(x)) \, dx,\]

where \(U \subset \mathbb{R}^n\) is open and bounded, and \(L\) is a function

\[L : U \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R} .\]

The function \(L\) is called the Lagrangian. We will write \(L = L(x, z, p)\) where \(x \in U\), \(z \in \mathbb{R}\) and \(p \in \mathbb{R}^n\). Thus, \(z\) represents the variable where we substitute \(u(x)\), and \(p\) is the variable where we substitute \(\nabla u(x)\). Writing this out completely we have

\[L = L(x_1, x_2, \ldots, x_n, z, p_1, p_2, \ldots, p_n) .\]

The partial derivatives of \(L\) will be denoted \(L_z(x, z, p)\),

\[\nabla_x L(x, z, p) = (L_{x_1}(x, z, p), \ldots, L_{x_n}(x, z, p)) ,\]

and

\[\nabla_p L(x, z, p) = (L_{p_1}(x, z, p), \ldots, L_{p_n}(x, z, p)) .\]

Each example from Section 1.1 involved a functional of the general form of (2.1). For the shortest path problem \(n = 1\) and

\[L(x, z, p) = g(x_1, z) \sqrt{1 + p_1^2} .\]

For the brachistochrone problem \(n = 1\) and

\[L(x, z, p) = \sqrt{\frac{1 + p_1^2}{-z}} .\]
For the minimal surface problem \(n = 2 \) and
\[
L(x, z, p) = \sqrt{1 + |p|^2}.
\]
For the image restoration problem \(n = 2 \) and
\[
L(x, z, p) = \frac{1}{2} (z - f(x))^2 + \lambda |p|.
\]
Finally, for the image segmentation problem
\[
L(x, z, p) = H(z) (f(x) - a)^2 + (1 - H(z)) (f(x) - b)^2 + \lambda \delta(z) |p|.
\]
We will always assume that \(L \) is smooth, and the boundary condition \(g : \partial U \to \mathbb{R} \) is smooth. We now give necessary conditions for minimizers of \(I \).

Theorem 2.1 (Euler-Lagrange equation). Suppose that \(u \in C^2(\overline{U}) \) satisfies
\[
I(u) \leq I(v)
\]
for all \(v \in C^2(\overline{U}) \) with \(v = u \) on \(\partial U \). Then
\[
L_z(x, u, \nabla u) - \text{div} (\nabla_p L(x, u, \nabla u)) = 0 \quad \text{in} \ U.
\]

Proof. Let \(\varphi \in C^\infty_c(U) \) and set \(v = u + t\varphi \) for a real number \(t \). Since \(\varphi = 0 \) on \(\partial U \) we have \(u = v \) on \(\partial U \). Thus, by assumption
\[
I(u) \leq I(v) = I(u + t\varphi) \quad \text{for all} \ t \in \mathbb{R}.
\]
This means that \(h(t) := I(u + t\varphi) \) has a global minimum at \(t = 0 \), i.e., \(h(0) \leq h(t) \) for all \(t \). It follows that \(h'(t) = 0 \), which is equivalent to
\[
\frac{d}{dt} \bigg|_{t=0} I(u + t\varphi) = 0.
\]
We now compute the derivative in (2.4). Notice that
\[
I(u + t\varphi) = \int_U L(x, u(x) + t\varphi(x), \nabla u(x) + t\nabla \varphi(x)) \, dx.
\]
For notational simplicity, let us suppress the \(x \) arguments from \(u(x) \) and \(\varphi(x) \). By the chain rule
\[
\frac{d}{dt} L(x, u + t\varphi, \nabla u + t\nabla \varphi) = L_z(x, u + t\varphi, \nabla u + t\nabla \varphi) \varphi + \nabla_p L(x, u + t\varphi, \nabla u + t\nabla \varphi) \cdot \nabla \varphi.
\]
Therefore
\[
\frac{d}{dt} \bigg|_{t=0} L(x, u + t\varphi, \nabla u + t\nabla \varphi) = L_z(x, u, \nabla u) \varphi + \nabla_p L(x, u, \nabla u) \cdot \nabla \varphi,
\]
and we have
\[
\frac{d}{dt} I(u + t\varphi) \bigg|_{t=0} = \frac{d}{dt} I(u(t) + t\varphi(x), \nabla u(x) + t\nabla \varphi(x)) dx
\]
\[
= \int_U \frac{d}{dt} I_{t=0} L(x, u(x) + t\varphi(x), \nabla u(x) + t\nabla \varphi(x)) dx
\]
\[
= \int_U L_z(x, u, \nabla u)\varphi + \nabla_p L(x, u, \nabla u) \cdot \nabla \varphi dx
\]
\[
(2.5)
\]
\[
= \int_U L_z(x, u, \nabla u)\varphi dx + \int_U \nabla_p L(x, u, \nabla u) \cdot \nabla \varphi dx.
\]
Since \(\varphi = 0 \) on \(\partial U \) we can use the Divergence Theorem (Theorem A.32) to compute
\[
\int_U \nabla_p L(x, u, \nabla u) \cdot \nabla \varphi dx = -\int_U \text{div}(\nabla_p L(x, u, \nabla u)) \varphi dx.
\]
Combining this with (2.4) and (2.5) we have
\[
0 = \frac{d}{dt} I(u + t\varphi) = \int_U (L_z(x, u, \nabla u) - \text{div}(\nabla_p L(x, u, \nabla u))) \varphi dx.
\]
It follows from the vanishing lemma (Lemma A.38 in the appendix) that
\[
L_z(x, u, \nabla u) - \text{div}(\nabla_p L(x, u, \nabla u)) = 0
\]
everywhere in \(U \), which completes the proof. \(\square \)

Remark 2.2. Theorem 2.1 says that minimizers of the functional \(I \) satisfy the PDE (2.3). The PDE (2.3) is called the Euler-Lagrange equation for \(I \).

Definition 2.3. A solution \(u \) of the Euler-Lagrange equation (2.3) is called a critical point of \(I \).

Remark 2.4. In dimension \(n = 1 \) we write \(x = x_1 \) and \(p = p_1 \). Then the Euler-Lagrange equation is
\[
L_z(x, u(x), u'(x)) - \frac{d}{dx} L_p(x, u(x), u'(x)) = 0.
\]

Remark 2.5. In the proof of Theorem 2.1 we showed that
\[
\int_U L_z(x, u, \nabla u)\varphi + \nabla_p L(x, u, \nabla u) \cdot \nabla \varphi dx = 0
\]
for all \(\varphi \in C^\infty_c(U) \). A function \(u \in C^1(U) \) satisfying the above for all \(\varphi \in C^\infty_c(U) \) is called a weak solution of the Euler-Lagrange equation (2.3). Thus, weak solutions of PDEs arise naturally in the calculus of variations.
Example 2.1. Consider the problem of minimizing the Dirichlet energy

\[
I(u) = \int_U \frac{1}{2} |\nabla u|^2 - uf \, dx,
\]
over all \(u \) satisfying \(u = g \) on \(\partial U \). Here, \(f : U \to \mathbb{R} \) and \(g : \partial U \to \mathbb{R} \) are given functions, and

\[
L(x,z,p) = \frac{1}{2} |p|^2 - zf(x).
\]

Therefore

\[
L_z(x,z,p) = -f(x) \quad \text{and} \quad \nabla_p L(x,z,p) = p,
\]
and the Euler-Lagrange equation is

\[-f(x) - \text{div}(\nabla u) = 0 \quad \text{in} \ U.\]

This is Poisson’s equation

\[-\Delta u = f \quad \text{in} \ U\]
subject to the boundary condition \(u = g \) on \(\partial U \). △

Exercise 2.6. Derive the Euler-Lagrange equation for the problem of minimizing

\[
I(u) = \int_U \frac{1}{p} |\nabla u|^p - uf \, dx
\]
subject to \(u = g \) on \(\partial U \), where \(p \geq 1 \). △

Example 2.2. The Euler-Lagrange equation in dimension \(n = 1 \) can be simplified when \(L \) has no \(x \)-dependence, so \(L = L(z,p) \). In this case the Euler-Lagrange equation reads

\[
L_z(u(x),u'(x)) = \frac{d}{dx} L_p(u(x),u'(x)).
\]

Using the Euler-Lagrange equation and the chain rule we compute

\[
\frac{d}{dx} L(u(x),u'(x)) = L_z(u(x),u'(x))u'(x) + L_p(u(x),u'(x))u''(x)
\]
\[
= u'(x) \frac{d}{dx} L_p(u(x),u'(x)) + L_p(u(x),u'(x))u''(x)
\]
\[
= \frac{d}{dx} (u'(x)L_p(u(x),u'(x))).
\]

Therefore

\[
\frac{d}{dx} \left(L(u(x),u'(x)) - u'(x)L_p(u(x),u'(x)) \right) = 0.
\]

It follows that

\[
L(u(x),u'(x)) - u'(x)L_p(u(x),u'(x)) = C
\]
for some constant \(C \). This form of the Euler-Lagrange equation is often easier to solve when \(L \) has no \(x \)-dependence. △
2.1. **THE GRADIENT INTERPRETATION**

In some of the examples presented in Section 1.1, such as the image segmentation and restoration problems, we did not impose any boundary condition on the minimizer \(u \). For such problems, Theorem 2.1 still applies, but the Euler-Lagrange equation (2.3) is not uniquely solvable without a boundary condition. Hence, we need some additional information about minimizers in order for the Euler-Lagrange equation to be useful for these problems.

Theorem 2.7. Suppose that \(u \in C^2(\overline{U}) \) satisfies

\[
I(u) \leq I(v)
\]

for all \(v \in C^2(\overline{U}) \). Then \(u \) satisfies the Euler-Lagrange equation (2.3) with boundary condition

\[
\nabla_p L(x, u, \nabla u) \cdot \nu = 0 \quad \text{on} \quad \partial U.
\]

Proof. By Theorem 2.1, \(u \) satisfies the Euler-Lagrange equation (2.3). We just need to show that \(u \) also satisfies the boundary condition (2.9).

Let \(\varphi \in C^\infty(\overline{U}) \) be a smooth function that is not necessarily zero on \(\partial U \). Then by hypothesis \(I(u) \leq I(u + t\varphi) \) for all \(t \). Therefore, as in the proof of Theorem 2.1 we have

\[
0 = \frac{d}{dt} \bigg|_{t=0} I(u + t\varphi) = \int_U L_z(x, u, \nabla u)\varphi + \nabla_p L(x, u, \nabla u) \cdot \nabla \varphi \, dx.
\]

Applying the Divergence Theorem (Theorem A.32) we find that

\[
0 = \int_{\partial U} \varphi \nabla_p L(x, u, \nabla u) \cdot \nu \, dS + \int_U (L_z(x, u, \nabla u) - \text{div} (\nabla_p L(x, u, \nabla u))) \varphi \, dx.
\]

Since \(u \) satisfies the Euler-Lagrange equation (2.3), the second term above vanishes and we have

\[
\int_{\partial U} \varphi \nabla_p L(x, u, \nabla u) \cdot \nu \, dS = 0
\]

for all test functions \(\varphi \in C^\infty(\overline{U}) \). By a slightly different version of the vanishing lemma (Lemma A.38 in the appendix) we have that

\[
\nabla_p L(x, u, \nabla u) \cdot \nu = 0 \quad \text{on} \quad \partial U.
\]

This completes the proof. \(\square \)

2.1 The gradient interpretation

We can interpret the Euler-Lagrange equation (2.3) as the gradient of \(I \). That is, in a certain sense (2.3) is equivalent to \(\nabla I(u) = 0 \).
To see why, let us consider a function \(u : \mathbb{R}^n \to \mathbb{R} \). The gradient of \(u \) is defined as the vector of partial derivatives
\[
\nabla u(x) = (u_{x_1}(x), u_{x_2}(x), \ldots, u_{x_n}(x)).
\]
By the chain rule we have
\[
\frac{d}{dt} \bigg|_{t=0} u(x + tv) = \nabla u(x) \cdot v
\]
for any vector \(v \in \mathbb{R}^n \). It is possible to take (2.11) as the definition of the gradient of \(u \). By this, we mean that \(w = \nabla u(x) \) is the unique vector satisfying
\[
\frac{d}{dt} \bigg|_{t=0} u(x + tv) = w \cdot v
\]
for all \(v \in \mathbb{R}^n \).

In the case of functionals \(I(u) \), we showed in the proof of Theorem 2.1 that
\[
\frac{d}{dt} \bigg|_{t=0} I(u + t\varphi) = (L_z(x,u,\nabla u) - \text{div} (\nabla_p L(x,u,\nabla u)), \varphi)_{L^2(U)}
\]
for all \(\varphi \in C_\infty_c(U) \). Here, the \(L^2 \)-inner product plays the role of the dot product from the finite dimensional case. Thus, it makes sense to define the gradient, also called the functional gradient, to be
\[
\nabla I(u) := L_z(x,u,\nabla u) - \text{div} (\nabla_p L(x,u,\nabla u)),
\]
so that we have the identity
\[
\frac{d}{dt} \bigg|_{t=0} I(u + t\varphi) = (\nabla I(u), \varphi)_{L^2(U)}.
\]
The reader should compare this with the ordinary chain rule (2.11). Notice the definition of the gradient \(\nabla I \) depends on the choice of the \(L^2 \)-inner product. Using other inner products will result in different notions of gradient.

2.2 The Lagrange multiplier

There are many problems in the calculus of variations that involve constraints on the feasible minimizers. A classic example is the isoperimetric problem, which corresponds to finding the shape of a simple closed curve that maximizes the enclosed area given the curve has a fixed length \(\ell \). Here we are maximizing the area enclosed by the curve subject to the constraint that the length of the curve is equal to \(\ell \).

Let \(J \) be a functional defined by
\[
J(u) = \int_U H(x,u(x),\nabla u(x)) \, dx.
\]
2.2. THE LAGRANGE MULTIPLIER

We consider the problem of minimizing $I(u)$ subject to the constraint $J(u) = 0$. The Lagrange multiplier method gives necessary conditions that must be satisfied by any minimizer.

Theorem 2.8 (Lagrange multiplier). Suppose that $u \in C^2(\overline{U})$ satisfies $J(u) = 0$ and
\begin{equation}
I(u) \leq I(v)
\end{equation}
for all $v \in C^2(\overline{U})$ with $v = u$ on ∂U and $J(v) = 0$. Then there exists a real number λ such that
\begin{equation}
\nabla I(u) + \lambda \nabla J(u) = 0 \quad \text{in } U.
\end{equation}

Here, ∇ is the functional gradient of I and J, respectively, defined by (2.12).

Remark 2.9. The number λ in Theorem 2.8 is called a Lagrange multiplier.

Proof. We will give a short sketch of the proof. Let $\varphi \in C^\infty_c(U)$. Then as in Theorem 2.1
\[
\frac{d}{dt} \bigg|_{t=0} I(u + t\varphi) = (\nabla I(u), \varphi)_{L^2(U)} \quad \text{and} \quad \frac{d}{dt} \bigg|_{t=0} J(u + t\varphi) = (\nabla J(u), \varphi)_{L^2(U)}.
\]

Suppose that $(\nabla J(u), \varphi)_{L^2(U)} = 0$. Then, up to a small approximation error
\[
0 = J(u) = J(u + t\varphi)
\]
for small t. Since $\varphi = 0$ on ∂U, we also have $u = u + t\varphi$ on ∂U. Thus by hypothesis
\[
I(u) \leq I(u + t\varphi) \quad \text{for all small } t.
\]

Therefore, $t \mapsto I(u + t\varphi)$ has a minimum at $t = 0$ and so
\[
(\nabla I(u), \varphi)_{L^2(U)} = \frac{d}{dt} \bigg|_{t=0} I(u + t\varphi) = 0.
\]

Hence, we have shown that for all $\varphi \in C^\infty_c(U)$
\[
(\nabla J(u), \varphi)_{L^2(U)} = 0 \implies (\nabla I(u), \varphi)_{L^2(U)} = 0.
\]

This says that $\nabla I(u)$ is orthogonal to everything that is orthogonal to $\nabla J(u)$. Intuitively this must imply that $\nabla I(u)$ and $\nabla J(u)$ are co-linear; we give the proof below.

We now have three cases.

1. If $\nabla J(u) = 0$ then $(\nabla I(u), \varphi)_{L^2(U)} = 0$ for all $\varphi \in C^\infty(U)$, and by the vanishing lemma $\nabla I(u) = 0$. Here we can choose any real number for λ.
2. If $\nabla I(u) = 0$ then we can take $\lambda = 0$ to complete the proof.
3. Now we can assume $\nabla I(u) \neq 0$ and $\nabla J(u) \neq 0$. Define
\[
\lambda = -\frac{(\nabla I(u), \nabla J(u))_{L^2(U)}}{\|\nabla J(u)\|_{L^2(U)}} \quad \text{and} \quad v = \nabla I(u) + \lambda \nabla J(u).
\]
By the definition of λ we can check that
\[
(\nabla J(u), v)_{L^2(U)} = 0.
\]
Therefore $(\nabla I(u), v)_{L^2(U)} = 0$ and we have
\[
0 = (\nabla I(u), v)_{L^2(U)} = (v - \lambda \nabla J(u), v)_{L^2(U)} = (v, v)_{L^2(U)} - \lambda (\nabla J(u), v)_{L^2(U)} = \|v\|_{L^2(U)}^2.
\]
Therefore $v = 0$ and so $\nabla I(u) + \lambda \nabla J(u) = 0$. This completes the proof. \hfill \Box

Remark 2.10. Notice that (2.15) is equivalent to the necessary conditions minimizers for the augmented functional
\[
K(u) = I(u) + \lambda J(u).
\]

2.3 Gradient descent

To numerically compute solutions of the Euler-Lagrange equation $\nabla I(u) = 0$, we often use gradient descent, which corresponds to solving the PDE
\[
\begin{cases}
 u_t(x, t) = -\nabla I(u(x, t)), & \text{in } U \times (0, \infty) \\
 u(x, 0) = u_0(x), & \text{on } U \times \{t = 0\}.
\end{cases}
\tag{2.16}
\]

We also impose the boundary condition $u = g$ or $\nabla_p L(x, u, \nabla u) \cdot \nu = 0$ on $\partial U \times (0, \infty)$, depending on which condition was imposed in the variational problem. Gradient descent evolves u in the direction that decreases I most rapidly, starting at some initial guess u_0. If we reach a stationary point where $u_t = 0$ then we have found a solution of the Euler-Lagrange equation $\nabla I(u) = 0$. If solutions of the Euler-Lagrange equation are not unique, we may find different solutions depending on the choice of u_0.

To see that gradient descent actually decreases I, let $u(x, t)$ solve (2.16) and
compute
\[
\frac{d}{dt} I(u) = \int_U \frac{d}{dt} L(x, u(x, t), \nabla u(x, t)) \, dx \\
= \int_U L_z(x, u, \nabla u) u_t + \nabla_p L(x, u, \nabla u) \nabla u_t \, dx \\
= \int_U (L_z(x, u, \nabla u) - \text{div} (\nabla_p L(x, u, \nabla u))) u_t \, dx \\
= (\nabla I(u), u_t)_{L^2(U)} \\
= (\nabla I(u), -\nabla I(u))_{L^2(U)} \\
= -\|\nabla I(u)\|_{L^2(U)} \\
\leq 0.
\]

We used integration by parts in the third line, mimicking the proof of Theorem 2.1. Notice that either boundary condition \(u = g \) or \(\nabla_p L(x, u, \nabla u) \cdot \nu = 0 \) on \(\partial U \) ensures the boundary terms vanish in the integration by parts.

Notice that by writing out the Euler-Lagrange equation we can write the gradient descent PDE (2.16) as

\[
\begin{array}{c}
\{ u_t + L_z(x, u, \nabla u) - \text{div} (\nabla_p L(x, u, \nabla u)) = 0, \quad \text{in } U \times (0, \infty) \\
u = u_0, \quad \text{on } U \times \{ t = 0 \}
\end{array}
\]

\[(2.17) \]

Example 2.3. Gradient descent on the Dirichlet energy (2.6) is the heat equation

\[
\begin{array}{c}
\{ u_t - \Delta u = f, \quad \text{in } U \times (0, \infty) \\
u = u_0, \quad \text{on } U \times \{ t = 0 \}
\end{array}
\]

\[(2.18) \]

Thus, solving the heat equation is the fastest way to decrease the Dirichlet energy. \(\triangle \)

We now prove that gradient descent converges to the unique solution of the Euler-Lagrange equation when \(I \) is strongly convex. For simplicity, we consider functionals of the form

\[
I(u) = \int_U \Psi(x, u) + \Phi(x, \nabla u) \, dx.
\]

This includes the regularized variational problems used for image denoising in Example 1.4 and Section 3.6, for example. The reader may want to review definitions and properties of convex functions in Section A.8 before reading the following theorem.

Theorem 2.11. Assume \(I \) is given by (2.19), where \(z \mapsto \Psi(x, z) \) is \(\theta \)-strongly convex for \(\theta > 0 \) and \(p \mapsto \Phi(x, p) \) is convex. Let \(u^* \in C^2(\overline{U}) \) be any function satisfying

\[
\nabla I(u^*) = 0 \quad \text{in } U.
\]

\[(2.20) \]
CHAPTER 2. THE EULER-LAGRANGE EQUATION

Let \(u(x, t) \in C^2(\overline{U} \times [0, \infty)) \) be a solution of the gradient descent equation (2.16) and assume that \(u = u^* \) on \(\partial U \) for all \(t > 0 \). Then

(2.21) \[\|u - u^*\|_{L^2(U)}^2 \leq Ce^{-2\theta t} \quad \text{for all } t \geq 0, \]

where \(C = \|u_0 - u^*\|_{L^2(U)}^2 \).

Proof. Define the energy

(2.22) \[e(t) = \frac{1}{2}\|u - u^*\|_{L^2(U)}^2 = \frac{1}{2} \int_U (u(x, t) - u^*(x))^2 \, dx. \]

We differentiate \(e(t) \), use the equations solved by \(u \) and \(u^* \) and the divergence theorem to find that

\[
e'(t) = \int_U (u - u^*) u_t \, dx \\
= -\int_U (\nabla I(u) - \nabla I(u^*)) (u - u^*) \, dx \\
= -\int_U (\Psi_z(x, u) - \Psi_z(x, u^*)) (u - u^*) \, dx \\
\hspace{2cm} - \int_U \text{div}(\nabla p \Phi(x, \nabla u) - \nabla p \Phi(x, \nabla u^*)) (u - u^*) \, dx \\
= -\int_U (\Psi_z(x, u) - \Psi_z(x, u^*)) (u - u^*) \, dx \\
\hspace{2cm} + \int_U (\nabla p \Phi(x, \nabla u) - \nabla p \Phi(x, \nabla u^*)) \cdot (\nabla u - \nabla u^*) \, dx.
\]

Since \(z \mapsto \Psi(x, z) \) is \(\theta \)-strongly convex, Theorem A.37 yields

\[(\Psi_z(x, u) - \Psi_z(x, u^*)) (u - u^*) \geq \theta (u - u^*)^2.\]

Likewise, since \(p \mapsto \Phi(x, p) \) is convex, Theorem A.37 implies that

\[(\nabla p \Phi(x, \nabla u) - \nabla p \Phi(x, \nabla u^*)) \cdot (\nabla u - \nabla u^*) \geq 0.\]

Therefore

(2.23) \[e'(t) \leq -\theta \int_U (u - u^*)^2 \, dx = -2\theta e(t). \]

Noting that

\[\frac{d}{dt} (e(t)e^{-2\theta t}) = e'(t)e^{-2\theta t} - 2\theta e(t)e^{-2\theta t} \leq 0, \]

we have \(e(t) \leq e(0)e^{-2\theta t} \), which completes the proof. \(\square \)
2.4. ACCELERATED GRADIENT DESCENT

Remark 2.12. Notice that the proof of Theorem 2.11 shows that solutions of $\nabla I(u) = 0$, subject to Dirichlet boundary condition $u = g$ on ∂U, are unique.

Remark 2.13. From an optimization or numerical analysis point of view, the exponential convergence rate (2.21) is a linear convergence rate. Indeed, if we consider the decay in the energy $e(t)$ defined in (2.22) over a unit Δt in time, then Eq. (2.23) yields

$$e(t + \Delta t) - e(t) = \int_t^{t+\Delta t} e'(s) \, ds \leq -2\theta \int_t^{t+\Delta t} e(s) \, ds \leq -2\theta \Delta t e(t + \Delta t),$$

since e is decreasing. Therefore

$$\frac{e(t + \Delta t)}{e(t)} \leq \frac{1}{1 + 2\theta \Delta t} =: \mu.$$

Hence, gradient descent converges with a convergence rate of $\mu \approx 1 - 2\theta \Delta t < 1$. It is important to point out that the convergence rate depends on the time step Δt with which we discretize the equation. This will be discussed further in Section 2.4.

2.4 Accelerated gradient descent

Theorem 2.11 shows that gradient descent converges at a linear rate in the strongly convex setting. This is what one expects from first order optimization methods that only use gradient information. To obtain higher order convergence rates, one usually needs to consider higher order methods, such as Newton’s method. However, for large scale problems, computing and storing the Hessian matrix is intractable.

It is possible, however, to accelerate the convergence of gradient descent without using second order methods. In some situations, this can yield an order of magnitude better linear convergence rate, while adding no significant additional computational burden. We describe some of these methods, in the PDE setting, here.

Heuristically, one often hears gradient descent explained as a ball rolling down the energy landscape and landing in a valley corresponding to a local or global minimum. However, this is clearly a false analogy, since a rolling ball has momentum, and its velocity cannot change instantaneously, whereas gradient descent $u_t = -\nabla I(u)$ has no notion of momentum and the velocity depends only on the current position. The idea of accelerated gradient descent is based on introducing additional momentum terms into the descent equations, to make the equations appear more similar to the equations of motion for a heavy ball with friction rolling down the energy landscape. In optimization, the ideas date back to Polyak’s heavy ball method [16] and Nesterov’s accelerated gradient descent [14]. Accelerated gradient descent combined with stochastic gradient descent is used to train modern machine learning algorithms, such as deep neural networks [12].
Accelerated gradient descent can be formulated in a Lagrangian setting, with striking connections to the calculus of variations. In Lagrangian mechanics, the equations of motion for the trajectory $x(t)$ of a system is exactly the Euler-Lagrange equation for an action functional of the form

$$\int_a^b K(x'(t)) - P(x(t)) \, dt$$

where K is the kinetic energy and P is the potential energy. The total energy $K + P$ is conserved in Lagrangian mechanics, and momentum arises through the kinetic energy K.

Example 2.4 (Mass on a spring). Consider the motion of a mass on a spring with spring constant $k > 0$. Assume one end of the spring is fixed to a wall at position $x = 0$ and the other end attached to a mass at position $x(t) > 0$. The spring is relaxed (at rest) at position $x = a > 0$, and we assume the mass slides horizontally along a frictionless surface. Here, the kinetic energy is $\frac{1}{2}mx'(t)^2$, where m is the mass of the spring. The potential energy is the energy stored in the spring, and is given by $\frac{1}{2}k(x(t) - a)^2$, according to Hooke’s law. Hence, the Lagrangian action is

$$\int_a^b \frac{1}{2}mx'(t)^2 - \frac{1}{2}k(x(t) - a)^2 \, dt.$$

The corresponding Euler-Lagrange equation is

$$-\frac{d}{dt}(mx'(t)) - k(x(t) - a) = 0,$$

which reduces to the equations of motion $mx''(t) + k(x(t) - a) = 0$. △

Exercise 2.14. Let $f : \mathbb{R} \to \mathbb{R}$ and suppose a bead of mass $m > 0$ is sliding without friction along the graph of f under the force of gravity. Let g denote the acceleration due to gravity, and write the trajectory of the bead as $(x(t), f(x(t)))$. What are the equations of motion satisfied by $x(t)$. [Hint: Follow Example 2.4, using the appropriate expressions for kinetic and potential energy. Note that kinetic energy is not $\frac{1}{2}mx'(t)^2$, since this only measures horizontal movement, and bead is moving vertically as well. The potential energy is $mgf(x(t))$.] △

In our setting, we may take the kinetic energy of $u = u(x,t)$ to be

$$K(u) = \frac{1}{2} \int_U u_t^2 \, dx,$$

and the potential energy to be the functional $I(u)$ we wish to minimize, defined in (2.1). Then our action functional is

$$\int_a^b \int_U \frac{1}{2}u_t^2 - L(x,u,\nabla u) \, dx \, dt.$$
The equations of motion are simply the Euler-Lagrange equations for \((2.25) \), treating the problem in \(\mathbb{R}^{n+1} \) with \((x,t)\) as our variables, which are

\[
-\frac{\partial}{\partial t} u_t - (L_z - \text{div}_x(\nabla_p L(x, u, \nabla u))) = 0.
\]

This reduces to \(u_{tt} = -\nabla I(u) \), which is a nonlinear wave equation in our setting. Unfortunately this wave equation will conserve energy, and is thus useless for optimization.

In order to ensure we descend on the energy \(I(u) \), we need to introduce some dissipative agent into the problem, such as friction. In the Lagrangian setting, this can be obtained by adding time-dependent functions into the action functional, in the form

\[
(2.26) \quad \int_a^b \int_U e^{at} \left(\frac{1}{2} u_t^2 - L(x, u, \nabla u) \right) \, dx \, dt,
\]

where \(a > 0 \). The Euler-Lagrange equations are now

\[
-\frac{\partial}{\partial t} (e^{at} u_t) - e^{at} (L_z - \text{div}_x(\nabla_p L(x, u, \nabla u))) = 0,
\]

which reduce to

\[
(2.27) \quad u_{tt} + au_t = -\nabla I(u).
\]

Notice that in the descent equation \((2.27) \), the gradient \(\nabla I(u) \) acts as a forcing term that causes acceleration, whereas in gradient descent \(u_t = -\nabla I(u) \), the gradient is the velocity. The additional term \(au_t \) is a damping term, with the physical interpretation of friction for a rolling (or sliding) ball, with \(a > 0 \) the coefficient of friction. The damping term dissipates energy, allowing the system to converge to a critical point of \(I \). We note it is possible to make other modifications to the action functional \((2.26) \) to obtain a more general class of descent equations (see, e.g., [4]).

The accelerated descent equation \((2.27) \) does not necessarily descend on \(I(u) \). However, since we derived the equation from a Lagrangian variational formulation, we do have monotonicity of total energy.

Lemma 2.15 (Energy monotonicity [4, Lemma 1]). Assume \(a \geq 0 \) and let \(u \) satisfy \((2.27) \). Suppose either \(u(x, t) = g(x) \) or \(\nabla_p L(x, u, \nabla u) \cdot n = 0 \) for \(x \in \partial U \) and \(t > 0 \). Then for all \(t > 0 \) we have

\[
(2.28) \quad \frac{d}{dt} (K(u) + I(u)) = -2aK(u).
\]
Proof.

\[
\frac{d}{dt} I(u) = \int_U \frac{d}{dt} L(x, u, \nabla u) \, dx
\]

\[
= \int_U L_z(x, u, \nabla u) u_t + \nabla_p L(x, u, \nabla u) \nabla u_t \, dx
\]

\[
= \int_U L_z(x, u, \nabla u) u_t - \text{div}_x(\nabla_p L(x, u, \nabla u)) u_t \, dx
\]

\[
+ \int_{\partial U} u_t \nabla_p L(x, u, \nabla u) \cdot \nu \, dS
\]

\[
= \int_U \nabla I(u) u_t \, dx + \int_{\partial U} u_t \nabla_p L(x, u, \nabla u) \cdot \nu \, dS.
\]

Due to the boundary condition on \(\partial U \), either \(u_t = 0 \) or \(\nabla_p L(x, u, \nabla u) \cdot \nu = 0 \) on \(\partial U \).
Therefore

\[
\frac{d}{dt} I(u) = \int_U \nabla I(u) u_t \, dx.
\]

Similarly, we have

\[
\frac{d}{dt} K(u) = \int_U u_t u_{tt} \, dx
\]

\[
= \int_U u_t (-au_t - \nabla I(u)) \, dx
\]

\[
= -2a K(u) - \int_U \nabla I(u) u_t \, dx,
\]

where we used the equations of motion (2.27) in the second step above. Adding (2.30) and (2.31) completes the proof. \(\square \)

It is possible to prove an exponential convergence rate for the accelerated descent equations (2.27) to the solution \(u^* \) of \(\nabla I(u^*) = 0 \) in the strongly convex setting, as we did in Theorem 2.11 for gradient descent. The proof uses energy methods, as in Theorem 2.11, but is more involved, so we refer the reader to [4, Theorem 1].

There is a natural question the reader may have at this point. If both gradient descent and accelerated gradient descent have similar exponential convergence rates, why would acceleration converge faster than gradient descent? The answer is that the accelerated convergence rate is invisible at the level of the continuum descent equations (2.16) and (2.27). The acceleration is realized only when the equations are discretized in space-time, which is necessary for computations. Recall from Remark 2.13 that the convergence rate for a discretization with time step \(\Delta t \) is

\[
\mu \approx 1 - c\Delta t,
\]
2.4. ACCELERATED GRADIENT DESCENT

where \(c > 0 \) is the exponential rate. Hence, the convergence rate \(\mu \) depends crucially on how large we can take the time step \(\Delta t \); larger time steps yield much faster convergence rates. The time step is restricted by stability considerations in the discrete schemes, also called Courant-Friedrichs-Lewy (CFL) conditions.

The gradient descent equation (2.16) is first order in time and second order in space, so the ratio \(\frac{\Delta t}{\Delta x^2} \) appears in the discretization of the descent equation, where \(\Delta x \) is the spatial resolution. Stability considerations require bounding this ratio and so \(\Delta t \leq C \Delta x^2 \) turns out to be the stability condition for gradient descent equations in this setting. This is a very restrictive stability condition, and such equations are called numerically stiff. This yields a convergence rate of the form

\[
\mu \approx 1 - C \Delta x^2
\]

for gradient descent.

On the other hand, the accelerated gradient descent equation (2.27) is second order in space and time. Hence, the ratio \(\frac{\Delta t^2}{\Delta x^2} \) appears in the discrete scheme, and stability conditions amount to bounding \(\Delta t \leq C \Delta x \). Another way to see this is that wave equations have bounded speed of propagation \(c \), and the CFL condition amounts to ensuring that the speed of propagation of the discrete scheme is at least as fast as \(c \), that is \(\frac{\Delta x}{\Delta t} \geq c \). Thus, accelerated gradient descent has a convergence rate of the form

\[
\mu \approx 1 - C \Delta x
\]

Thus, as a function of the grid resolution \(\Delta x \), the accelerated equation (2.27) has a convergence rate that is a whole order of magnitude better than the gradient descent equation (2.16). At a basic level, gradient descent is a diffusion equation, which is numerically stiff, while accelerated descent is a wave equation, which does not exhibit the same stiffness. The discussion above is only heuristic; we refer the reader to [4] for more details.

We present below the results of a simple numerical simulation to show the difference between gradient descent and accelerated gradient descent. We consider solving the Dirichlet problem

\[
\begin{cases}
\Delta u = 0 & \text{in } U \\
u = g & \text{on } \partial U,
\end{cases}
\]

in which case \(\nabla I(u) = -\Delta u \) in both (2.27) and (2.16). We choose \(a = 2\pi^1, g(x_1, x_2) = \sin(2\pi x_1^2) + \sin(2\pi x_2^2) \), and use initial condition \(u(x, 0) = g(x) \). We discretize using the standard 5-point stencil for \(\Delta u \) in \(n = 2 \) dimensions, and use forward differences for \(u_t \) and centered differences for \(u_{tt} \). We choose the largest stable time step for each scheme and run the corresponding descent equations until the discretization of (2.34)
Accelerated descent

Table 2.1: Comparison of PDE acceleration (2.27) and gradient descent (2.16) for solving the Dirichlet problem (2.34). Runtimes are for C code, and copied from [4].

is satisfied up to an $O(\Delta x^2)$ error. The iteration counts and computation times for C code are shown in Table 2.1 for different grid resolutions.

We note that many other methods are faster for linear equations, such as multigrid or Fast Fourier Transform. The point here is to contrast the difference between gradient descent and accelerated gradient descent. The accelerated descent method works equally well for non-linear problems where multigrid and FFT methods do not work, or in the case of multigrid take substantial work to apply.

Remark 2.16. We have not taken into account discretization errors in our analysis above. In practice, the solution is computed on a grid of spacing Δx in the space dimensions and Δt in time. The discretization errors accumulate over time, and need to be controlled to ensure convergence of the numerical scheme.

For gradient descent, the PDE is first order in space and second order in time, and the discretization errors on $U \times [0, T]$ are bounded by $CT(\Delta t + \Delta x^2)$, which is proved in standard numerical analysis books. Thus, by (2.21) the error between the discrete solution and the minimizer u^* is bounded by

$$\|u_{\Delta t, \Delta x} - u^*\|_{L^2(U)}^2 \leq C(e^{-2\theta t} + t^2(\Delta t^2 + \Delta x^4))$$

for all $t \geq 0$,

where $u_{\Delta t, \Delta x}$ denotes any piecewise constant extension of the numerical solution to U. Furthermore, since $\Delta t \leq C\Delta x^2$ is necessary for stability and convergence of the gradient descent equation, we have the bound

$$\|u_{\Delta t, \Delta x} - u^*\|_{L^2(U)}^2 \leq C(e^{-2\theta t} + t^2 \Delta x^4).$$

Choosing $T = -\log(\Delta x^4)/2\theta$ as our stopping time, we have

$$\|u_{\Delta t, \Delta x}(\cdot, T) - u^*(\cdot, T)\|_{L^2(U)} \leq C\theta^{-1} \log(\Delta x^{-1}) \Delta x^2.$$

Hence, our numerical solution computes the true solution u^* up to $O(\Delta x^2)$ accuracy (excluding log factors) in $k = \frac{T}{\Delta t} = \frac{C}{\Delta x^2}$ iterations. The analysis for accelerated

\[1\text{The choice } a = 2\pi \text{ is optimal. See Exercise 2.18 for an explanation in a simple setting.}\]
2.4. ACCELERATED GRADIENT DESCENT

Gradient descent is identical, except here \(\Delta t \leq C \Delta x \) is sufficient for stability and convergence of the scheme, and so only \(k = \frac{C}{\Delta x} \) iterations are needed for convergence.

Exercise 2.17. Consider the linear ordinary differential equation (ODE) version of gradient descent

\[
(2.35) \quad x'(t) = b - A x(t), \quad t > 0,
\]

where \(x : [0, \infty) \to \mathbb{R}^n \), \(b \in \mathbb{R}^n \), and the matrix \(A \in \mathbb{R}^{n \times n} \) is symmetric and positive definite. Prove that for any initial condition \(x(0) = x_0 \), the solution of (3.1) converges exponentially fast (as in Theorem 2.11) to the solution of \(A x = b \). How does the convergence rate depend on \(A \)? [Hint: Since \(A \) is symmetric and positive definite, there is an orthonormal basis \(v_1, v_2, \ldots, v_n \) for \(\mathbb{R}^n \) consisting of eigenvectors of \(A \) with corresponding eigenvalues \(0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \), counted with multiplicity. The solution of (2.35) can be expressed in the form

\[
x(t) = \sum_{i=1}^{n} d_i(t)v_i
\]

for corresponding functions \(d_1(t), \ldots, d_n(t) \). Find the \(d_i(t) \) and complete the problem from here.] \(\triangle \)

Exercise 2.18. Consider the linear ordinary differential equation (ODE) version of acceleration

\[
(2.36) \quad x''(t) + a x'(t) = b - A x(t), \quad t > 0,
\]

where \(x : [0, \infty) \to \mathbb{R}^n \), \(b \in \mathbb{R}^n \), and the matrix \(A \in \mathbb{R}^{n \times n} \) is symmetric and positive definite. Prove that for any initial condition \(x(0) = x_0 \), the solution of (3.1) converges exponentially fast (as in Theorem 2.11) to the solution of \(A x = b \). How does the convergence rate depend on \(A \) and \(a \)? What is the optimal choice of the damping coefficient \(a > 0 \) to obtain the fastest convergence rate, and how does the convergence rate compare with the rate for gradient descent obtained in Exercise 2.17? [Hint: Use the same approach as in Exercise 2.17.] \(\triangle \)

Notes

We note the presentation here is an adaptation of the variational interpretation of acceleration due to Wibisono, Wilson, and Jordan [20] to the PDE setting. The framework is called \textit{PDE acceleration}; for more details see [2, 4, 19, 21]. We also mention the dynamical systems perspective is investigated in [1].
Chapter 3

Applications

We now continue the parade of examples by computing and solving the Euler-Lagrange equations for the examples from Section 1.1.

3.1 Shortest path

Recall for the shortest path problem we wish to minimize

\[I(u) = \int_{0}^{a} g(x, u(x)) \sqrt{1 + u'(x)^2} \, dx, \]

subject to \(u(0) = 0 \) and \(u(a) = b \). Here \(n = 1 \) and

\[L(x, z, p) = g(x, z) \sqrt{1 + p^2}. \]

Therefore \(L_z(x, z, p) = g_z(x, z) \sqrt{1 + p^2} \) and \(L_p(x, z, p) = g(x, z)(1 + p^2)^{-\frac{1}{2}} p \). The Euler-Lagrange equation is

\[g_z(x, u(x)) \sqrt{1 + u'(x)^2} - \frac{d}{dx} \left(g(x, u(x))(1 + u'(x)^2)^{-\frac{1}{2}} u'(x) \right) = 0. \]

This is in general difficult to solve. In the special case that \(g(x, z) = 1 \), \(g_z = 0 \) and this reduces to

\[\frac{d}{dx} \left(\frac{u'(x)}{\sqrt{1 + u'(x)^2}} \right) = 0. \]

Computing the derivative yields

\[\sqrt{1 + u'(x)^2} u''(x) - u'(x)(1 + u'(x)^2)^{-\frac{1}{2}} u'(x) u''(x) = 0. \]

Multiplying both sides by \(\sqrt{1 + u'(x)^2} \) we obtain

\[(1 + u'(x)^2) u''(x) - u'(x)^2 u''(x) = 0. \]

This reduces to \(u''(x) = 0 \), hence the solution is a straight line! This verifies our intuition that the shortest path between two points is a straight line.
3.2 The brachistochrone problem

Recall for the brachistochrone problem we wish to minimize

\[I(u) = \frac{1}{\sqrt{2g}} \int_0^a \sqrt{\frac{1 + u'(x)^2}{-u(x)}} \, dx, \]

subject to \(u(0) = 0 \) and \(u(a) = b \). Here, \(n = 1 \) and

\[L(x, z, p) = \sqrt{1 + p^2} - z. \]

Therefore

\[L_p(x, z, p) = \frac{p}{\sqrt{-z(1 + p^2)}}. \]

Notice in this case that \(L \) has no \(x \)-dependence. Hence we can use the alternative form of the Euler-Lagrange equation (2.7), which yields

\[\sqrt{\frac{1 + u'(x)^2}{-u(x)}} - \frac{u'(x)^2}{\sqrt{-u(x)(1 + u'(x)^2)}} = C \]

for a constant \(C \). Making some algebraic simplifications leads to

(3.1) \[u(x) + u(x)u'(x)^2 = C, \]

where the constant \(C \) is different than the one on the previous line. The constant \(C \) should be chosen to ensure the boundary conditions hold.

Before solving (3.1), let us note that we can say quite a bit about the solution \(u \) from the ODE it solves. First, since \(u(a) = b < 0 \), the left hand side must be negative somewhere, hence \(C < 0 \). Solving for \(u'(x)^2 \) we have

\[u'(x)^2 = \frac{C - u(x)}{u(x)}. \]

This tells us two things. First, since the left hand side is positive, so is the right hand side. Hence \(C - u(x) \leq 0 \) and so \(u(x) \geq C \). If \(u \) attains its maximum at an interior point \(0 < x < a \) then \(u'(x) = 0 \) and \(u(x) = C \), hence \(u \) is constant. This is impossible, so the maximum of \(u \) is attained at \(x = 0 \) and we have

\[C \leq u(x) < 0 \quad \text{for} \quad 0 < x \leq a. \]

This means in particular that we must select \(C \leq b \).

Second, as \(x \to 0^+ \) we have \(u(x) \to 0^- \) and hence

\[\lim_{x \to 0^+} u'(x)^2 = \lim_{x \to 0^+} \frac{C - u(x)}{u(x)} = \lim_{t \to 0^-} \frac{C - t}{t} = \infty. \]
3.2. THE BRACHISTOCHRONE PROBLEM

Since $x = 0$ is a local maximum of u, we have $u'(x) < 0$ for $x > 0$ small. Therefore

$$\lim_{x \to 0^+} u'(x) = -\infty.$$

This says that the optimal curve starts out vertical.

Third, we can differentiate (3.1) to find that

$$u'(x) + u'(x)^3 + 2u(x)u'(x)u''(x) = 0.$$

Therefore

(3.2) \quad 1 + u'(x)^2 = -2u(x)u''(x).$$

Since the left hand side is positive, so is the right hand side, and we deduce $u''(x) > 0$. Therefore $u'(x)$ is strictly increasing, and u is a convex function of x. In fact, we can say slightly more. Solving for $u''(x)$ and using (3.1) we have

$$u''(x) = -\frac{1 + u'(x)^2}{2u(x)} = -\frac{(1 + u'(x)^2)^2}{2C} \geq -\frac{1}{2C} > 0.$$

This means that u is uniformly convex, and for large enough x we will have $u'(x) > 0$, so the optimal curve could eventually be increasing.

In fact, since u' is strictly increasing, there exists (by the intermediate value theorem) a unique point $x^* > 0$ such that $u'(x^*) = 0$. We claim that u is symmetric about this point, that is

$$u(x^* + x) = u(x^* - x).$$

To see this, write $w(x) = u(x^* + x)$ and $v(x) = u(x^* - x)$. Then

$$w'(x) = u'(x^* + x) \quad \text{and} \quad v'(x) = -u'(x^* - x).$$

Using (3.1) we have

$$w(x) + w(x)w'(x) = u(x^* + x) + u(x^* + x)u'(x^* + x)^2 = C$$

and

$$v(x) + v(x)v'(x) = u(x^* - x) + u(x^* - x)u'(x^* - x)^2 = C.$$

Differentiating the equations above, we find that both w and v satisfy the second order ODE (3.2). We also note that $w(0) = u(x^*) = v(0)$, and $w'(0) = u'(x_*) = 0$ and $v'(0) = -u'(x_*) = 0$, so $w'(0) = v'(0)$. Since solutions of the initial value problem for (3.2) are unique, provided their values stay away from zero, we find that $w(x) = v(x)$, which establishes the claim. The point of this discussion is that without explicitly computing the solution, we can say quite a bit both quantitatively and qualitatively about the solutions.
We now solve (3.1). Note we can write
\[u(x) = \frac{C}{1 + u'(x)^2}. \]
Since \(u' \) is strictly increasing, the angle \(\theta \) between the tangent vector \((1, u'(x))\) and the vertical \((0, -1)\) is strictly increasing. Therefore, we can parametrize the curve in terms of this angle \(\theta \). Let us write \(C(\theta) = (x(\theta), y(\theta)) \). Then we have \(y(\theta) = u(x) \) and
\[\sin^2 \theta = \frac{1}{1 + u'(x)^2}. \]
Therefore
\[y(\theta) = C \sin^2 \theta = -\frac{C}{2} (\cos(2\theta) - 1). \]
Since \(y(\theta) = u(x) \)
\[\frac{dy}{dx} = u'(x) = -\frac{\cos \theta}{\sin \theta}. \]
By the chain rule
\[x'(\theta) = \frac{dx}{d\theta} = \frac{dx}{dy} \frac{dy}{d\theta} = \left(-\frac{\sin \theta}{\cos \theta} \right) (2C \sin \theta \cos \theta) = -2C \sin \theta. \]
Therefore
\[x(\theta) = C \int_0^\theta \cos(2\theta) - 1 \, dt = -\frac{C}{2} (2\theta - \sin(2\theta)). \]
This gives an explicit solution for the brachistochrone problem, where \(\theta \) is just the parameter of the curve.

There is a nice geometrical interpretation of the brachistochrone curve. Notice that
\[\begin{bmatrix} x(\theta) \\ y(\theta) \end{bmatrix} = \frac{C}{2} \begin{bmatrix} 2\theta \\ -1 \end{bmatrix} - \frac{C}{2} \begin{bmatrix} -\sin(2\theta) \\ \cos(2\theta) \end{bmatrix}. \]
The first term parametrizes the line \(y = C/2 \), while the second term traverses the circle of radius \(r = -C/2 \) in the counterclockwise direction. Thus, the curve is traced by a point on the rim of a circular wheel as the wheel rolls along the \(x \)-axis. Such a curve is called a \textit{cycloid}.

Notice that the minimum occurs when \(\theta = \frac{\pi}{2} \), and \(y = C \) and \(x = -\frac{C\pi}{2} \). Hence the minima of all brachistochrone curves lie on the line
\[x + \frac{\pi}{2} y = 0. \]
It follow that if \(a + \frac{\pi}{2} b > 0 \), then the optimal path starts traveling steeply downhill, reaches a low point, and then climbs uphill before arriving at the final point \((a, b)\). If \(a + \frac{\pi}{2} b \leq 0 \) then the bead is always moving downhill. See Figure 3.1 for an illustration of the family of brachistochrone curves.
3.2. THE BRACHISTOCHRONE PROBLEM

Figure 3.1: Family of brachistochrone curves. The straight line is the line \(x + \frac{\pi}{2} y = 0 \) passing through the minima of all brachistochrone curves.

Now, suppose instead of releasing the bead from the top of the curve, we release the bead from some position \((x_0, u(x_0))\) further down (but before the minimum) on the brachistochrone curve. How long does it take the bead to reach the lowest point on the curve? It turns out this time is the same regardless of where you place the bead on the curve! To see why, we recall that conservation of energy gives us

\[
\frac{1}{2} m v(x)^2 + m g u(x) = m g u(x_0),
\]

where \(v(x) \) is the velocity of the bead. Therefore

\[
v(x) = \sqrt{2 g (u(x_0) - u(x))},
\]

and the time to descend to the lowest point is

\[
T = \frac{1}{\sqrt{2g}} \int_{x_0}^{-\frac{C\pi}{2}} \sqrt{\frac{1 + u'(x)^2}{u(x_0) - u(x)}} dx.
\]

Recall that

\[
1 + u'(x)^2 = \frac{1}{\sin^2 \theta}, \quad u(x) = y(\theta) = C \sin^2 \theta, \quad \text{and} \quad dx = -2C \sin^2 \theta d\theta,
\]

where \(u(x_0) = y(\theta_0) = C \sin^2 \theta_0 \). Making the change of variables \(x \to \theta \) yields

\[
T = \sqrt{\frac{-2C}{g}} \int_{\theta_0}^{\frac{\pi}{2}} \frac{\sin \theta}{\sqrt{\sin^2 \theta - \sin^2 \theta_0}} d\theta = \sqrt{\frac{-2C}{g}} \int_{\theta_0}^{\frac{\pi}{2}} \frac{\sin \theta}{\sqrt{\cos^2 \theta_0 - \cos^2 \theta}} d\theta.
\]
Make the change of variables $t = -\cos \theta / \cos \theta_0$. Then $\cos \theta_0 dt = \sin \theta d\theta$ and

$$T = \sqrt{-\frac{2C}{g}} \int_{-1}^{0} \frac{1}{\sqrt{1-t^2}} dt.$$

We can integrate this directly to obtain

$$T = \sqrt{-\frac{2C}{g}} (\arcsin(0) - \arcsin(-1)) = \pi \sqrt{-\frac{C}{2g}}.$$

Notice this is independent of the initial position x_0 at which the bead is released! A curve with the property that the time taken by an object sliding down the curve to its lowest point is independent of the starting position is called a tautochrone, or isochrone curve. So it turns out that the tautochrone curve is the same as the brachistochrone curve. The words tautochrone and isochrone are ancient Greek for same-time and equal-time, respectively.

3.3 Minimal surfaces

Recall for the minimal surface problem we wish to minimize

$$I(u) = \int_U \sqrt{1 + |\nabla u|^2} \, dx$$

subject to $u = g$ on ∂U. Here $n \geq 2$ and

$$L(x, z, p) = \sqrt{1 + |p|^2} = \sqrt{1 + p_1^2 + p_2^2 + \cdots + p_n^2}.$$

Even though minimal surfaces are defined in dimension $n = 2$, it can still be mathematically interesting to consider the general case of arbitrary dimension $n \geq 2$.

From the form of L we see that $L_z(x, z, p) = 0$ and

$$\nabla_p L(x, z, p) = \frac{p}{\sqrt{1 + p^2}}.$$

Therefore, the Euler-Lagrange equation for the minimal surface problem is

$$(3.3) \quad \text{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) = 0 \quad \text{in} \ U$$

subject to $u = g$ on ∂U. This is called the minimal surface equation. Using the chain rule, we can rewrite the PDE as

$$\nabla \left(\frac{1}{\sqrt{1 + |\nabla u|^2}} \right) \cdot \nabla u + \frac{1}{\sqrt{1 + |\nabla u|^2}} \text{div}(\nabla u) = 0.$$
Notice that
\[
\frac{\partial}{\partial x_j} \left(\frac{1}{\sqrt{1 + |\nabla u|^2}} \right) = -\frac{1}{2} (1 + |\nabla u|^2)^{-\frac{3}{2}} \sum_{i=1}^{n} 2u_i u_{x_i x_j}.
\]
Therefore the PDE in expanded form is
\[
-\frac{1}{(1 + |\nabla u|^2)^{\frac{3}{2}}} \sum_{i,j=1}^{n} u_{x_i x_j} u_{x_i} u_{x_j} + \frac{\Delta u}{\sqrt{1 + |\nabla u|^2}} = 0.
\]
Multiplying both sides by \((1 + |\nabla u|^2)^{\frac{3}{2}}\) we have
\[
-\sum_{i,j=1}^{n} u_{x_i x_j} u_{x_i} u_{x_j} + (1 + |\nabla u|^2)\Delta u = 0.
\]
which is also equivalent to
\[
- \nabla u \cdot \nabla^2 u \nabla u + (1 + |\nabla u|^2)\Delta u = 0.
\]
Exercise 3.1. Show that the plane
\[u(x) = a \cdot x + b\]
solves the minimal surface equation on \(U = \mathbb{R}^n\), where \(a \in \mathbb{R}^n\) and \(b \in \mathbb{R}\). △
Exercise 3.2. Show that for \(n = 2\) the Scherk surface
\[u(x) = \log \left(\frac{\cos(x_1)}{\cos(x_2)} \right)\]
solves the minimal surface equation on the box \(U = (-\frac{\pi}{2}, \frac{\pi}{2})^2\). △
Notice that if we specialize to the case of \(n = 2\) then we have
\[-u_{x_1 x_1} u_{x_1}^2 - 2u_{x_1 x_2} u_{x_1} u_{x_2} - u_{x_2 x_2} u_{x_2}^2 + (1 + u_{x_1}^2 + u_{x_2}^2)(u_{x_1 x_1} + u_{x_2 x_2}) = 0,
\]
which reduces to
\[
(1 + u_{x_2}^2) u_{x_1 x_1} - 2u_{x_1 x_2} u_{x_1} u_{x_2} + (1 + u_{x_1}^2) u_{x_2 x_2} = 0.
\]
It is generally difficult to find solutions of the minimal surface equation (3.4). It is possible to prove that a solution always exists and is unique, but this is outside the scope of this course.
3.4 Minimal surface of revolution

Suppose we place rings of equal radius \(r > 0 \) at locations \(x = -L \) and \(x = L \) on the \(x \)-axis. What is the resulting minimal surface formed between the rings? In other words, if we dip the rings into a soapy water solution, what is the shape of the resulting soap bubble?

Here, we may assume the surface is a surface of revolution. Namely, the surface is formed by taking a function \(u : [-L, L] \rightarrow \mathbb{R} \) with \(u(-L) = r = u(L) \) and rotating it around the \(x \)-axis. The surface area of a surface of revolution is

\[
I(u) = 2\pi \int_{-L}^{L} u(x) \sqrt{1 + u'(x)^2} \, dx.
\]

Since \(L(x, z, p) = z\sqrt{1 + p^2} \) does not have an \(x \)-dependence, the Euler-Lagrange equation can be computed via (2.7) and we obtain

\[
u(x) \sqrt{1 + u'(x)^2} - \frac{u'(x)^2 u(x)}{\sqrt{1 + u'(x)^2}} = \frac{1}{c}
\]

for a constant \(c \neq 0 \). Multiplying both sides by \(\sqrt{1 + u'(x)^2} \) and simplifying we have

\[
(cu(x) = \sqrt{1 + u'(x)^2}.
\]

Before solving this, we make the important observation that at a minimum of \(u \), \(u'(x) = 0 \) and hence \(u(x) = \frac{1}{c} \) at the minimum. Since we are using a surface of revolution, we require \(u(x) > 0 \), hence we must take \(c > 0 \).

We now square both sides of (3.7) and rearrange to get

\[
c^2 u(x)^2 - u'(x)^2 = 1.
\]

Since \(u'(x)^2 \geq 0 \), we deduce that \(c^2 u(x)^2 \geq 1 \) for all. Since \(u(L) = r \) we require

\[
(c \geq \frac{1}{r}.
\]

To solve (3.8), we use a clever trick: We differentiate both sides to find

\[
2c^2 u(x)u'(x) - 2u'(x)u''(x) = 0
\]

or

\[
u''(x) = c^2 u(x).
\]

Notice we have converted a nonlinear ODE into a linear ODE! Since \(c^2 > 0 \) the general solution is

\[
u(x) = \frac{A}{2} e^{cx} + \frac{B}{2} e^{-cx}.
\]
3.4. MINIMAL SURFACE OF REVOLUTION

Figure 3.2: Depiction of some quantities from the derivation of the shape of a hanging chain. The shape of the curve is deduced by balancing the force of gravity and tension on the blue segment above.

It is possible to show, as we did for the brachistochrone problem, that \(u \) must be an even function. It follows that \(A = B \) and

\[
u(x) = A \frac{e^{cx} + e^{-cx}}{2} = A \cosh(cx).
\]

The minimum of \(u \) occurs at \(x = 0 \), so

\[
A = u(0) = \frac{1}{c}.
\]

Therefore the solution is

\[
(3.10) \quad u(x) = \frac{1}{c} \cosh(cx).
\]

This curve is called a catenary curve, and the surface of revolution obtained by rotating it about the \(x \)-axis is called a catenoid.

Remark 3.3 (The shape of a hanging chain). We pause for a moment to point out that the catenary curve is also the shape that an idealized hanging chain or cable assumes. Due to this property, an inverted catenary, or catenary arch, has been used in architectural designs since ancient times.

To see this, we assume the chain has length \(\ell \), with \(\ell > 2L \), and is supported at \(x = \pm L \) at a height of \(r \), thus the shape of the chain \(w(x) \) is a positive even function satisfying \(w(\pm L) = r \). Consider the segment of the chain lying above the interval \([0, x]\) for \(x > 0 \). Let \(s(x) \) denote the arclength of this segment, given by

\[
s(x) = \int_0^x \sqrt{1 + w'(t)^2} \, dt.
\]
If the chain has density ρ, then the force of gravity acting on this segment of the chain is $F = -\rho s(x)g$ in the vertical direction, where g is acceleration due to gravity. We also have tension forces within the rope acting on the segment at both ends of the interval. Let T_x denote the magnitude of the tension vector in the rope at position x, noting that the tension vector is always directed tangential to the curve. Since $w'(0) = 0$, as w is even, the tension vector at 0 is $(-T_0, 0)$. At the right point x of the interval, the tension vector is $T_x = (T_x \cos \theta, T_x \sin \theta)$, where θ is the angle between the tangent vector to w and the x-axis. Since the chain is at rest, the sum of the forces acting on the segment $[0, x]$ of rope must vanish, which yields

$$T_0 = T_x \cos \theta \quad \text{and} \quad \rho s(x)g = T_x \sin \theta.$$

Therefore

$$w'(x) = \tan \theta = \frac{T_x \sin \theta}{T_x \cos \theta} = \frac{\rho g}{T_0} s(x).$$

Setting $c = \rho g/T_0$ and differentiating above we obtain $w''(x) = c\sqrt{1 + w'(x)^2}$, and so

$$w''(x)^2 - c^2 w'(x)^2 = c^2.$$

Noting the similarity to (3.8), we can use the methods above to obtain the solution

$$w'(x) = \frac{cA}{2} e^{cx} + \frac{cB}{2} e^{-cx},$$

for some constants A and B. Since $w(x)$ is even, $w'(x)$ is odd, and so $B = -A$ and we have $w'(x) = cA \sinh(cx)$. Integrating again yields

$$w(x) = A \cosh(cx) + C$$

for an integration constant C. The difference now with the minimal surface problem is that A, C are the free parameters, while c is fixed.

Note that for fixed A, we can choose $C > 0$ so that $w(L) = r$, yielding

$$w(x) = A(\cosh(cx) - \cosh(cL)) + r.$$

We set the parameter A by asking that the curve has length ℓ, that is

$$\ell = 2 \int_0^L \sqrt{1 + w'(x)^2} \, dx = 2 \int_0^L \sqrt{1 + A^2 c^2 \sinh^2(cx)} \, dx.$$

Unless $Ac = 1$, the integral on the right is not expressible in terms of simple functions. Nevertheless, we can see that the length of w is continuous and strictly increasing in A, and tends to ∞ as $A \to \infty$. Since the length of w for $A = 0$ is $2L$, and $\ell > 2L$, there exists, by the intermediate value theorem, a unique value of A for which (3.11) holds.
Figure 3.3: When $\theta > \theta_0$ there are two solutions of (3.12). When $\theta = \theta_0$ there is one solution, and when $\theta < \theta_0$ there are no solutions. By numerical computations, $\theta_0 \approx 1.509$.

We now return to the minimal surface problem. We need to see if it is possible to select $c > 0$ so that

$$u(-L) = r = u(L).$$

Since u is even, we only need to check that $u(L) = r$. This is equivalent choosing $c > 0$ so that $\cosh(cL) = cr$. Let us set $C = cL$ and $\theta = \frac{r}{L}$. Then we need to choose $C > 0$ such that

$$\cosh(C) = \theta C. \tag{3.12}$$

This equation is not always solvable, and depends on the value of $\theta = \frac{r}{L}$, that is, on the ratio of the radius r of the rings to L, which is half of the separation distance. There is a threshold value θ_0 such that for $\theta > \theta_0$ there are two solutions $C_1 < C_2$ of (3.12). When $\theta = \theta_0$ there is one solution C, and when $\theta < \theta_0$ there are no solutions. See Figure 3.3 for an illustration. To rephrase this, if $\theta < \theta_0$ or $r < L\theta_0$, then the rings are too far apart and there is no minimal surface spanning the two rings. If $r \geq L\theta_0$ then the rings are close enough together and a minimal surface exists. From numerical computations, $\theta_0 \approx 1.509$.

Now, when there are two solutions $C_1 < C_2$, which one gives the smallest surface area? We claim it is C_1. To avoid complicated details, we give here a heuristic argument to justify this claim. Let $c_1 < c_2$ such that $C_1 = c_1L$ and $C_2 = c_2L$. So we have two potential solutions

$$u_1(x) = \frac{1}{c_1} \cosh(c_1x) \quad \text{and} \quad u_2(x) = \frac{1}{c_2} \cosh(c_2x).$$
Figure 3.4: Simulation of the minimal surface of revolution for two rings being slowly pulled apart. The rings are located at $x = -L$ and $x = L$ where L ranges from (left) $L = 0.095$ to (right) $L = 0.662$, and both rings have radius $r = 1$. For larger L the soap bubble will collapse.

Since $u_1(0) = \frac{1}{c_1} \geq \frac{1}{c_2} = u_2(0)$, we have $u_1 \geq u_2$. In other words, as we increase c the solution decreases. Now, as we pull the rings apart we expect the solution to decrease (the soap bubble becomes thinner), so the value of c should increase as the rings are pulled apart. As the rings are pulled apart L is increasing, so $\theta = r/L$ is decreasing. From Figure 3.3 we see that C_2 is decreasing as θ decreases. Since $C_2 = c_2L$ and L is increasing, c_2 must be decreasing as the rings are pulled apart. In other words, u_2 is increasing as the rings are pulled apart, so u_2 is a non-physical solution. The minimal surface is therefore given by u_1. Figure 3.4 shows the solutions u_1 as the two rings pull apart, and Figure 3.5 shows non-physical solutions u_2.

We can also explicitly compute the minimal surface area for $c = c_1$. We have

$$I(u) = 2\pi \int_{-L}^{L} u(x) \sqrt{1 + u'(x)^2} \, dx = 4\pi c \int_{0}^{L} u(x)^2 \, dx,$$

where we used the Euler-Lagrange equation (3.7) and the fact that u is even in the last step above. Substituting $u''(x) = c^2 u(x)$ and integrating by parts we have

$$I(u) = \frac{4\pi}{c} \int_{0}^{L} u''(x)u(x) \, dx$$

$$= \frac{4\pi}{c} u'(x)u(x) \bigg|_{0}^{L} - \frac{4\pi}{c} \int_{0}^{L} u'(x)^2 \, dx$$

$$= \frac{4\pi}{c} u'(L)u(L) - \frac{4\pi}{c} \int_{0}^{L} u'(x)^2 \, dx.$$

Using (3.8) we have $u'(x)^2 = c^2 u(x)^2 - 1$ and so

$$I(u) = \frac{4\pi u(L)}{c} \sqrt{c^2 u(L)^2 - 1} - \frac{4\pi}{c} \int_{0}^{L} c^2 u(x)^2 - 1 \, dx.$$
Figure 3.5: Illustration of solutions of the minimal surface equation that do not minimize surface area. The details are identical to Figure 3.4, except that we select c_2 instead of c_1. Notice the soap bubble is growing as the rings are pulled apart, which is the opposite of what we expect to occur.

Since $u(L) = r$ we have

$$I(u) = \frac{4\pi r}{c} \sqrt{c^2 r^2 - 1} - 4\pi c \int_0^L u(x)^2 \, dx + \frac{4\pi}{c} \int_0^L \, dx.$$

Recalling (3.13) we have

$$I(u) = \frac{4\pi r}{c} \sqrt{c^2 r^2 - 1} - I(u) + \frac{4\pi L}{c}.$$

Solving for $I(u)$ we have

$$(3.14) \quad I(u) = \frac{2\pi}{c} \left(r \sqrt{c^2 r^2 - 1} + L \right).$$

Notice that we have at no point used the explicit formula $u(x) = \frac{1}{c} \cosh(cx)$. We have simply used the ODE that u satisfies, some clever integration by parts, and the boundary condition $u(L) = r$. There is an alternative expression for the surface area. Recall c is chosen so that $cr = \cosh(cL)$. Thus

$$c^2 r^2 - 1 = \cosh^2(cL) - 1 = \sinh^2(cL),$$

and we have

$$I(u) = \frac{2\pi}{c} \left(r \sinh(cL) + L \right).$$

While it is not possible to analytically solve for c_1 and c_2, we can numerically compute the values to arbitrarily high precision with our favorite root-finding algorithm.
Most root-finding algorithms require one to provide an initial interval in which the solution is to be found. We already showed (see (3.9)) that \(c \geq 1/r \). For an upper bound, recall we have the Taylor series
\[
\cosh(x) = 1 + \frac{x^2}{2} + \frac{x^4}{4!} + \cdots = \sum_{k=0}^{\infty} \frac{x^{2n}}{(2k)!},
\]
and so \(\cosh(x) \geq \frac{x^2}{2} \). Recall also that \(c_1 \) and \(c_2 \) are solutions of \(\cosh(cL) = cr \).

Therefore, if \(\frac{c^2L^2}{2} > cr \) we know that \(\cosh(cL) > cr \). This gives the bounds
\[
\frac{1}{r} \leq c_i \leq \frac{2r}{L^2} \quad (i = 1, 2).
\]
Furthermore, the point \(c^* \) where the slope of \(c \mapsto \cosh(cL) \) equals \(r \) lies between \(c_1 \) and \(c_2 \). Therefore
\[
c_1 < c^* < c_2,
\]
where \(L \sinh(c^*L) = r \), or
\[
c^* = \frac{1}{L} \sinh^{-1} \left(\frac{r}{L} \right).
\]
Thus, if \(\cosh(c^*L) = c^*r \), then there is exactly one solution \(c_1 = c_2 = c^* \). If \(\cosh(c^*L) < c^*r \) then there are two solutions
\[
\frac{1}{r} \leq c_1 < c^* < c_2 \leq \frac{2r}{L^2}.
\]
Otherwise, if \(\cosh(c^*L) > c^*r \) then there are no solutions. Now that we have the bounds (3.15) we can use any root-finding algorithm to determine the values of \(c_1 \) and \(c_2 \). In the code I showed in class I used a simple bisection search.

3.5 Isoperimetric Inequality

Let \(C \) be a simple closed curve in the plane \(\mathbb{R}^2 \) of length \(\ell \), and let \(A \) denote the area enclosed by \(C \). How large can \(A \) be, and what shape of curve yields the largest enclosed area? This question, which is called the isoperimetric problem, and similar questions have intrigued mathematicians for many thousands of years. The origin of the isoperimetric problem can be traced back to a Greek mathematician Zenodorus sometime in the second century B.C.E.

Let us consider a few examples. If \(C \) is a rectangle of width \(w \) and height \(h \), then \(\ell = 2(w + h) \) and \(A = wh \). Since \(w = \frac{1}{2} \ell - h \) we have
\[
A = \frac{1}{2} \ell h - h^2,
\]
where \(h < \frac{1}{2} \ell \). The largest area for this rectangle is attained when \(\frac{1}{2} \ell - 2h = 0 \), or \(h = \frac{1}{4} \ell \). That is, the rectangle is a square! The area of the square is

\[
A = \frac{\ell^2}{16}.
\]

Can we do better? We can try regular polygons with more sides, such as a pentagon, hexagon, etc., and we will find that the area increases with the number of sides. In the limit as the number of sides tends to infinity we get a circle, so perhaps the circle is a good guess for the optimal shape. If \(C \) is a circle of radius \(r > 0 \) then \(2\pi r = \ell \), so \(r = \frac{\ell}{2\pi} \) and

\[
A = \pi r^2 = \frac{\ell^2}{4\pi}.
\]

This is clearly better than the square, since \(\pi < 4 \).

The question again is: Can we do better still? Is there some shape we have not thought of that would give larger area than a circle while having the same perimeter? We might expect the answer is no, but lack of imagination is not a convincing proof.

We will prove shortly that, as expected, the circle gives the largest area for a fixed perimeter. Thus for any simple closed curve \(C \) we have the *isoperimetric inequality*

\[
4\pi A \leq \ell^2,
\]

where equality holds only when \(C \) is a circle of radius \(r = \frac{\ell}{2\pi} \).

We give here a short proof of the isoperimetric inequality (3.16) using the Lagrange multiplier method in the calculus of variations. Let the curve \(C \) be parametrized by \((x(t), y(t))\) for \(t \in [0, 1] \). For notational simplicity we write \(x = x_1 \) and \(y = x_2 \) in this section. Since \(C \) is a simple closed curve, we may also assume without loss of generality that

\[
x(0) = y(0) = x(1) = y(1) = 0.
\]

Let \(U \) denote the interior of \(C \). Then the area enclosed by the curve \(C \) is

\[
A(x, y) = \int_U dx = \int_U \text{div}(F) \, dx,
\]

where \(F \) is the vector field \(F(x, y) = \frac{1}{2}(x, y) \). By the divergence theorem

\[
A(x, y) = \int_{\partial U} F \cdot \nu \, dS,
\]

where \(\nu \) is the outward normal to \(\partial U \). Since \(\partial U = C \) we have

\[
\nu(t) = \frac{(y'(t), -x'(t))}{\sqrt{x'(t)^2 + y'(t)^2}}.
\]
and
\[dS = \sqrt{x'(t)^2 + y'(t)^2} \, dt, \]
provided we take the curve to have positive orientation. Therefore
\[A(x, y) = \int_0^1 \frac{1}{2} (x(t), y(t)) \cdot (y'(t), -x'(t)) \, dt = \frac{1}{2} \int_0^1 x(t)y'(t) - x'(t)y(t) \, dt. \]

The length of \(C \) is given by
\[\ell(x, y) = \int_0^1 \sqrt{x'(t)^2 + y'(t)^2} \, dt. \]

Thus, we wish to find functions \(x, y : [0, 1] \to \mathbb{R} \) that maximize \(A(x, y) \) subject to \(\ell(x, y) = \ell \) and the boundary conditions (3.17).

The area and length functionals depend on two functions \(x(t) \) and \(y(t) \), which is a situation we have not encountered yet. Similar to the case of partial differentiation of functions on \(\mathbb{R}^n \), we can freeze one input, say \(y(t) \), and take the functional gradient with respect to \(x(t) \). So we treat \(A \) and \(\ell \) as functions of \(x(t) \) only, and hence \(z = x(t) \) and \(p = x'(t) \). The gradient \(\nabla_x A \), or Euler-Lagrange equation, is then given by
\[\nabla_x A(x, y) = \frac{1}{2} y'(t) - \frac{d}{dt} \left(-\frac{1}{2} y(t) \right) = y'(t) \]
while \(\nabla_x \ell(x, y) \) is given by
\[\nabla_x \ell(x, y) = -\frac{d}{dt} \left(\frac{x'(t)}{\sqrt{x'(t)^2 + y'(t)^2}} \right). \]

Similarly
\[\nabla_y A(x, y) = -\frac{1}{2} x'(t) - \frac{d}{dt} \left(\frac{1}{2} x(t) \right) = -x'(t), \]
and
\[\nabla_y \ell(x, y) = -\frac{d}{dt} \left(\frac{y'(t)}{\sqrt{x'(t)^2 + y'(t)^2}} \right). \]

Then the gradients of \(A \) and \(\ell \) are defined as
\[\nabla A(x, y) = \begin{bmatrix} \nabla_x A(x, y) \\ \nabla_y A(x, y) \end{bmatrix} \quad \text{and} \quad \nabla \ell(x, y) = \begin{bmatrix} \nabla_x \ell(x, y) \\ \nabla_y \ell(x, y) \end{bmatrix}. \]

Following (2.15), the necessary conditions for our constrained optimization problem are
\[\nabla A(x, y) + \lambda \nabla \ell(x, y) = 0, \]
where λ is a Lagrange multiplier. This is a set of two equations

$$y'(t) - \frac{d}{dt}\left(\frac{\lambda x'(t)}{\sqrt{x'(t)^2 + y'(t)^2}}\right) = 0,$$

and

$$-x'(t) - \frac{d}{dt}\left(\frac{\lambda y'(t)}{\sqrt{x'(t)^2 + y'(t)^2}}\right) = 0.$$

Integrating both sides we get

$$y(t) - \frac{\lambda x(t)}{\sqrt{x'(t)^2 + y'(t)^2}} = a \quad \text{and} \quad x(t) + \frac{\lambda y(t)}{\sqrt{x'(t)^2 + y'(t)^2}} = b,$$

for constants a and b. Therefore

$$(x(t) - a)^2 + (y(t) - b)^2 = \left(-\frac{\lambda y(t)}{\sqrt{x'(t)^2 + y'(t)^2}}\right)^2 + \left(\frac{\lambda x(t)}{\sqrt{x'(t)^2 + y'(t)^2}}\right)^2$$

$$= \frac{\lambda^2 y'(t)^2}{x'(t)^2 + y'(t)^2} + \frac{\lambda^2 x'(t)^2}{x'(t)^2 + y'(t)^2}$$

$$= \frac{\lambda^2 x'(t)^2 + y'(t)^2}{x'(t)^2 + y'(t)^2}$$

$$= \lambda^2.$$

This means that the curve $C(t) = (x(t), y(t))$ is a circle of radius λ centered at (a, b). Hence, as we expected, the circle is shape with largest area given a fixed perimeter. Since the perimeter is $\ell(x, y) = \ell$ we have $\lambda = \frac{\ell}{2\pi}$. Since $x(0) = y(0) = 0$, a and b must be chosen to satisfy

$$a^2 + b^2 = \lambda^2 = \frac{\ell^2}{4\pi^2}.$$

That is, the circle must pass through the origin, due to our boundary conditions (3.17).

3.6 Image restoration

Recall the total variation (TV) image restoration problem is based on minimizing

$$I(u) = \int_U \frac{1}{2} (f - u)^2 + \lambda |\nabla u| \, dx$$

over all $u : U \to \mathbb{R}$, where $U = (0, 1)^2$. The function f is the original noisy image, and the minimizer u is the denoised image. Here, the Lagrangian

$$L(x, z, p) = \frac{1}{2} (f(x) - z)^2 + \lambda |p|$$
is not differentiable at $p = 0$. This causes some minor issues with numerical simulations, so it is common to take an approximation of the TV functional that is differentiable. One popular choice is

$$I_\varepsilon(u) = \int_U \frac{1}{2} (f - u)^2 + \lambda \sqrt{|\nabla u|^2 + \varepsilon^2} \, dx,$$

where $\varepsilon > 0$ is a small parameter. When $\varepsilon = 0$ we get the TV functional (3.18). In this case the Lagrangian is

$$L_\varepsilon(x, z, p) = \frac{1}{2} (f(x) - z)^2 + \lambda \sqrt{|p|^2 + \varepsilon^2},$$

which is differentiable in both z and p. It is possible to prove that minimizers of I_ε converge to minimizers of I as $\varepsilon \to 0$, but the proof is very technical and outside the scope of this course.

So the idea is to fix some small value of $\varepsilon > 0$ and minimize I_ε. To compute the Euler-Lagrange equation note that

$$L_{\varepsilon, z}(x, z, p) = z - f(x) \quad \text{and} \quad \nabla_p L_{\varepsilon}(x, z, p) = \frac{\lambda p}{\sqrt{|p|^2 + \varepsilon^2}}.$$

Therefore the Euler-Lagrange equation is

$$u - \lambda \text{div} \left(\frac{\nabla u}{\sqrt{|\nabla u|^2 + \varepsilon^2}} \right) = f \quad \text{in } U$$

with homogeneous Neumann boundary conditions $\frac{\partial u}{\partial \nu} = 0$ on ∂U. It is almost always impossible to find a solution of (3.20) analytically, so we are left to use numerical approximations.

3.6.1 Gradient descent and acceleration

A standard numerical method for computing solutions of (3.20) is gradient descent, as described in Section 2.1. The gradient descent partial differential equation is

$$u_t + u - \lambda \text{div} \left(\frac{\nabla u}{\sqrt{|\nabla u|^2 + \varepsilon^2}} \right) = f \quad \text{for } x \in U, \ t > 0,$$

with initial condition $u(x, 0) = f(x)$ and boundary conditions $\frac{\partial u}{\partial \nu} = 0$ on ∂U. This is a nonlinear heat equation where the thermal conductivity

$$\kappa = \frac{1}{\sqrt{|\nabla u|^2 + \varepsilon^2}}$$
depends on ∇u. Discretized on a grid with spacing Δt and Δx, the stability condition for the scheme is
\[
\Delta t \leq \frac{\varepsilon \Delta x^2}{4\lambda}.
\]
Hence, the scheme is numerically stiff when Δx is small or when $\varepsilon > 0$ is small.

We can also solve (3.20) with accelerated gradient descent, described in Section 2.4, which leads to the accelerated descent equation
\[
u_{tt} + au_t + u - \lambda \text{div} \left(\frac{\nabla u}{\sqrt{|\nabla u|^2 + \varepsilon^2}} \right) = f \quad \text{for} \ x \in U, \ t > 0,
\]
where $a > 0$ is the coefficient of friction (damping). The CFL stability condition for accelerated descent is
\[
\Delta t^2 \leq \frac{\varepsilon \Delta x^2}{4\lambda + \varepsilon \Delta x^2}.
\]
The scheme is only numerically stiff when $\varepsilon > 0$ is small or $\lambda > 0$ is large. However, for accelerated descent, a nonlinear phenomenon allows us to violate the stability condition and roughly set $\Delta t \approx \Delta x$, independent of $\varepsilon > 0$. We refer the reader to [2] for details.

Figure 3.6 shows a one dimensional example of denoising a signal with the TV restoration algorithm. Notice the algorithm can remove noise while preserving the sharp discontinuities in the signal. This suggests that minimizers of the TV restoration functional can have discontinuities. Figure 3.7 shows an example of TV image restoration of a noisy image of Vincent hall. The top image is the noisy image, the middle image is TV restoration with a small value of λ, and the bottom image is TV restoration with a large value of λ. Notice that as λ is increased, the images becomes
Figure 3.7: Example of TV image restoration: (top) noisy image (middle) TV restoration with small value for λ, and (bottom) TV restoration with large value for λ.
smoother, and many fine details are removed. We also observe that for small \(\lambda \) the algorithm is capable of preserving edges and fine details while removing unwanted noise.

3.6.2 Primal dual approach

Since gradient descent for solving Total Variation regularized problems requires smoothing out the functional with a parameter \(\varepsilon > 0 \), and the equations are numerically stiff when \(\varepsilon > 0 \) is small, many works have developed approaches to solving Total Variation problems without smoothing the functional, and are hence less numerically stiff. One such approach belongs to the class of primal dual approaches to Total Variation restoration. The ideas originally appeared in [5], and were later expanded upon to handle general problems in [6], among many other works.

We define the convex dual, or Legendre-Fenchel transform, of a function \(\Phi : \mathbb{R}^n \to \mathbb{R} \) by

\[
\Phi^*(p) := \sup_{x \in \mathbb{R}^n} \{ x \cdot p - \Phi(x) \}.
\]

If \(\Phi \) is convex, then by convex duality we have \(\Phi^{**} := (\Phi^*)^* = \Phi \), that is we have the representation

\[
\Phi(x) := \sup_{p \in \mathbb{R}^n} \{ x \cdot p - \Phi^*(p) \}.
\]

Exercise 3.4. Prove the assertion above for \(n = 1 \) and \(\Phi \) smooth and strongly convex. \(\triangle \)

We assume \(\Phi : \mathbb{R}^n \to \mathbb{R} \) is convex and consider for simplicity the problem

\[
\min_u \int_U \Psi(x, u) + \Phi(\nabla u) \, dx,
\]

where \(u : U \to \mathbb{R} \), which includes the case of Total Variation restoration. A primal dual algorithm for solving (3.23) expresses \(\Phi \) through its convex dual \(\Phi^* \) giving the initially more looking complicated formation

\[
\min_u \max_p \int_U \Psi(x, u) + p \cdot \nabla u - \Phi^*(p) \, dx,
\]

where \(p : U \to \mathbb{R}^n \). Here, \(u \) is the primal variable, \(p \) is the dual variable, and (3.24) is called a **saddle point formulation**. Notice we are dualizing only in the gradient variable \(\nabla u \), in which the original functional is nonsmooth, and leaving the variable \(u \), in which the functional is smooth, unchanged.

Provided \(u p \cdot \mathbf{n} = 0 \) on \(\partial U \), we can integrate by parts to express the problem as

\[
\min_u \max_p \int_U \Psi(x, u) - u \, \text{div}(p) - \Phi^*(p) \, dx.
\]
In general, primal dual methods work by alternatively taking small steps in the direction of minimizing with respect to u and maximizing with respect to p, with either gradient descent steps, or proximal updates, which corresponds to implicit gradient descent. Either (3.24) or (3.25) may be used in the descent equations, and often (3.24) is more convenient for the dual update while (3.25) is more convenient for the primal update.

For some application, things can be simplified significantly. We consider Total Variation image restoration where $\Psi(x, z) = \frac{1}{2\lambda}(z - f(x))^2$ and $\Phi(p) = |p|$. The convex dual is easily computed to be

$$
\Phi^*(v) = \sup_{p \in \mathbb{R}^n} \{p \cdot v - |p|\} = \begin{cases}
0, & \text{if } |v| \leq 1 \\
\infty, & \text{if } |v| > 1,
\end{cases}
$$

and the representation of Φ via convex duality in (3.22) is the familiar formula

$$
|p| = \max_{|v| \leq 1} p \cdot v.
$$

Thus, the saddle point formulation (3.25) becomes

$$
(3.26) \quad \min_u \max_{|p| \leq 1} \int_U \frac{1}{2\lambda}(u - f)^2 + u \text{div}(p) \, dx,
$$

where we swapped p for $-p$ and assume the boundary condition $p \cdot n = 0$ on ∂U. Notice we have turned a problem with a nonsmooth dependence on ∇u, into a smooth problem with a constraint $|p| \leq 1$. Thus, primal dual methods allow us to avoid the non-smoothness in the dependence on the gradient.

In fact, in (3.26), we can swap the min and max, due to strong convexity in u, to obtain the equivalent problem

$$
(3.27) \quad \max_{|p| \leq 1} \min_u \int_U \frac{1}{2\lambda}(u - f)^2 + u \text{div}(p) \, dx.
$$

We can now explicitly solve for u, finding that

$$
(3.28) \quad u = f - \lambda \text{div}(p),
$$

and yielding the dual problem

$$
(3.29) \quad \max_{|p| \leq 1} T(p) := \int_U f \text{div}(p) - \frac{\lambda}{2} \text{div}(p)^2 \, dx,
$$

subject to $p \cdot n = 0$ on ∂U. Since $p : U \to \mathbb{R}^n$ is vector-valued, we do not have the Euler-Lagrange equations for T on hand, and must compute them from scratch. To do this, we compute a variation in the direction of $\varphi \in C^\infty(U; \mathbb{R}^n)$

$$
\left. \frac{d}{dt} \right|_{t=0} T(p + t\varphi) = \int_U f \text{div}(\varphi) - \lambda \text{div}(p) \text{div}(\varphi) \, dx.
$$
3.6. IMAGE RESTORATION

Taking $\varphi \cdot n = 0$ on ∂U we can integrate by parts to find that

$$\frac{d}{dt} \bigg|_{t=0} T(p + t\varphi) = - \int_U \nabla(f - \lambda \text{div}(p)) \cdot \varphi \, dx.$$

Therefore

$$\nabla T(p) = \nabla(\lambda \text{div}(p) - f).$$

To handle the constraint $|p| \leq 1$ we can do a type of projected gradient ascent

$$(3.30) \quad p^{k+1} = p^k + \tau \nabla(\text{div}(p^k) - f / \lambda) / (1 + \tau |\text{div}(p^k) - f / \lambda|),$$

with time step $\tau > 0$, starting from an initial guess p^0 with $|p^0| < 1$, and taking appropriate discretizations of div and ∇ on a grid with spacing Δx above. Notice we absorbed λ into the choice of time step, to be consistent with other presentations. This primal dual approach, and its convergence properties, is studied closely in [5]. The iteration above converges when τ is sufficiently small, and the solution of the Total Variation problem is obtained by evaluating (3.28).

3.6.3 The split Bregman method

The split Bregman method aims to handle the L^1 norm by introducing a new function p and solving the constrained problem

$$(3.31) \quad \min_{u,p} \int_U \Psi(x,u) + |p| \, dx \quad \text{subject to} \quad \nabla u = p,$$

where $\Psi(x,z) = \frac{1}{2\lambda}(z - f(x))^2$. Since the exact form of Ψ is not needed, we will proceed in generality. So far nothing has changed. The constraint $\nabla u = p$ could be handled by a penalty method

$$(3.32) \quad \min_{u,p} \int_U \Psi(x,u) + |p| + \frac{\mu}{2} |p - \nabla u|^2 \, dx.$$

In penalty methods we have to take $\mu \to \infty$ to ensure the constraint is satisfied, and the problem would become ill-conditioned and difficult to solve in this regime.

The split Bregman iteration essentially allows one to solve something similar to (3.32) and obtain a solution of the constrained problem (3.31) without sending $\mu \to \infty$. The steps of the split Bregman method are outlined below. We introduce a new variable b and iterate

\[
\begin{align*}
(u^{k+1}, p^{k+1}) &= \arg \min_{u,p} \int_U \Psi(x,u) + |p| + \frac{\mu}{2} |p - \nabla u - b^k|^2 \, dx \\
 b^{k+1} &= b^k + \nabla u^{k+1} - p^{k+1}.
\end{align*}
\]
The Bregman iteration for solving constrained problems was originally proposed in [3], and the novelty of the split Bregman method is in splitting the terms \(|p|\) and \(\Psi\) and applying the Bregman iteration only to \(|p|\).

We will not prove convergence of the Bregman iteration here, and refer the reader to [15]. However, it is easy to see that if the method converges to a triple \((u^*, p^*, b^*)\), then the pair \((u^*, p^*)\) is a solution of the constrained problem (3.31). To see this, we note that since \(b^k \to b^*\) we have \(\nabla u^* = p^*\), so the constraint is satisfied. The pair \((u^*, p^*)\) is clearly a solution of (3.33)

\[
(u^*, p^*) = \arg \min_{u,p} \int_U \Psi(x,u) + |p| + \frac{\mu}{2} |p - \nabla u - b^k|^2 \, dx
\]

Let \((\hat{u}, \hat{p})\) be any pair of functions satisfying \(\nabla \hat{u} = \hat{p}\), that is, a feasible pair for the constrained problem (3.31). By definition of \((u^*, p^*)\) we have

\[
\int_U \Psi(x,u^*) + |p^*| + \frac{\mu}{2} |p^* - \nabla u^* - b^*|^2 \, dx \leq \int_U \Psi(x,\hat{u}) + |\hat{p}| + \frac{\mu}{2} |\hat{p} - \nabla \hat{u} - b^*|^2 \, dx
\]

Due to the constraints \(\nabla \hat{u} = \hat{p}\) and \(\nabla u^* = p^*\) this simplifies to

\[
\int_U \Psi(x,u^*) + |p^*| \, dx \leq \int_U \Psi(x,\hat{u}) + |\hat{p}| \, dx.
\]

Thus, \((u^*, p^*)\) is a solution of the constrained problem (3.31). This holds independently of the choice of \(\mu > 0\). One may think of the split Bregman method as an iteration scheme to find for any \(\mu > 0\), a function \(b^*\) so that the penalized problem (3.33) is equivalent to the original constrained problem (3.31).

The efficiency of the split Bregman method relies on the ability to solve the problem

\[
\arg \min_{u,p} \int_U \Psi(x,u) + |p| + \frac{\mu}{2} |p - \nabla u - b^k|^2 \, dx
\]

efficiently. We focus on the \(L^2\) penalty case where \(\Psi(x,z) = \frac{1}{2\lambda} (z - f(x))^2\). Here, the problem (3.34) can be efficiently solved with the iteration scheme

\[
\begin{cases}
 w^{j+1} = \arg \min_u \int_U \frac{1}{2\lambda} (u - f)^2 + \frac{\mu}{2} |p^j - \nabla u - b^k|^2 \, dx \\
 p^{j+1} = \arg \min_p \{ |p| + \frac{\mu}{2} |p - \nabla w^{j+1} - b^k|^2 \}
\end{cases}
\]

The Euler-Lagrange equation for the first problem is

\[
u - \mu \lambda \Delta u = f + \mu \lambda \text{div}(b^k - p^j) \quad \text{in } U.
\]

This is a linear Poisson-type equation that can be solved very efficiently with either a fast Fourier transform (FFT) or the multigrid method. Alternatively, in [11], the
authors report using only a handful of steps of gradient descent and can get by with only approximately solving the problem.

The efficiency of the split Bregman method stems largely from the fact that the second problem in (3.35) is pointwise, and can be solved explicitly. Note the objective is strongly convex in p, so the minimum is attained and unique, and the critical point, if it exists, is the minimizer. We can differentiate in p to find that the minimizer p^{j+1} satisfies

$$\frac{p^{j+1}}{|p^{j+1}|} + \mu p^{j+1} = \mu (\nabla u^{j+1} + b^k),$$

provided $p^{j+1} \neq 0$. Taking norms on both sides we have

$$|p^{j+1}| = |\nabla u^{j+1} + b^k| - \frac{1}{\mu}.$$

Clearly p^{j+1} points in the same direction as $\nabla u^{j+1} + b^k$, and so we have

$$p^{j+1} = \frac{\nabla u^{j+1} + b^k}{|\nabla u^{j+1} + b^k|} \left(|\nabla u^{j+1} + b^k| - \frac{1}{\mu}\right)$$

provided $|\nabla u^{j+1} + b^k| > \frac{1}{\mu}$. If $|\nabla u^{j+1} + b^k| \leq \frac{1}{\mu}$, then there are no critical points where the objective is smooth, and the minimizer is $p^{j+1} = 0$, i.e., the only non-smooth point. The formula for p^{j+1} can be expressed compactly as

(3.37) $$p^{j+1} = \text{shrink}(\nabla u^{j+1} + b^k, 1/\mu),$$

where the shrinkage operator is defined as

(3.38) $$\text{shrink}(x, \gamma) := \frac{x}{|x|} \max\{|x| - \gamma, 0\}.$$

The shrinkage operator is extremely fast and requires only a few operations per element of p^j, which is the key to the computational efficiency of the split Bregman method.

3.6.4 Edge preservation properties of Total Variation restoration

The simulations presented in Figures 3.6 and 3.7 suggest that minimizers of the TV restoration functional I can be discontinuous. This may present as counter-intuitive, since the derivative of u is very large near a discontinuity and we are in some sense minimizing the derivative. It is important to keep in mind, however, that we are minimizing the integral of the derivative, and while the derivative may be large at some points, its integral can still be small.
As an example, let us consider the one dimensional case and ignore the fidelity term, since it does not involve the derivative of \(u \). Hence, we consider the functional

\[
J_p(u) = \int_{-1}^{1} |u'(x)|^p \, dx,
\]

where \(p \geq 1 \). The TV functional corresponds to \(p = 1 \), but it is interesting to consider other values of \(p \) to understand why \(p = 1 \) is preferred in signal processing communities. Suppose we want to minimize \(J_p \) subject to \(u(-1) = 0 \) and \(u(1) = 1 \). It is not difficult to convince yourself that the minimizer should be an increasing function, so we may write

\[
J_p(u) = \int_{-1}^{1} u'(x)^p \, dx,
\]

provided we restrict \(u'(x) \geq 0 \). If \(p > 1 \) then the Euler-Lagrange equation is

\[
\frac{d}{dx} (pu'(x)^{p-1}) = 0,
\]

which expands to

\[
p(p - 1)u'(x)^{p-2}u''(x) = 0.
\]

The straight line \(u(x) = \frac{1}{2}x + \frac{1}{2} \) is a solution of the Euler-Lagrange equation, and hence a minimizer since \(J_p \) is convex. When \(p = 1 \) the Euler-Lagrange equation is

\[
\frac{d}{dx} (1) = 0
\]

which does not even involve \(u \)!

This means every increasing function is a solution of the Euler-Lagrange equation. A Lagrangian \(L(x, z, p) \) for which every function solves the Euler-Lagrange equation is called a null Lagrangian, and they have many important applications in analysis.

Notice that when \(p = 1 \) and \(u \) is increasing

\[
J_1(u) = \int_{-1}^{1} u'(x) \, dx = u(1) - u(-1) = 1 - 0 = 1.
\]

Hence, the functional \(J_1(u) \) actually only depends on the boundary values \(u(1) \) and \(u(-1) \), provided \(u \) is increasing. This is the reason why the Euler-Lagrange equation is degenerate; every increasing function satisfying the boundary conditions \(u(-1) = 0 \) and \(u(1) = 1 \) is a minimizer. Thus, the TV functional does not care how the function gets from \(u(-1) = 0 \) to \(u(1) = 1 \), provided the function is increasing. So the linear function \(u(x) = \frac{1}{2}x + \frac{1}{2} \) is a minimizer, but so is the sequence of functions

\[
u_n(x) = \begin{cases}
0, & \text{if } -1 \leq x \leq 0 \\
nx, & \text{if } 0 \leq x \leq \frac{1}{n} \\
1, & \text{if } \frac{1}{n} \leq x \leq 1.
\end{cases}
\]
The function u_n has a sharp transition from zero to one with slope n between $x = 0$ and $x = 1/n$. For each n

$$J_1(u_n) = \int_0^{1/n} n \, dx = 1,$$

so each u_n is a minimizer. The pointwise limit of u_n as $n \to \infty$ is the Heaviside function

$$H(x) = \begin{cases} 0, & \text{if } -1 \leq x \leq 0 \\ 1, & \text{if } 0 \leq x \leq 1. \end{cases}$$

So in some sense, the discontinuous function $H(x)$ is also a minimizer. Indeed, we can compute

$$J_1(H) = \int_{-1}^{1} H'(x) \, dx = \int_{-1}^{1} \delta(x) \, dx = 1,$$

where $\delta(x)$ is the Delta function. This explains why minimizers of the TV functional can admit discontinuities.

Notice that if $p > 1$ then

$$J_p(u_n) = \int_0^{1/n} n^p \, dx = n^{p-1},$$

hence $J_p(u_n) \to \infty$ as $n \to \infty$. This means that a discontinuous function cannot minimize J_p for $p > 1$, and the only sensible value for $J_p(H)$ is ∞ when $p > 1$. Thus, if we used a version of TV restoration where $|\nabla u|^p$ appeared with $p > 1$, we would not expect that edges and fine details would be preserved, since discontinuities have infinite cost in this case.

3.7 Image segmentation

Recall in the image segmentation problem we aim to minimize

\begin{equation}
I(u, a, b) = \int_U H(u)(f - a)^2 + (1 - H(u))(f - b)^2 + \lambda \delta(u)|\nabla u| \, dx
\end{equation}

over $u : U \to \mathbb{R}$ and real numbers a and b. Let us assume for the moment that a and b are fixed, and I is a function of only u.

The Lagrangian

$$L(x, z, p) = H(z)(f(x) - a)^2 + (1 - H(z))(f(x) - b)^2 + \lambda \delta(z)|p|$$

is not even continuous, due to the presence of the Heaviside function $H(z)$ and the delta function $\delta(z)$. This causes problems numerically, hence in practice we usually
replace L by a smooth approximation. For $\varepsilon > 0$ we define the smooth approximate Heaviside function

$$H_\varepsilon(x) = \frac{1}{2} \left(1 + \frac{2}{\pi} \arctan \left(\frac{x}{\varepsilon} \right) \right).$$

The approximation to δ is then

$$\delta_\varepsilon(x) := H'_\varepsilon(x) = \frac{\varepsilon}{\pi \varepsilon^2 + x^2}.$$

We then form the approximation

$$I_\varepsilon(u) = \int_U H_\varepsilon(u) (f - a)^2 + (1 - H_\varepsilon(u)) (f - b)^2 + \lambda\delta_\varepsilon(u)\|\nabla u\| \, dx.$$

The Lagrangian for I_ε is

$$L_\varepsilon(x, z, p) = H_\varepsilon(z) (f(x) - a)^2 + (1 - H_\varepsilon(z)) (f(x) - b)^2 + \lambda\delta_\varepsilon(z)\|p\|.$$

Therefore

$$L_{\varepsilon, z}(x, z, p) = \delta_\varepsilon(z) \left((f(x) - a)^2 - (f(x) - b)^2 \right) + \lambda\delta'_\varepsilon(z)\|p\|$$

and

$$\nabla_p L_{\varepsilon}(x, z, p) = \frac{\lambda\delta_\varepsilon(z)p}{\|p\|}.$$

By the chain and product rules

$$\text{div} \left(\nabla_p L(x, u(x), \nabla u(x)) \right) = \lambda \text{div} \left(\frac{\delta_\varepsilon(u(x))\nabla u(x)}{\|\nabla u(x)\|} \right)$$

$$= \lambda \frac{\nabla \delta_\varepsilon(u(x)) \cdot \nabla u(x)}{\|\nabla u(x)\|} + \lambda \text{div} \left(\frac{\nabla u(x)}{\|\nabla u(x)\|} \right)$$

$$= \lambda \frac{\delta'_\varepsilon(u(x))\nabla u(x) \cdot \nabla u(x)}{\|\nabla u(x)\|} + \lambda \delta_\varepsilon(u(x)) \text{div} \left(\frac{\nabla u(x)}{\|\nabla u(x)\|} \right)$$

Therefore, the Euler-Lagrange equation is

$$\delta_\varepsilon(u) \left[(f - a)^2 - (f - b)^2 - \lambda \text{div} \left(\frac{\nabla u}{\|\nabla u\|} \right) \right] = 0 \text{ in } U$$

subject to homogeneous Neumann boundary conditions $\frac{\partial u}{\partial \nu} = 0$ on ∂U.

As with the image restoration problem, it is nearly impossible to solve the Euler-Lagrange equation (3.43) analytically. Thus we are left to devise numerical algorithms.
to find solutions. Here, we are minimizing over \(u, a, \) and \(b, \) which is a situation we have not encountered before. Note that if \(u \) is fixed, then minimizing with respect to \(a \) and \(b \) is easy. Indeed, differentiating \(I_\varepsilon \) with respect to \(a \) yields

\[
0 = -2 \int_U H_\varepsilon(u)(f - a) \, dx.
\]

Therefore the optimal value for \(a \) is

\[
a = \frac{\int_U H_\varepsilon(u)f \, dx}{\int_U H_\varepsilon(u) \, dx},
\]

which is approximately the average of \(f \) in the region where \(u > 0. \) Similarly, if \(u \) is fixed, the optimal choice of \(b \) is

\[
b = \frac{\int_U (1 - H_\varepsilon(u))f \, dx}{\int_U 1 - H_\varepsilon(u) \, dx}.
\]

Since it is easy to minimize over \(a \) and \(b, \) the idea now is to consider an alternating minimization algorithm, whereby one fixes \(a, b \in \mathbb{R} \) and takes a small gradient descent step in the direction of minimizing \(I_\varepsilon \) with respect to \(u, \) and then one freezes \(u \) and updates \(a \) and \(b \) according to (3.44) and (3.45). We repeat this iteratively until the values of \(a, b, \) and \(u \) remain unchanged with each new iteration.

Gradient descent on \(I_\varepsilon \) with respect to \(u \) is the partial differential equation

\[
u_t + \delta_\varepsilon(u) \left[(f - a)^2 - (f - b)^2 - \lambda \text{div} \left(\frac{\nabla u}{|\nabla u|} \right) \right] = 0 \quad \text{for} \ x \in U, \ t > 0
\]

subject to homogeneous Neumann boundary conditions \(\frac{\partial u}{\partial \nu} = 0 \) on \(\partial U \) and an initial condition \(u(x, 0) = u_0(x). \) As with the image restoration problem, we normally replace the non-differentiable norm \(|\nabla u| \) by a smooth approximation, so instead we solve the partial differential equation

\[
u_t + \delta_\varepsilon(u) \left[(f - a)^2 - (f - b)^2 - \lambda \text{div} \left(\frac{\nabla u}{\sqrt{|\nabla u|^2 + \varepsilon^2}} \right) \right] = 0 \quad \text{for} \ x \in U, \ t > 0.
\]

At each iteration of solving (3.47) numerically, we update the values of \(a \) and \(b \) according to (3.44) and (3.45).

Figure 3.8 shows the result of segmenting the cameraman image. The bottom four images in the figure show the evolution of the zero level set of \(u \) throughout the gradient descent procedure resulting in the segmentation obtained in the lower right image. Figure 3.9 shows that results of segmenting blurry and noisy versions of the cameraman image, to illustrate that the algorithm is robust to image distortions.
Figure 3.8: Illustration of gradient descent for segmenting the cameraman image. Top left is the original image, and top right is the initialization of the gradient descent algorithm. The lower four images show the evolution of the zero level set of u.
3.7. IMAGE SEGMENTATION

Figure 3.9: Segmentation of clean, blurry, and noisy versions of the cameraman image.

3.7.1 Ginzburg-Landau approximation

Employing gradient descent (3.47) to minimize image segmentation energies can be extremely slow when asking for accurate results (i.e., \(\varepsilon > 0 \) is small), and/or when imposing a large amount of regularization (i.e., \(\lambda \gg 1 \)). Here, we describe some approximations based on Ginzburg-Landau functional that yield very fast approximate algorithms for image segmentation. We follow [9] closely.

For \(\varepsilon > 0 \) the Ginzburg-Landau functional is defined as

\[
G_\varepsilon(u) = \int_U \varepsilon |\nabla u|^2 + \frac{1}{\varepsilon} W(u) \, dx,
\]

where \(W \) is a double-well potential defined by \(W(t) = t^2(1-t)^2 \). When \(\varepsilon > 0 \) is small, the double-well potential term forces \(u \) to be either 1 or 0 in most of the domain with a sharp \(O(\varepsilon) \) transition between. It can be shown that the Ginzburg-Landau functional \(G_\varepsilon \) converges (in the \(\Gamma \)-sense that we will discuss later) to the total variation \(\int_U |\nabla u| \, dx \). Thus, we can (formally for now) make the approximation

\[
\int_U |\nabla H(u)| \, dx \approx \int_U \varepsilon |\nabla u|^2 + \frac{1}{\varepsilon} W(u) \, dx
\]

in the segmentation energy (3.39). Since the double-well forces \(u \) to be close to 1 or 0 everywhere, we can approximate \(H(u) \) by \(u^2 \) and \(1 - H(u) \) by \((1 - u)^2\). This leads to the approximate energy

\[
I_\varepsilon(u, a, b) = \int_U \mu \left\{ u^2(f - a)^2 + (1 - u)^2(f - b)^2 \right\} + \varepsilon |\nabla u|^2 + \frac{1}{\varepsilon} W(u) \, dx.
\]

The energy (3.49) is called a phase-field approximation of (3.39). Notice that \(\mu = \lambda^{-1} \) from the original energy (3.39).

The phase-field approximation (3.49) can be efficiently solved by splitting into two pieces, the double-well potential and the remaining portions, and alternatively
taking small steps of minimizing over each piece. Gradient descent on the double-well potential part of the energy $\frac{1}{\varepsilon} W(u)$ would be $u_t = -\frac{1}{\varepsilon} W'(u)$. When $\varepsilon > 0$ is small, we approximate this step by sending $t \to \infty$, and u converges to stable equilibrium points $W'(u) = 0$ and $W''(u) > 0$, i.e., $u = 0$ or $u = 1$. By examining $W'(u) = 2u(1-u)(1-2u)$, we see that $W''(u) > 0$ for $u > 1/2$ and $W''(u) < 0$ for $u < 1/2$. So any value of u larger than $1/2$ gets sent to 1, while value smaller than $1/2$ is sent to 0. This step is thus thresholding.

The other part of the energy is

$$\int_U \mu \left\{ u^2(f-a)^2 + (1-u)^2(f-b)^2 \right\} + \varepsilon |\nabla u|^2 \, dx.$$

Gradient descent on this portion of the energy corresponds to

$$u_t = 2\varepsilon \Delta u - 2\mu \left(u(f-a)^2 - (1-u)(f-b)^2 \right).$$

The scheme runs the gradient descent equation above for a short time, alternating with the thresholding step described above. The steps are outlined below.

Given: Image f, initial guess u^0, and time step $\tau > 0$. For $k = 1, 2, \ldots$

1. Solve the equation

$$\frac{d}{dt} \begin{cases} w_t = \Delta w - \frac{\mu}{\sqrt{\pi \tau}} \left(w(f-a)^2 - (1-w)(f-b)^2 \right), & \text{for } 0 < t \leq \tau \\ w = u^k, & \text{at } t = 0. \end{cases}$$

2. Set

$$u^{k+1}(x) = \begin{cases} 0, & \text{if } w(x, \tau) \leq \frac{1}{2} \\ 1, & \text{if } w(x, \tau) > \frac{1}{2}. \end{cases}$$

The constants a, b are updated after each thresholding step according to the formulas:

$$a = \frac{\int_U uf \, dx}{\int_U u \, dx} \quad \text{and} \quad b = \frac{\int_U (1-u)f \, dx}{\int_U (1-u) \, dx}.$$

The algorithm above is an example of threshold dynamics, which was invented in [13] for approximation motion by mean curvature, and has been widely used for other problems since. The scheme is unconditionally stable, which means that the scheme is stable and convergent for arbitrarily large time step $\tau > 0$. This breaks the stiffness in the segmentation energy and allows very fast computations of image segmentations.
Chapter 4

The direct method

We now turn to the problem of determining conditions under which the functional

\[
I(u) = \int_U L(x, u(x), \nabla u(x)) \, dx
\]

attains its minimum value. That is, we want to understand under what conditions we can construct a function \(u_*\) so that \(I(u_*) \leq I(u)\) for all \(u\) in an appropriate function space.

Example 4.1 (Optimization on \(\mathbb{R}^n\)). Suppose \(f : \mathbb{R}^n \to [0, \infty)\) is continuous. Then \(f\) attains its minimum value over any closed and bounded set \(D \subset \mathbb{R}^n\). Indeed, we can always take a sequence \(x_m\) with \(f(x_m) \to \inf_D f\) as \(m \to \infty\). Then by the Bolzano-Weierstrauss Theorem, there is a subsequence \(x_{m_j}\) and a point \(x_0 \in D\) such that \(x_{m_j} \to x_0\). By continuity of \(f\)

\[
f(x_0) = \lim_{j \to \infty} f(x_{m_j}) = \inf_D f.
\]

\[\triangle\]

The situation is much different in the infinite dimensional setting, as the following examples illustrate.

Example 4.2 (Weierstrauss). Consider minimizing

\[
I(u) = \int_{-1}^{1} (xu'(x))^2 \, dx
\]

subject to \(u(-1) = -1\) and \(u(1) = 1\). Here, the Lagrangian \(L(x, p) = x^2p^2\) is convex in \(p\), though not strongly convex at \(x = 0\). Let \(u_n(x) = \max\{\min\{nx, 1\}, -1\}\). We easily compute that \(I(u) = n^2 \int_{-1/n}^{1/n} x^2 \, dx = \frac{2}{3n}\), which shows that \(\inf I = 0\) over the space of Lipschitz functions. However, there is no Lipschitz function \(u\) for which \(u(-1) = -1,\ u(1) = 1\) and \(I(u) = 0\), since any Lipschitz functions for which \(I(u) = 0\) are constant. This example is originally due to Weierstrauss. \[\triangle\]
In example above, the sequence \(u_n \) is converging to a step function \(u(x) = 1 \) for \(x > 0 \) and \(u(x) = -1 \) for \(x < 0 \). One may try to interpret the step function as a solution of the variational problem in some appropriate way, so the lack of existence of minimizers stems from looking in the wrong function space (i.e., Lipschitz functions). The next example shows that the situation can be far worse when \(L \) is not convex.

Example 4.3 (Bolza problem). Consider the problem of minimizing

\[
I(u) = \int_0^1 u(x)^2 + (u'(x)^2 - 1)^2 \, dx,
\]

subject to \(u(0) = 0 = u(1) \). We claim there is no solution to this problem. To see this, let \(u_k(x) \) be a sawtooth wave of period \(2/k \) and amplitude \(1/k \). That is, \(u_k(x) = x \) for \(x \in [0, 1/k] \), \(u_k(x) = 2/k - x \) for \(x \in [1/k, 2/k] \), \(u_k(x) = x - 2/k \) for \(x \in [2/k, 3/k] \) and so on. The function \(u_k \) satisfies \(u_k'(x) = 1 \) or \(u_k'(x) = -1 \) at all but a finite number of points of non-differentiability. Also \(0 \leq u_k(x) \leq 1/k \). Therefore

\[
I(u_k) \leq \int_0^1 \frac{1}{k^2} \, dx = \frac{1}{k^2}.
\]

If the minimum exists, then

\[
0 \leq \min_u I(u) \leq \frac{1}{k^2}
\]

for all natural numbers \(k \). Therefore \(\min_u I(u) \) would have to be zero. However, there is no function \(u \) for which \(I(u) = 0 \). Such a function would have to satisfy \(u(x)^2 = 0 \) and \(u'(x)^2 = 1 \) for all \(x \), which are not compatible conditions. Therefore, there is no minimizer of \(I \), and hence no solution to this problem.

In contrast with Example 4.2, the minimizing sequence \(u_k \) constructed for the Bolza problem converges to a function (the zero function) that cannot be easily interpreted as a feasible candidate for a minimizer of the variational problem. The gradient \(u_k' \) is oscillating wildly and is nonconvergent everywhere in any strong sense.

The issue underlying both examples above is that the function space we are optimizing over is *infinite dimensional*, and so the notion of closed and bounded is not relevant. We will need a stronger compactness criterion. Indeed, the functional \(I \) in the Bolza example is a smooth function of \(u \) and \(u' \), and the minimizing sequence \(u_k \) constructed in Example 4.3 satisfies \(|u_k| \leq 1 \) and \(|u_k'| \leq 1 \), so we are minimizing \(I \) over a closed and bounded set. These examples show that infinite dimensional spaces are much different and we must proceed more carefully. In particular, we require further structure assumptions on \(L \) beyond smoothness to ensure minimizers exist.

4.1 Coercivity and lower semicontinuity

It is useful to first study a more abstract problem

\[
\inf_{x \in X} f(x),
\]
4.1. COERCIVITY AND LOWER SEMICONTINUITY

where X is a topological space and $f : X \to [0, \infty)$. A topological space is the most general space where we can make sense of limits $\lim_{n \to \infty} x_n = x$. Beyond this, it is not so important that the reader knows what a topological space is, so we will not give a definition, other than to say that all spaces considered in these notes are topological spaces with some additional structure (e.g., normed linear space, Hilbert space, etc).

The main question is: What conditions should we place on f to ensure its minimum value is attained over X, that is, that a minimizer exists in (4.2)?

It is useful to consider how one may go about proving the existence of a minimizer. Since $f \geq 0$, we have $\inf_{x \in X} f(x) \geq 0$, and so there exists a minimizing sequence (x_n) satisfying

$$\lim_{n \to \infty} f(x_n) = \inf_{x \in X} f(x). \quad (4.3)$$

The limit of the sequence (x_n), or any subsequence thereof, is presumably a leading candidate for a minimizer of f. If (x_n) is convergent in X, so there exists $x_0 \in X$ so that $x_n \to x_0$ as $n \to \infty$, then we would like to show that $f(x_0) = \inf_{x \in X} f(x)$. If f is continuous, then this follow directly from (4.3). However, functionals f of interest are often not continuous in the correct topology. It turns out we can get by with lower semicontinuity.

Definition 4.1. A function $f : X \to [0, \infty)$ is lower semicontinuous on X if for every $x \in X$

$$f(x) \leq \liminf_{y \to x} f(y). \quad (4.4)$$

If (x_n) is a minimizing sequence, $x_n \to x_0$ as $n \to \infty$, and f is lower semicontinuous, then it follows that

$$f(x_0) \leq \liminf_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(x_n) = \inf_{x \in X} f(x).$$

Therefore $f(x_0) = \inf_{x \in X} f(x)$.

Now we turn to the question of how to guarantee that (x_n), or a subsequence thereof, is convergent. This is the question of compactness.

Definition 4.2. A subset $A \subset X$ is sequentially compact if every sequence $(x_n) \subset A$ has a convergent subsequence converging to a point in A. We call the set A sequentially precompact if the subsequence converges in X, but not necessarily in A.

For topological spaces, there is another notion called compactness, which has a definition in terms of open sets. In metric spaces, sequentially compact is equivalent to compact, and in that setting we will just use the term compact. In general topological spaces the notions are not the same, and for minimizing functionals we
require sequential compactness. We recall that when \(X = \mathbb{R}^n \), a subset \(A \subset \mathbb{R}^n \) is sequentially compact (or just compact) if and only if \(A \) is closed and bounded, due to the celebrated Bolzano-Weierstrauss Theorem.

To show that \((x_n)\) has a convergent subsequence, we just need to ensure that the sequence belongs to a sequentially compact subset of \(X \).

Definition 4.3. We say that \(f : X \to [0, \infty) \) is coercive if there exists \(\lambda > \inf_{x \in X} f(x) \) such that the set

\[
A = \{ x \in X : f(x) < \lambda \}
\]

is sequentially precompact.

If \(f \) is coercive, then any minimizing sequence \((x_n)\) eventually belongs to a sequentially compact subset of \(X \), for \(n \) sufficiently large, and so \((x_n)\) admits a convergent subsequence, which converges to a minimizer of \(f \) if \(f \) is lower semicontinuous.

The discussion above is a proof of the following theorem.

Theorem 4.4. If \(f : X \to [0, \infty) \) is coercive and lower semicontinuous, then there exists \(x_0 \in X \) such that

\[
f(x_0) = \min_{x \in X} f(x).
\]

The discussion above has been purposefully abstract. The goal in the next few sections is to interpret the concepts of coercivity and lower semicontinuity for our functional of interest (4.1), which includes determining the correct space of functions \(X \) to work over.

4.2 Brief review of Sobolev spaces

Sobolev spaces are the natural function spaces in which to look for minimizers of many functionals in the form (4.1). Section A.5 has a brief introduction to some function spaces such as \(C^k(U) \) and \(L^2(U) \). Here, we briefly introduce the \(L^p \) spaces before giving a very brief overview of the necessary Sobolev space theory. For more details on Sobolev spaces we refer the reader to [10].

4.2.1 Definitions and basic properties

Let \(1 \leq p < \infty \) and let \(U \subset \mathbb{R}^n \) be open and bounded with a smooth boundary \(\partial U \). For \(u : U \to \mathbb{R} \) we define

\[
\|u\|_{L^p(U)} = \left(\int_U |u|^p \, dx \right)^{1/p},
\]
4.2. BRIEF REVIEW OF SOBOLEV SPACES

The space $L^p(U)$ is a Banach space equipped with the norm $\|u\|_{L^p(U)}$, provided we identify functions in $L^p(U)$ that agree up to sets of measure zero (i.e., almost everywhere). When $p = 2$, the norm $\|u\|_{L^2(U)}$ arises from an inner product

\[(u, v)_{L^2(U)} = \int_U uv \, dx,
\]
in the sense that $\|u\|_{L^2(U)} = \sqrt{(u, v)_{L^2(U)}}$. The space $L^2(U)$ is thus a Hilbert space. The borderline cases $p = 1$ and $p = \infty$ deserve special treatment in the Calculus of Variations, so we will not consider them here.

Another important inequality is Hölder’s inequality

\[(u, v)_{L^2(U)} \leq \|u\|_{L^p(U)} \|v\|_{L^q(U)},
\]
which holds for any $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. When $p = q = 2$, Hölder’s inequality is called the Cauchy-Schwarz inequality.

To define Sobolev spaces, we need to define the notion of a weak derivative. We write $u \in L^1_{\text{loc}}(U)$ when $u \in L^1(V)$ for all $V \subset U$.

Definition 4.5 (Weak derivative). Suppose $u, v \in L^1_{\text{loc}}(U)$ and $i \in \{1, \ldots, n\}$. We say that v is the x_i-weak partial derivative of u, written $v = u_{x_i}$, provided

\[(4.12) \quad \int_U u \varphi_{x_i} \, dx = - \int_U v \varphi \, dx
\]
for all test functions $\varphi \in C_c^\infty(U)$.

The weak derivative, when it exists, is unique, and when $u \in C^1(U)$ the weak and regular derivatives coincide. When $u \in L^1_{\text{loc}}$ has weak partial derivatives in all coordinates x_1, \ldots, x_n we say that u is weakly differentiable, and we will write $\nabla u = (u_{x_1}, \ldots, u_{x_n})$ for the vector of all weak partial derivatives.

For $1 \leq p < \infty$ and weakly differentiable $u \in L^1_{\text{loc}}$ we define

\[(4.13) \quad \|u\|_{W^{1,p}(U)} = \left(\int_U |u|^p + |\nabla u|^p \, dx \right)^{1/p}.
\]
Definition 4.6 (Sobolev space). We define the Sobolev space $W^{1,p}(U)$ as

$$W^{1,p}(U) = \{ \text{Weakly differentiable } u \in L^p(U) \text{ for which } \|u\|_{W^{1,p}(U)} < \infty \}. \quad (4.14)$$

The Sobolev spaces $W^{1,p}(U)$ are Banach spaces, and in particular, their norms satisfy the triangle inequality (4.10). For $p = 2$ we write $H^1(U) = W^{1,2}(U)$. The space $H^1(U)$ is a Hilbert space with inner product

$$\langle u, v \rangle_{H^1(U)} = \int_U u \cdot v + \nabla u \cdot \nabla v \, dx. \quad (4.15)$$

The smooth functions $C^\infty(\bar{U})$ are dense in $W^{1,p}(U)$ and $L^p(U)$. That is, for any $u \in W^{1,p}(U)$, there exists a sequence $u_m \in C^\infty(\bar{U})$ such that $u_m \to u$ in $W^{1,p}(U)$ (that is, $\lim_{m \to \infty} \|u_m - u\|_{W^{1,p}(U)} = 0$). However, a general function $u \in W^{1,p}(U)$ need not be continuous, much less infinitely differentiable.

Finally, we need to consider the notion of boundary condition in Sobolev spaces. For continuous functions $u \in C(\bar{U})$, the values of $u(x)$ for $x \in \partial U$ are uniquely defined. This is less clear for Sobolev space functions $u \in W^{1,p}(U)$, which are defined only up to sets of measure zero. Fortunately we have the notion of a trace. That is, one can prove that there exists a bounded linear operator

$$T : W^{1,p}(U) \to L^p(\partial U) \quad (4.16)$$

such that $Tu = u|_{\partial U}$ whenever $u \in W^{1,p}(U) \cap C(\bar{U})$. The trace operator allows us to make sense of the values of a Sobolev space function $u \in W^{1,p}(U)$ on the boundary ∂U.

There are a couple of important points to make about trace-zero functions.

Definition 4.7. We denote by $W^{1,p}_0(U)$ the closure of $C^\infty_c(U)$ in $W^{1,p}(U)$, and write $H^1_0(U) = W^{1,p}_0(U)$.

Thus, $u \in W^{1,p}_0(U)$ if and only if there exist functions $u_m \in C^\infty_c(U)$ such that $u_m \to u$ in $W^{1,p}(U)$. The spaces $W^{1,p}_0(U)$ are closed subspaces of $W^{1,p}(U)$. A theorem in Sobolev space states that

$$Tu \equiv 0 \text{ on } \partial U \quad \text{if and only if} \quad u \in W^{1,p}_0(U). \quad (4.17)$$

Thus, we can interpret $W^{1,p}_0(U)$ as the subspace of functions in $W^{1,p}(U)$ for which “$u \equiv 0$ on ∂U.” When we consider boundary values $u = g$ on ∂U, we will always consider the boundary values in the trace sense, so we mean that $Tu = g$ with $g \in L^p(\partial U)$.

4.2.2 Weak compactness in L^p spaces

Recalling the discussion in Section 4.1, we need to examine the appropriate notion of compactness in L^p and Sobolev spaces. However, in Banach spaces, compact sets in the norm topology are hard to come by.
4.2. BRIEF REVIEW OF SOBOLEV SPACES

Example 4.4. The closed unit ball \(B = \{ u \in L^2((0, 1)) : \| u \|_{L^2((0, 1))} \leq 1 \} \) is not compact in \(L^2((0, 1)) \). To see this, consider the sequence \(u_m(x) = \sqrt{2} \sin(\pi mx) \). We have

\[
\| u_m \|_{L^2((0, 1))}^2 = \int_0^1 2 \sin^2(\pi mx) \, dx = \int_0^1 1 - \cos(2\pi mx) \, dx = 1.
\]

Therefore \(u_m \in B \). However, \(u_m \) has no convergent subsequences. Indeed, by the Riemann-Lebesgue Lemma in Fourier analysis

\[
\lim_{m \to \infty} (u_m, v)_{L^2((0, 1))} = \lim_{m \to \infty} \sqrt{2} \int_0^1 \sin(\pi mx) v(x) \, dx = 0
\]

for all \(v \in L^2((0, 1)) \). Essentially, the sequence \(u_m \) is oscillating very rapidly, and when measured on average against a test function \(v \), the oscillations average out to zero in the limit. Therefore, if any subsequence of \(u_{m_j} \) was convergent in \(L^2((0, 1)) \) to some \(u_0 \in L^2((0, 1)) \), then we would have

\[
\| u_0 \|_{L^2((0, 1))} = \lim_{j \to \infty} \| u_{m_j} \|_{L^2((0, 1))} = 1,
\]

and

\[
(u_0, v)_{L^2((0, 1))} = \lim_{j \to \infty} (u_{m_j}, v)_{L^2((0, 1))} = 0
\]

for all \(v \in L^2((0, 1)) \). Taking \(v = u_0 \) is a contradiction. \(\triangle \)

For any \(1 \leq p < \infty \), define \(p' \) so that \(\frac{1}{p} + \frac{1}{p'} = 1 \), taking \(p' = \infty \) when \(p = 1 \). Note that by the Hölder inequality (4.11), the pairing \((u, v)_{L^2(U)} \) is well-defined when \(u \in L^p(U) \) and \(v \in L^{p'}(U) \). In this setting, \(u, v \) may not be \(L^2(U) \) functions, so we will write \((u, v) \) in place of \((u, v)_{L^2(U)} \), so that \((u, v) = \int_U u \, v \, dx \).

While we must abandon compactness in the norm topology, Eq. (4.18) suggests that in some weaker topology, the sequence \(u_m \) constructed in Example 4.4 should converge to 0.

Definition 4.8 (Weak convergence). Let \(1 \leq p < \infty \) and \(u_m, u \in L^p(U) \). We say that \(u_m \) converges weakly to \(u \) in \(L^p(U) \), written \(u_m \rightharpoonup u \) as \(m \to \infty \), provided

\[
\lim_{m \to \infty} (u_m, v) = (u, v) \quad \text{for all } v \in L^{p'}(U).
\]

Any weakly convergent sequence is norm-bounded, that is, if \(u_m \rightharpoonup u \) in \(L^p(U) \) then \(u_m \) is bounded in \(L^p(U) \) (\(\sup_{m \geq 1} \| u_m \|_{L^p(U)} < \infty \)), and furthermore

\[
\| u \|_{L^p(U)} \leq \liminf_{m \to \infty} \| u_m \|_{L^p(U)}.
\]

The inequality above is in general strict, as we saw in Example 4.4.

Taking \(p = q = 2 \), we see that the sequence \(u_m \) from Example 4.4 converges weakly to 0 in \(L^2((0, 1)) \). This is a special case of a more general theorem.
Definition 4.9. Let $1 \leq p < \infty$. We say a subset $B \subset L^p(U)$ is weakly sequentially compact if for every bounded sequence $u_m \in B$, there is a subsequence u_{m_j} and some $u \in B$ such that $u_{m_j} \rightharpoonup u$ as $j \to \infty$.

Theorem 4.10 (Banach-Alaoglu Theorem). Let $1 < p < \infty$. The unit ball $B = \{ u \in L^p(U) : \| u \|_{L^p(U)} \leq 1 \}$ is weakly sequentially compact.

Of course, it follows that any ball $\{ u \in L^p(U) : \| u \|_{L^p(U)} \leq r \}$ is weakly sequentially compact as well.

Example 4.5. Theorem 4.10 does not hold for $p = 1$. We can take, for example, $U = (1, 1)$ and the sequence of functions $u_m(x) = m/2$ for $|x| \leq 1/m$ and $u_m(x) = 0$ for $|x| > 1/m$. Note that $\| u_m \|_{L^1(U)} = 1$, so the sequence is bounded in $L^1(U)$, and that $u_m(x) \to 0$ pointwise for $x \neq 0$ (actually, uniformly away from $x = 0$). So any weak limit in $L^1(U)$, if it exists, must be identically zero. However, for any smooth function $\varphi : U \to \mathbb{R}$ we have

$$\lim_{m \to \infty} (u_m, \varphi)_{L^2(U)} = \frac{m}{2} \int_{-1/m}^{1/m} \varphi(x) \, dx = \varphi(0).$$

Hence, the sequence u_m does not converge weakly to zero. In fact, the sequence u_m converges to a measure, called the Dirac delta function. Note that $\| u_m \|_{L^p(U)} = (m/2)^{1-1/p}$, and so the sequence is unbounded in $L^p(U)$ for $p > 1$.

We note that Theorem 4.10 does hold when $p = \infty$, provided we interpret weak convergence in the correct sense (which is weak-* convergence here). The issue with these borderline cases is that L^1 and L^∞ are not reflexive Banach spaces.

While weak convergence seems to solve some of our problems, it immediately introduces others.

Example 4.6. If $u_m \rightharpoonup u$ in $L^p(U)$, it is in general not true that $f(u_m) \rightharpoonup f(u)$, even for smooth and bounded $f : \mathbb{R} \to \mathbb{R}$. Take, for example, the setting of Example 4.4 and $f(t) = t^2$. Then

$$f(u_m) = 2 \sin^2(\pi mx) = 1 - 2 \cos(2\pi mx).$$

Arguing as in Example 4.4 we have $u_m \to 0$ and $f(u_m) \to 1 \neq f(0)$.

Example 4.7. If $u_m \rightharpoonup u$ in $L^p(U)$ and $w_m \rightharpoonup w$ in $L^p(U)$, it is in general not true that

$$(u_m, w_m) \rightharpoonup (u, w) \quad \text{as} \quad m \to \infty.$$
The examples above show that weak convergence does not behave well with function composition, even in the setting of the bilinear form given by the L^2 inner-product. The consequence is that our functional I defined in (4.1) is in general not continuous in the weak topology. So by weakening the topology we have gained a crucial compactness condition, but have lost continuity.

The issues above show how it is, in general, difficult to pass to limits in the weak topology when one is dealing with nonlinear problems. This must be handled carefully in our analysis of minimizers of Calculus of Variations problems. We record below a useful lemma for passing to limits with weakly convergent sequences.

Lemma 4.11. Let $1 \leq p < \infty$. If $u_m \rightharpoonup u$ in $L^p(U)$ and $w_m \to w$ in $L^p(U)$, then

$$ (u_m, w_m) \to (u, w) \quad \text{as} \quad m \to \infty. \quad (4.21) $$

Notice the difference with Example 4.7 is that w_m converges strongly (and not just weakly) to w in $L^p(U)$.

Proof. We write

$$ |(u_m, w_m) - (u, w)| = |(u_m, w) - (u, w) + (u_m, w_m) - (u_m, w)| $$

$$ \leq |(u_m, w) - (u, w)| + |(u_m, w_m) - (u_m, w)| $$

$$ = |(u_m - u, w)| + |(u_m, w_m - w)| $$

$$ \leq |(u_m - u, w)| + \|u_m\|_{L^p(U)} \|w_m - w\|_{L^p(U)}, $$

where the last line follows from Hölder’s inequality. Since $u_m \rightarrow w$, the first term vanishes as $m \to \infty$ by definition. Since u_m is bounded and $w_m \to w$ in $L^p(U)$, the second term vanishes as $m \to \infty$ as well, which completes the proof. \qed

4.2.3 Compactness in Sobolev spaces

To address calculus of variations problems in \mathbb{R}^n, we need to extend the notion of weak convergence to Sobolev spaces.

Definition 4.12 (Weak convergence in $W^{1,p}$). Let $1 \leq p < \infty$ and $u_m, u \in W^{1,p}(U)$. We say that u_m converges weakly to u in $W^{1,p}(U)$, written $u_m \rightharpoonup u$ as $m \to \infty$, provided

$$ u_m \to u \quad \text{and} \quad (u_m)_{x_i} \to u_{x_i} \quad \text{in} \quad L^p(U) \quad \text{for all} \quad i \in \{1, \ldots, n\}. \quad (4.22) $$

Note we are using $u_m \rightarrow u$ for weak convergence in L^p and $W^{1,p}$ spaces. It will be clear from the context which is intended.
It follows from the Banach-Alaoglu Theorem that the unit ball in $W^{1,p}(U)$ is weakly compact. However, we gain an additional, and very important, strong compactness in $L^p(U)$ due to bounding the weak gradient is $L^p(U)$. This is essentially what makes it possible to pass to limits with weak convergence, since we end up in the setting where we can apply tools like Lemma 4.11.

Theorem 4.13 (Weak/strong compactness). Let $1 \leq p \leq \infty$ and let $u_m \in W^{1,p}(U)$ be a bounded sequence in $W^{1,p}(U)$ (i.e., $\sup_{m \geq 1} \|u_m\|_{W^{1,p}(U)} < \infty$). Then there exists a subsequence u_{m_j} and a function $u \in L^p(U)$ such that

\[(4.23)\quad u_{m_j} \to u \quad \text{in} \quad L^p(U).\]

Furthermore, if $1 < p < \infty$, we can pass to a further subsequence, if necessary, so that $u \in W^{1,p}(U)$ and

\[(4.24)\quad u_{m_j} \rightharpoonup u \quad \text{in} \quad W^{1,p}(U).\]

Notice the convergence $u_{m_j} \to u$ is ordinary (strong) convergence in $L^p(U)$ and not weak convergence. This is the crucial part of the compact Sobolev embeddings that make them far stronger statements than the Banach-Alaoglu Theorem. In other words, we are saying that the unit ball in $W^{1,p}(U)$ is a compact subset of $L^p(U)$. We can that $W^{1,p}(U)$ is compactly embedded in $L^p(U)$, which is written $W^{1,p}(U) \subset L^p(U)$. The reader should compare Theorem 4.13 with the Arzelá-Ascoli Theorem, which gives a similar result for classes of equicontinuous functions (in fact, the Arzelá-Ascoli Theorem is one of the main tools in the proof of Theorem 4.13).

An immediate application of compactness is the Poincaré inequality

Theorem 4.14 (Trace-zero Poincaré). Let $1 \leq p \leq \infty$. There exists a constant $C > 0$, depending on p and U, such that

\[(4.25)\quad \|u\|_{L^p(U)} \leq C \|
abla u\|_{L^p(U)}\]

for all $u \in W^{1,p}_0(U)$.

Proof. Assume, by way of contradiction, that for each $k \geq 1$ there exists $u_k \in W^{1,p}_0(U)$ such that

\[(4.26)\quad \|u_k\|_{L^p(U)} > k \|
abla u_k\|_{L^p(U)}\]

We may assume $\|u_k\|_{L^p(U)} = 1$ so that $\|
abla u_k\|_{L^p(U)} < 1/k$ and $\nabla u_k \to 0$ in $L^p(U)$ as $k \to \infty$. By Theorem 4.13 there exists a subsequence u_{k_j} and $u \in L^p(U)$ such that $u_{k_j} \to u$ in $L^p(U)$. Since $\|u_k\|_{L^p(U)} = 1$ we have that $\|u\|_{L^p(U)} = 1$.

For any $\varphi \in C_c^\infty(U)$ we have

$$\int_U u \varphi_{x_i} \, dx = \lim_{j \to \infty} \int_U u_{k_j} \varphi_{x_i} \, dx = \lim_{j \to \infty} \int_U u_{k_j, x_i} \varphi \, dx = 0.$$

Therefore $u \in W^{1,p}(U)$ and $\nabla u = 0$. It follows that $u_{k_j} \to u$ in $W^{1,p}(U)$, and so $u \in W^{1,p}_0(U)$, as $u_{k_j} \in W^{1,p}_0(U)$. Since $\nabla u = 0$ in the weak sense, and $u = 0$ on ∂U in the trace sense, we have $u = 0$ almost everywhere in U (exercise), which contradicts that $\|u\|_{L^p(U)} = 1$. \hfill \Box
4.3 SUFFICIENT CONDITIONS

So far, we have only shown that the Euler-Lagrange equation (2.3) is a necessary condition that a minimizer must satisfy. This means that if u minimizes $I(u)$, then u must satisfy the Euler-Lagrange equation. However, solutions of the Euler-Lagrange equation need not always be minimizers. They could be also maximizers or even saddle points as well. Consider, for example, the minimal surface of revolution problem discussed in Section 3.4, where we found two solutions of the Euler-Lagrange equation, but only one solution yielded the least area. The other solution is clearly not a minimizer. For a simpler example, consider the function $f(x) = x^3$. The point $x = 0$ is a critical point, since $f'(0) = 0$, but $x = 0$ is neither a minimum nor maximum of f—it is a saddle point.

So a natural question concerns sufficient conditions for a solution of the Euler-Lagrange equation to be a minimizer or maximizer. It is useful to consider functions of a single variable $f(x)$. If $f'(x) = 0$ then x is a critical point, and if $f''(x) > 0$ then we know that x is a local minimizer of f. This is often called the second derivative test. Recall that f is convex if $f''(x) > 0$. So in the calculus of variations, we might expect convexity to play a role.

Our functionals are of the form

$$I(u) = \int_U L(x, u(x), \nabla u(x)) \, dx.$$

The integral is a linear operation, so we should ask that L is convex in u and ∇u. Notice in Example 4.3 that

$$L(x, z, p) = z^2 + (p^2 - 1)^2$$

is not convex in p (sketch the graph of $p \mapsto (p^2 - 1)^2$). This is the source of the difficulty in this problem.

We now show that a sufficient condition for a critical point, or solution of the Euler-Lagrange equation (2.3), to be a minimum is that the mapping $(z, p) \mapsto L(x, z, p)$ is convex for each $x \in U$. In light of Theorem A.37, this means that

$$L_{zz}(x, z, p)t^2 + 2 \sum_{i=1}^{n} L_{zp_i}(x, z, p)tv_i + \sum_{i=1}^{n} \sum_{j=1}^{n} L_{p_ip_j}(x, z, p)v_i v_j \geq 0$$

for all $t, z \in \mathbb{R}$ and $x, v, p \in \mathbb{R}^n$.

Sometimes (4.27) is referred to as joint convexity in z and p, to distinguish it from the condition that $z \mapsto L(x, z, p)$ and $p \mapsto L(x, z, p)$ are convex. The two notions are not equivalent.

Example 4.8. The function $u(x) = x_1 x_2$ is not convex, since

$$\sum_{i=1}^{2} \sum_{j=1}^{2} u_{x_i x_j} v_i v_j = 2v_1 v_2$$
is clearly not positive for, say, \(v_1 = 1 \) and \(v_2 = -1 \). However, \(x_1 \mapsto u(x_1, x_2) \) is convex, since \(u_{x_1 x_1} = 0 \), and \(x_2 \mapsto u(x_1, x_2) \) is convex, since \(u_{x_2 x_2} = 0 \). Therefore, convexity of \(x \mapsto u(x) \) is not equivalent to convexity in each variable \(x_1 \) and \(x_2 \) independently. \(\triangle \)

The following theorem shows that solutions of the Euler-Lagrange equation are minimizers whenever \((z, p) \mapsto L(x, z, p)\) is convex.

Theorem 4.15. Assume \((z, p) \mapsto L(x, z, p)\) is convex for each \(x \in U\). Let \(u \in C^1(U)\) be a weak solution of the Euler-Lagrange equation (2.3), as defined in Remark 2.5. Then \(I(u) \leq I(v) \) for all \(v \in C^1(U) \) with \(u = v \) on \(\partial U \).

Proof. Since \((z, p) \mapsto L(x, z, p)\) is convex, we can use Theorem A.37 to show that

\[
L(x, v, q) \geq L(x, z, p) + L_z(x, z, p)(v - z) + \nabla_p L(x, z, p) \cdot (q - p)
\]

for all \(x, p, q \in \mathbb{R}^n \) and \(v, z \in \mathbb{R} \). Let \(v \in C^1(U) \) such that \(u = v \) on \(\partial U \), and write \(p = \nabla u(x) \), \(q = \nabla v(x) \), \(z = u(x) \), and \(v = v(x) \) in the above to obtain

\[
L(x, v, \nabla v) \geq L(x, u, \nabla u) + L_z(x, z, p)(v - u) + \nabla_p L(x, u, \nabla u) \cdot (\nabla v - \nabla u).
\]

We now integrate both sides over \(U \) and write \(\varphi = v - u \) to deduce

\[
I(v) \geq I(u) + \int_U L_z(x, z, p) \varphi + \nabla_p L(x, u, \nabla u) \cdot \nabla \varphi \, dx.
\]

Since \(u \) is a weak solution of the Euler-Lagrange equation (2.3) and \(\varphi = 0 \) on \(\partial U \) we have

\[
\int_U L_z(x, z, p) \varphi + \nabla_p L(x, u, \nabla u) \cdot \nabla \varphi \, dx = 0
\]

and so \(I(v) \geq I(u) \). \(\square \)

Exercise 4.16. Show that \(L(x, z, p) = \frac{1}{2} |p|^2 - zf(x) \) is jointly convex in \(z \) and \(p \). \(\triangle \)

Exercise 4.17. Show that \(L(x, z, p) = zp_1 \) is not jointly convex in \(z \) and \(p \). \(\triangle \)
Chapter 5

Discrete to continuum in graph-based learning
Appendix A

Mathematical preliminaries

We review here some basic mathematical preliminaries.

A.1 Inequalities

For $x \in \mathbb{R}^n$ the norm of x is

$$|x| := \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}.$$

When $n = 2$ or $n = 3$, $|x - y|$ is the usual Euclidean distance between x and y. The dot product between $x, y \in \mathbb{R}^n$ is

$$x \cdot y = \sum_{i=1}^{n} x_i y_i.$$

Notice that

$$|x|^2 = x \cdot x.$$

Simple inequalities, when used in a clever manner, are very powerful tools in the study of partial differential equations. We give a brief overview of some commonly used inequalities here.

The Cauchy-Schwarz inequality states that

$$|x \cdot y| \leq |x||y|.$$

To prove the Cauchy-Schwarz inequality find the value of t that minimizes

$$h(t) := |x + ty|^2.$$

For $x, y \in \mathbb{R}^n$

$$|x + y|^2 = (x + y) \cdot (x + y) = x \cdot x + x \cdot y + y \cdot x + y \cdot y.$$

75
Therefore

$$|x + y|^2 = |x|^2 + 2x \cdot y + |y|^2.$$

Using the Cauchy-Schwarz inequality we have

$$|x + y|^2 \leq |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2.$$

Taking square roots of both sides we have the triangle inequality

$$|x + y| \leq |x| + |y|.$$

For $x, y \in \mathbb{R}^n$ the triangle inequality yields

$$|x| = |x - y + y| \leq |x - y| + |y|.$$

Rearranging we obtain the reverse triangle inequality

$$|x - y| \geq |x| - |y|.$$

For real numbers a, b we have

$$0 \leq (a - b)^2 = a^2 - 2ab + b^2.$$

Therefore

$$(A.1) \quad ab \leq \frac{1}{2}a^2 + \frac{1}{2}b^2.$$

This is called Cauchy’s inequality.

Another useful inequality is Young’s inequality: If $1 < p, q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$ then

$$(A.2) \quad ab \leq \frac{a^p}{p} + \frac{b^q}{q} \quad \text{for all } a, b > 0.$$

To see this, we use convexity of the mapping $x \mapsto e^x$ to obtain

$$ab = e^{\log(a) + \log(b)} = e^{\frac{1}{p}\log(a^p) + \frac{1}{q}\log(b^q)} \leq \frac{1}{p}e^{\log(a^p)} + \frac{1}{q}e^{\log(b^q)} = \frac{a^p}{p} + \frac{b^q}{q}.$$

Young’s inequality is a generalization of Cauchy’s inequality, which is obtained by taking $p = q = 2$.
A.2. **TOPOLOGY**

A.2 Topology

We will have to make use of basic point-set topology. We define the open ball of radius \(r > 0 \) centered at \(x_0 \in \mathbb{R}^n \) by

\[
B^0(x_0, r) := \{ x \in \mathbb{R}^n : |x - x_0| < r \}.
\]

The closed ball is defined as

\[
B(x_0, r) := \{ x \in \mathbb{R}^n : |x - x_0| \leq r \}.
\]

Definition A.1. A set \(U \subset \mathbb{R}^n \) is called *open* if for each \(x \in U \) there exists \(r > 0 \) such that \(B(x, r) \subset U \).

Exercise A.2. Let \(U, V \subset \mathbb{R}^n \) be open. Show that

\[
W := U \cup V := \{ x \in \mathbb{R}^n : x \in U \text{ or } x \in V \}
\]

is open. \(\triangle \)

Definition A.3. We say that a sequence \(\{x_k\}_{k=1}^\infty \) in \(\mathbb{R}^n \) *converges* to \(x \in \mathbb{R}^n \), written \(x_k \to x \), if

\[
\lim_{k \to \infty} |x_k - x| = 0.
\]

Definition A.4. The *closure* of a set \(U \subset \mathbb{R}^n \), denoted \(\overline{U} \), is defined as

\[
\overline{U} := \{ x \in \mathbb{R}^n : \text{there exists a sequence } x_k \in U \text{ such that } x_k \to x \}.
\]

The closure is the set of points that can be reached as limits of sequences belonging to \(U \).

Definition A.5. We say that a set \(U \subset \mathbb{R}^n \) is *closed* if \(\overline{U} = U \).

Exercise A.6. Another definition of *closed* is: A set \(U \subset \mathbb{R}^n \) is closed if the complement

\[
\mathbb{R}^n \setminus U := \{ x \in \mathbb{R}^n : x \not\in U \}
\]

is open. Verify that the two definitions are equivalent [This is not a trivial exercise]. \(\triangle \)

Definition A.7. We define the *boundary* of an open set \(U \subset \mathbb{R}^n \), denoted \(\partial U \), as

\[
\partial U := \overline{U} \setminus U.
\]

Example A.1. The open ball \(B^0(x, r) \) is open, and its closure is the closed ball \(B(x, r) \). The boundary of the open ball \(B^0(x, r) \) is

\[
\partial B^0(x_0, r) := \{ x \in \mathbb{R}^n : |x - x_0| = r \}.
\]

It is a good idea to verify each of these facts from the definitions. \(\triangle \)
We defined the boundary only for open sets, but it can be defined for any set.

Definition A.8. The *interior* of a set $U \subset \mathbb{R}^n$, denoted $\text{int}(U)$, is defined as

$$\text{int}(U) := \{ x \in U : B(x, r) \subset U \text{ for small enough } r > 0 \}.$$

Exercise A.9. Show that $U \subset \mathbb{R}^n$ is open if and only if $\text{int}(U) = U$. \hfill \triangle

We can now define the boundary of an arbitrary set $U \subset \mathbb{R}^n$.

Definition A.10. We define the *boundary* of a set $U \subset \mathbb{R}^n$, denoted ∂U, as

$$\partial U := U \setminus \text{int}(U).$$

Exercise A.11. Verify that $\partial B(x, r) = \partial B^0(x, r)$. \hfill \triangle

Definition A.12. We say a set $U \subset \mathbb{R}^n$ is *bounded* if there exists $M > 0$ such that $|x| \leq M$ for all $x \in U$.

Definition A.13. We say a set $U \subset \mathbb{R}^n$ is *compact* if U is closed and bounded.

Definition A.14. For open sets $V \subset U \subset \mathbb{R}^n$ we say that V is *compactly contained* in U if V is compact and $\overline{V} \subset U$. If V is compactly contained in U we write $V \subset \subset U$.

A.3 Differentiation

A.3.1 Partial derivatives

The *partial derivative* of a function $u = u(x_1, x_2, \ldots, x_n)$ in the x_i variable is defined as

$$\frac{\partial u}{\partial x_i}(x) := \lim_{h \to 0} \frac{u(x + he_i) - u(x)}{h},$$

provided the limit exists. Here e_1, e_2, \ldots, e_n are the standard basis vectors in \mathbb{R}^n, so $e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{R}^n$ has a one in the i^{th} entry. For simplicity of notation we will write

$$u_{x_i} = \frac{\partial u}{\partial x_i}.$$

The *gradient* of a function $u : \mathbb{R}^n \to \mathbb{R}$ is the vector of partial derivatives

$$\nabla u(x) := (u_{x_1}(x), u_{x_2}(x), \ldots, u_{x_n}(x)).$$

We will treat the gradient as a column vector for matrix-vector multiplication.
Higher derivatives are defined iteratively. The second derivatives of \(u \) are defined as

\[
\frac{\partial^2 u}{\partial x_i \partial x_j} := \frac{\partial}{\partial x_i} \left(\frac{\partial u}{\partial x_j} \right).
\]

This means that

\[
\frac{\partial^2 u}{\partial x_i \partial x_j} (x) = \lim_{h \to 0} \frac{1}{h} \left(\frac{\partial u}{\partial x_j} (x + he_i) - \frac{\partial u}{\partial x_j} (x) \right),
\]

provided the limit exists. As before, we write

\[
\frac{\partial^2 u}{\partial x_i \partial x_j} = \frac{\partial^2 u}{\partial x_j \partial x_i}
\]

for notational simplicity. When \(\frac{\partial^2 u}{\partial x_i \partial x_j} \) and \(\frac{\partial^2 u}{\partial x_j \partial x_i} \) exist and are continuous we have

\[
\frac{\partial^2 u}{\partial x_i \partial x_j} = \frac{\partial^2 u}{\partial x_j \partial x_i},
\]

that is the second derivatives are the same regardless of which order we take them in. We will generally always assume our functions are smooth (infinitely differentiable), so equality of mixed partials is always assumed to hold.

The Hessian of \(u : \mathbb{R}^n \to \mathbb{R} \) is the matrix of all second partial derivatives

\[
\nabla^2 u(x) := \left(\frac{\partial^2 u}{\partial x_i \partial x_j} \right)_{i,j=1}^n = \begin{bmatrix}
 u_{x_1 x_1} & u_{x_1 x_2} & u_{x_1 x_3} & \cdots & u_{x_1 x_n} \\
 u_{x_2 x_1} & u_{x_2 x_2} & u_{x_2 x_3} & \cdots & u_{x_2 x_n} \\
 u_{x_3 x_1} & u_{x_3 x_2} & u_{x_3 x_3} & \cdots & u_{x_3 x_n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 u_{x_n x_1} & u_{x_n x_2} & u_{x_n x_3} & \cdots & u_{x_n x_n}
\end{bmatrix}
\]

Since we have equality of mixed partials, the Hessian is a symmetric matrix, i.e., \((\nabla^2 u)^T = \nabla^2 u \). Since we treat the gradient \(\nabla u \) as a column vector, the product \(\nabla^2 u(x) \nabla u(x) \) denotes the Hessian matrix multiplied by the gradient vector. That is,

\[
[\nabla^2 u(x) \nabla u(x)]_j = \sum_{i=1}^n u_{x_i x_j} u_{x_i}.
\]

Given a vector field \(F : \mathbb{R}^n \to \mathbb{R}^n \) where \(F(x) = (F^1(x), F^2(x), \ldots, F^n(x)) \), the divergence of \(F \) is defined as

\[
\text{div} F(x) := \sum_{i=1}^n F_i^i(x).
\]

The Laplacian of a function \(u : \mathbb{R}^n \to \mathbb{R} \) is defined as

\[
\Delta u := \text{div}(\nabla u) = \sum_{i=1}^n u_{x_i x_i}.
\]
A.3.2 Rules for differentiation

Most of the rules for differentiation from single variable calculus carry over to multi-variable calculus.

Chain rule: If \(v(t) = (v_1(t), v_2(t), \ldots, v_n(t)) \) is a function \(v : \mathbb{R} \to \mathbb{R}^n \), and \(u : \mathbb{R}^n \to \mathbb{R} \), then

\[
\frac{d}{dt} u(v(t)) = \nabla u(v(t)) \cdot v'(t) = \sum_{i=1}^{n} u_{x_i}(v(t))v_i'(t).
\]

Here \(v'(t) = (v_1'(t), v_2'(t), \ldots, v_n'(t)) \).

If \(F(x) = (F^1(x), F^2(x), \ldots, F^n(x)) \) is a function \(F : \mathbb{R}^n \to \mathbb{R}^n \) then

\[
\frac{\partial}{\partial x_j} u(F(x)) = \nabla u(F(x)) \cdot F_{x_j}(x) = \sum_{i=1}^{n} u_{x_i}(F(x))F^n_{x_j}(x),
\]

where \(F_{x_j} = (F^1_{x_j}, F^2_{x_j}, \ldots, F^n_{x_j}) \). This is a special case of (A.3) with \(t = x_j \).

Product rule: Given two functions \(u, v : \mathbb{R}^n \to \mathbb{R} \), we have

\[
\nabla(uv) = u \nabla v + v \nabla u.
\]

This is entry-wise the usual product rule for single variable calculus.

Given a vector field \(F : \mathbb{R}^n \to \mathbb{R}^n \) and a function \(u : \mathbb{R}^n \to \mathbb{R} \) we have

\[
\frac{\partial}{\partial x_i} (uF^i) = u_{x_i}F^i + uF^i_{x_i},
\]

Therefore

\[
\text{div}(uF) = \nabla u \cdot F + u \text{div}F.
\]

Exercise A.15. Let \(|x| = \sqrt{x_1^2 + \cdots + x_n^2} \).

(a) Show that for \(x \neq 0 \)

\[
\frac{\partial}{\partial x_i} |x| = \frac{x_i}{|x|}.
\]

(b) Show that for \(x \neq 0 \)

\[
\frac{\partial^2}{\partial x_i \partial x_j} |x| = \frac{\delta_{ij}}{|x|} - \frac{x_i x_j}{|x|^3},
\]

where \(\delta_{ij} \) is the Kronecker delta defined by

\[
\delta_{ij} = \begin{cases}
1, & \text{if } i = j \\
0, & \text{if } i \neq j.
\end{cases}
\]
(c) Show that for \(x \neq 0 \)
\[
\Delta |x| = \frac{n - 1}{|x|}.
\]

\[\triangle\]

Exercise A.16. Find all real numbers \(\alpha \) for which \(u(x) = |x|^\alpha \) is a solution of Laplace’s equation
\[
\Delta u(x) = 0 \quad \text{for} \ x \neq 0.
\]

\[\triangle\]

Exercise A.17. Let \(1 \leq p \leq \infty \). The \(p \)-Laplacian is defined by
\[
\Delta_p u := \text{div} \left(|\nabla u|^{p-2} \nabla u \right)
\]
for \(1 \leq p < \infty \), and
\[
\Delta_\infty u := \frac{1}{|\nabla u|^2} \sum_{i=1}^{n} \sum_{j=1}^{n} u_{x_i x_j} u_{x_i} u_{x_j}.
\]
Notice that \(\Delta_2 u = \Delta u \). A function \(u \) is called \(p \)-harmonic if \(\Delta_p u = 0 \).

(a) Show that
\[
\Delta_p u = |\nabla u|^{p-2} \left(\Delta u + (p-2)\Delta_\infty u \right).
\]

(b) Show that
\[
\Delta_\infty u = \lim_{p \to \infty} \frac{1}{|\nabla u|^{2-p}} \Delta_p u.
\]

\[\triangle\]

Exercise A.18. Let \(1 \leq p \leq \infty \). Find all real numbers \(\alpha \) for which the function \(u(x) = |x|^\alpha \) is \(p \)-harmonic away from \(x = 0 \).

\[\triangle\]

A.4 Taylor series

A.4.1 One dimension

Let \(u : \mathbb{R} \to \mathbb{R} \) be twice continuously differentiable. Then by the fundamental theorem of calculus
\[
\Delta u(y) - u(x) = \int_{x}^{y} u'(t) \, dt = \int_{x}^{y} u'(x) + u'(t) - u'(x) \, dt.
\]
Since \(\int_{x}^{y} u'(x) \, dt = u'(x)(y - x) \), it follows that
\[
u(y) = u(x) + u'(x)(y - x) + R_2(x, y),
\]
where
\[
R_2(x, y) = \int_{x}^{y} (u'(x) - u'(t)) \, dt.
\]
where R_2 is the remainder given by

$$ R_2(x, y) = \int_x^y u'(t) - u'(x) \, dt. $$

Applying the fundamental theorem again we have

$$ R_2(x, y) = \int_x^y \int_x^t u''(s) \, ds \, dt. \tag{A.5} $$

Let $C > 0$ denote the maximum value of $|u''(s)|$. Assuming, without loss of generality, that $y > x$ we have

$$ |R_2(x, y)| \leq \left| \int_x^y C|t - x| \, dt \right| = C \frac{1}{2} |y - x|^2. $$

Exercise A.19. Verify the final equality above. \(\triangle\)

When $|g(y)| \leq C|y|^k$ we write $g \in O(|y|^k)$. Thus $R_2(x, y) \in O(|y - x|^2)$ and we have deduced the first order Taylor series

$$ u(y) = u(x) + u'(x)(y - x) + O(|y - x|^2). \tag{A.6} $$

A Taylor series expresses the fact that a sufficiently smooth function can be well-approximated locally by its tangent line. It is important to keep in mind that the constant C hidden in the $O((y - x)^2)$ term depends on how large $|u''|$ is. Also note that we can choose $C > 0$ to be the maximum of $|u''(s)|$ for s between x and y, which may be much smaller than the maximum of $|u'(s)|$ over all s (which may not exist).

It is useful sometimes to continue the Taylor series to higher order terms. For this, suppose u is three times continuously differentiable. We first write the Taylor series with remainder for $u'(t)$

$$ u'(t) = u'(x) + u''(x)(t - x) + \int_x^t \int_x^\tau u'''(s) \, ds \, d\tau. $$

Proceeding as before, we use the fundamental theorem of calculus to find

$$ u(y) = u(x) + \int_x^y u'(t) \, dt $$

$$ = u(x) + \int_x^y u'(x) + u''(x)(t - x) + \int_x^t \int_x^\tau u'''(s) \, ds \, d\tau \, dt $$

$$ = u(x) + u'(x)(y - x) + \frac{1}{2} u''(x)(y - x)^2 + R_3(x, y), $$

where

$$ R_3(x, y) = \int_x^y \int_x^t \int_x^\tau u'''(s) \, ds \, d\tau \, dt. $$

As before, let $C > 0$ denote the maximum value of $|u'''(s)|$. Then

$$ |R_3(x, y)| \leq \frac{C}{6} |y - x|^3. $$
Exercise A.20. Verify the inequality above.

Therefore $R_3 \in O(|y - x|^3)$ and we have the second order Taylor expansion

$$u(y) = u(x) + u'(x)(y - x) + \frac{1}{2}u''(x)(y - x)^2 + O(|y - x|^3).$$

(A.7)

The second order Taylor series says that a sufficiently smooth function can be approximated up to $O((y - x)^3)$ accuracy with a parabola. Again, we note that the constant $C > 0$ hidden in $O((y - x)^3)$ depends on the size of $|u'''(s)|$, and $C > 0$ may be chosen as the maximum of $|u'''(s)|$ over s between x and y.

A.4.2 Higher dimensions

Taylor series expansions for functions $u : \mathbb{R}^n \to \mathbb{R}$ follow directly from the one dimensional case and the chain rule. Suppose u is twice continuously differentiable and fix $x, y \in \mathbb{R}^n$. For $t \in \mathbb{R}$ define

$$\phi(t) = u(x + (y - x)t).$$

Since ϕ is a function of one variable t, we can use the one dimensional Taylor series to obtain

$$\phi(t) = \phi(0) + \phi'(0)t + O(|t|^2).$$

(A.8)

The constant in the $O(|t|^2)$ term depends on the maximum of $|\phi''(t)|$. All that remains is to compute the derivatives of ϕ. By the chain rule

$$\phi'(t) = \sum_{i=1}^{n} u_{x_i}(x + (y - x)t)(y_i - x_i),$$

(A.9)

and

$$\phi''(t) = \frac{d}{dt} \sum_{i=1}^{n} u_{x_i}(x + (y - x)t)(y_i - x_i)$$

$$= \sum_{i=1}^{n} \frac{d}{dt} u_{x_i}(x + (y - x)t)(y_i - x_i)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} u_{x_ix_j}(x + (y - x)t)(y_i - x_i)(y_j - x_j).$$

(A.10)

In particular

$$\phi'(0) = \sum_{i=1}^{n} u_{x_i}(x)(y_i - x_i) = \nabla u(x) \cdot (y - x),$$

where $\nabla u(x)$ is the gradient of u at x.

\[\Box\]
and so (A.8) with \(t = 1 \) becomes
\[
 u(y) = u(x) + \nabla u(x) \cdot (y - x) + R_2(x, y),
\]
where \(R_2(x, y) \) satisfies \(|R_2(x, y)| \leq \frac{1}{2} \max_t |\varphi''(t)|.\) Let \(C > 0 \) denote the maximum value of \(|u_{x_i x_j}(z)| \) over all \(z, i \) and \(j.\) Then by (A.10)
\[
 |\varphi''(t)| \leq C \sum_{i=1}^{n} \sum_{j=1}^{n} |y_i - x_i||y_j - x_j| \leq C n^2 |x - y|^2.
\]
It follows that \(|R_2(x, y)| \leq \frac{C}{2} n^2 |x - y|^2,\) hence \(R_2(x, y) \in O(|x - y|^2)\) and we arrive at the first order Taylor series
\[
 (A.11) \quad u(y) = u(x) + \nabla u(x) \cdot (y - x) + O(|x - y|^2).
\]
This says that \(u \) can be locally approximated near \(x \) to order \(O(|x - y|^2)\) by the affine function
\[
 L(y) = u(x) + \nabla u(x) \cdot (y - x).
\]
We can continue this way to obtain the second order Taylor expansion. We assume now that \(u \) is three times continuously differentiable. Using the one dimensional second order Taylor expansion we have
\[
 (A.12) \quad \varphi(t) = \varphi(0) + \varphi'(0) t + \frac{1}{2} \varphi''(0) t^2 + O(|t|^3).
\]
The constant in the \(O(|t|^3)\) term depends on the maximum of \(|\varphi'''(t)|.\) Notice also that
\[
 \varphi''(0) = \sum_{i=1}^{n} \sum_{j=1}^{n} u_{x_i x_j}(x)(y_i - x_i)(y_j - x_j) = (y - x) \cdot \nabla^2 u(x)(y - x),
\]
where \(\nabla^2 u(x) \) is the Hessian matrix. Plugging this into (A.12) with \(t = 1 \) yields
\[
 u(y) = u(x) + \nabla u(x) \cdot (y - x) + \frac{1}{2} (y - x) \cdot \nabla^2 u(x)(y - x) + R_3(x, y),
\]
where \(R_3(x, y) \) satisfies \(|R_3(x, y)| \leq \frac{1}{6} \max_t |\varphi'''(t)|.\) We compute
\[
 \varphi'''(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{d}{dt} u_{x_i x_j}(x + (y - x)t)(y_i - x_i)(y_j - x_j)
 = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} u_{x_i x_j x_k}(x + (y - x)t)(y_i - x_i)(y_j - x_j)(y_k - x_k).
\]
A.5. FUNCTION SPACES

Let $C > 0$ denote the maximum value of $|u_{x_ix_jx_k}(z)|$ over all z, i, j, and k. Then we have

$$|\varphi'''(t)| \leq C \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} |y_i - x_i||y_j - x_j||y_k - x_k| \leq C n^3 |x - y|^3.$$

Therefore $|R_3(x, y)| \leq C n^3 |x - y|^3$ and so $R_3 \in O(|x - y|^3)$. Finally we arrive at the second order Taylor expansion

$$u(y) = u(x) + \nabla u(x) \cdot (y - x) + \frac{1}{2} (y - x) \cdot \nabla^2 u(x)(y - x) + O(|x - y|^3).$$

This says that u can be locally approximated near x to order $O(|x - y|^3)$ by the quadratic function

$$L(y) = u(x) + \nabla u(x) \cdot (y - x) + \frac{1}{2} (y - x) \cdot \nabla^2 u(x)(y - x).$$

A.5 Function spaces

For an open set $U \subset \mathbb{R}^n$ we define

$$C^k(U) := \{ \text{Functions } u : U \to \mathbb{R} \text{ that are } k\text{-times continuously differentiable on } U \}.$$

The terminology k-times continuously differentiable means that all k^{th}-order partial derivatives of u exist and are continuous on U. We write $C^0(U) = C(U)$ for the space of functions that are continuous on U.

Exercise A.21. Show that the function $u(x) = x^2$ for $x > 0$ and $u(x) = -x^2$ for $x \leq 0$ belongs to $C^1(\mathbb{R})$ but not to $C^2(\mathbb{R})$. \(\triangle\)

We also define

$$C^\infty(U) := \bigcap_{k=1}^{\infty} C^k(U)$$

to be the space of infinitely differentiable functions. Functions $u \in C^\infty(U)$ are called smooth.

Definition A.22. The support of a function $u : U \to \mathbb{R}$ is defined as

$$\text{supp}(u) := \{ x \in \overline{U} : u(x) \neq 0 \}.$$

Definition A.23. We say that $u : U \to \mathbb{R}$ is compactly supported in U if $\text{supp}(u) \subset \subset U$.
A function \(u \) is compactly supported in \(U \) if \(u \) vanishes near the boundary \(\partial U \).

Finally for \(k \in \mathbb{N} \cup \{ \infty \} \) we write
\[
C_c^k(U) := \{ u \in C^k(U) : u \text{ is compactly supported in } U \}.
\]

For a function \(u : U \to \mathbb{R} \) we define the \(L^2 \)-norm of \(u \) to be
\[
\| u \|_{L^2(U)} := \left(\int_U u^2 \, dx \right)^{1/2}.
\]

For two functions \(u, v : U \to \mathbb{R} \) we define the \(L^2 \)-inner product of \(u \) and \(v \) to be
\[
(u, v)_{L^2(U)} := \int_U u v \, dx.
\]

Notice that
\[
\| u \|^2_{L^2(U)} = (u, u)_{L^2(U)}.
\]

We also define
\[
L^2(U) := \{ \text{Functions } u : U \to \mathbb{R} \text{ for which } \| u \|_{L^2(U)} < \infty \}.
\]

\(L^2(U) \) is a Hilbert space (a complete inner-product space). We will often write \(\| u \| \) in place of \(\| u \|_{L^2(U)} \) and \((u, v) \) in place of \((u, v)_{L^2(U)} \) when it is clear from the context that the \(L^2 \) norm is intended.

As before, we have the Cauchy-Schwarz inequality
\[
(u, v)_{L^2(U)} \leq \| u \|_{L^2(U)} \| v \|_{L^2(U)}.
\]

We also have
\[
\| u + v \|^2_{L^2(U)} = \| u \|^2_{L^2(U)} + 2(u, v)_{L^2(U)} + \| v \|^2_{L^2(U)}.
\]

Applying the Cauchy-Schwarz inequality we get the triangle inequality
\[
\| u + v \|_{L^2(U)} \leq \| u \|_{L^2(U)} + \| v \|_{L^2(U)},
\]

and the reverse triangle inequality
\[
\| u - v \|_{L^2(U)} \geq \| u \|_{L^2(U)} - \| v \|_{L^2(U)}.
\]

A.6 Analysis

A.6.1 The Riemann integral

Many students are accustomed to using different notation for integration in different dimensions. For example, integration along the real line in \(\mathbb{R} \) is usually written
\[
\int_a^b u(x) \, dx,
\]
while integration over a region $U \subset \mathbb{R}^2$ is written
\[
\iint_U u(x, y) \, dxdy \quad \text{or} \quad \iint_U u(\mathbf{x}) \, d\mathbf{x},
\]
where $\mathbf{x} = (x, y)$. Integration over a volume $U \subset \mathbb{R}^3$ is then written as
\[
\iiint_U u(x, y, z) \, dxdydz \quad \text{or} \quad \iiint_U u(\mathbf{x}) \, d\mathbf{x}.
\]
This becomes cumbersome when we consider problems in an arbitrary number of dimensions n. In these notes, we use x (or y or z) for a point in \mathbb{R}^n, so $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$. We write
\[
u(x) = u(x_1, x_2, \ldots, x_n)
\]
for a function $u : \mathbb{R}^n \to \mathbb{R}$. The integration of u over a domain $U \subset \mathbb{R}^n$ is then written
\[
\int_U u(x) \, dx \quad \text{or just} \quad \int_U u \, dx,
\]
where $dx = dx_1 dx_2 \cdots dx_n$. This notation has the advantage of being far more compact without losing the meaning.

Let us recall the interpretation of the integral $\int_U u \, dx$ in the Riemann sense. We partition the domain into M rectangles and approximate the integral by a Riemann sum
\[
\int_U u \, dx \approx \sum_{k=1}^{M} u(x_k) \Delta x_k,
\]
where $x_k \in \mathbb{R}^n$ is a point in the k^{th} rectangle, and $\Delta x_k := \Delta x_{k,1} \Delta x_{k,2} \cdots \Delta x_{k,n}$ is the n-dimensional volume (or measure) of the k^{th} rectangle ($\Delta x_{k,i}$ for $i = 1, \ldots, n$ are the side lengths of the k^{th} rectangle). Then the Riemann integral is defined by taking the limit as the largest side length in the partition tends to zero (provided the limit exists and does not depend on the choice of partition or points x_k). Notice here that $x_k = (x_{k,1}, \ldots, x_{k,n}) \in \mathbb{R}^n$ is a point in \mathbb{R}^n, and not the k^{th} entry of x. There is a slight abuse of notation here; the reader will have to discern from the context which is implied.

If $S \subset \mathbb{R}^n$ is an $n-1$ dimensional (or possibly lower dimensional) surface, we write the surface integral of u over S as
\[
\int_S u(x) \, dS(x).
\]
Here, $dS(x)$ is the surface area element at $x \in S$.
A.6.2 The Lebesgue integral

In these notes, and most rigorous analysis books, we interpret the integral in the Lebesgue sense (see [18] for definitions). The Lebesgue integral is more powerful for analysis and facilitates passing to limits within the integral with ease. The Lebesgue integral can be applied to Lebesgue measurable functions $u : \mathbb{R}^n \to \mathbb{R}$. The notion of measurability excludes certain pathological classes of functions u for which $\int_{\mathbb{R}^n} u \, dx$ cannot be assigned a sensible value. We again refer to [18] for notions of Lebesgue measure and measurable functions. Nearly all functions you encounter via simple constructions are measurable, and the reader not familiar with measure theory can ignore the issue and still understand the main ideas in these notes. We will always abbreviate Lebesgue measurable with measurable, and we write the Lebesgue measure of a set $A \subset \mathbb{R}^n$ by $|A|$.

Definition A.24. We say a measurable function $u : \mathbb{R}^n \to \mathbb{R}$ is summable if

$$\int_{\mathbb{R}^n} |u| \, dx < \infty.$$

Some properties will hold on all of \mathbb{R}^n except for a set with measure zero. In this case we will say the property holds almost everywhere or abbreviated “a.e.”.

The following theorems are the most useful for passing to limits within integrals.

Lemma A.25 (Fatou’s Lemma). If $u_k : \mathbb{R}^n \to [0, \infty)$ is a sequence of nonnegative measurable functions then

$$\int_{\mathbb{R}^n} \liminf_{k \to \infty} u_k(x) \, dx \leq \liminf_{k \to \infty} \int_{\mathbb{R}^n} u_k(x) \, dx.$$

Remark A.26 (Reverse Fatou Lemma). A simple consequence of Fatou’s Lemma, called the Reverse Fatou Lemma, is often useful. Let $u_k : \mathbb{R}^n \to (0, \infty)$ be a sequence of measurable functions, and assume there exists a summable function g such that $u_k \leq g$ almost everywhere. Then

$$\limsup_{k \to \infty} \int_{\mathbb{R}^n} u_k(x) \, dx \leq \int_{\mathbb{R}^n} \limsup_{k \to \infty} u_k(x) \, dx.$$

To see this, we apply Fatou’s Lemma to the nonnegative sequence $g - u_k$ to obtain

$$\int_{\mathbb{R}^n} \liminf_{k \to \infty} (g(x) - u_k(x)) \, dx \leq \liminf_{k \to \infty} \int_{\mathbb{R}^n} g(x) - u_k(x) \, dx.$$

Noting that $\liminf(-u_k) = -\limsup(u_k)$, this can be rearranged to obtain (A.15), provided g is summable.

The following two theorems are more or less direct applications of Fatou’s Lemma and the Reverse Fatou Lemma, but present the results in a way that is very useful in practice.
Theorem A.27 (Monotone Convergence Theorem). Let \(u_k : \mathbb{R}^n \to \mathbb{R} \) be a sequence of measurable functions satisfying
\[
0 \leq u_1 \leq u_2 \leq \cdots \leq u_k \leq \cdots \text{ a.e.}
\]
If \(\lim_{k \to \infty} u_k(x) \) exists almost everywhere then
\[
\lim_{k \to \infty} \int_{\mathbb{R}^n} u_k(x) \, dx = \int_{\mathbb{R}^n} \lim_{k \to \infty} u_k(x) \, dx.
\]

Proof. Let \(u(x) = \lim_{k \to \infty} u_k(x) \). By Fatou’s lemma we have
\[
\int_{\mathbb{R}^n} u \, dx \leq \liminf_{k \to \infty} \int_{\mathbb{R}^n} u_k(x) \, dx.
\]
Since \(u_k(x) \leq u(x) \) for almost every \(x \in U \), we clearly have \(\int_{\mathbb{R}^n} u_k \, dx \leq \int_{\mathbb{R}^n} u \, dx \), and so
\[
\limsup_{k \to \infty} \int_{\mathbb{R}^n} u_k(x) \, dx \leq \int_{\mathbb{R}^n} u \, dx.
\]
Combining (A.18) and (A.19) completes the proof. \(\square \)

Theorem A.28 (Dominated Convergence Theorem). Let \(u_k : \mathbb{R}^n \to \mathbb{R} \) be a sequence of measurable functions, and assume there exists a summable function \(g \) such that
\[
|u_k| \leq g \quad \text{a.e.}
\]
If \(\lim_{k \to \infty} u_k(x) \) exists almost everywhere then
\[
\lim_{k \to \infty} \int_{\mathbb{R}^n} u_k(x) \, dx = \int_{\mathbb{R}^n} \lim_{k \to \infty} u_k(x) \, dx.
\]

Proof. Let \(u(x) = \lim_{k \to \infty} u_k(x) \). Note that \(|u_k - u| \leq |u_k| + |u| \leq 2g \). Therefore, we can apply the Reverse Fatou Lemma to find that
\[
\limsup_{k \to \infty} \int_{\mathbb{R}^n} |u_k - u| \, dx = \int_{\mathbb{R}^n} \lim_{k \to \infty} |u_k - u| \, dx = 0.
\]
Therefore \(\lim_{k \to \infty} \int_U |u - u_k| \, dx = 0 \) and we have
\[
\left| \int_{\mathbb{R}^n} u \, dx - \int_{\mathbb{R}^n} u_k \, dx \right| = \left| \int_{\mathbb{R}^n} u - u_k \, dx \right| \leq \int_{\mathbb{R}^n} |u_k - u| \, dx \to 0
\]
as \(k \to \infty \), which completes the proof. \(\square \)

Finally, we recall Egoroff’s Theorem.

Theorem A.29 (Egoroff’s Theorem). Let \(u_k : \mathbb{R}^n \to \mathbb{R} \) be a sequence of measurable functions, and assume there is a measurable function \(u : \mathbb{R}^n \to \mathbb{R} \) such that
\[
\lim_{k \to \infty} u_k(x) = u(x) \quad \text{a.e. in } A,
\]
where \(A \subset \mathbb{R}^n \) is measurable and \(|A| < \infty \). Then for each \(\varepsilon > 0 \) there exists a measurable subset \(E \subset A \) such that \(|A - E| \leq \varepsilon \) and \(u_k \to u \) uniformly on \(E \).
A.7 Integration by parts

All of the sets $U \subset \mathbb{R}^n$ that we work with will be assumed to be open and bounded with a smooth boundary ∂U. A set $U \subset \mathbb{R}^n$ has a smooth boundary if at each point $x \in \partial U$ we can make an orthogonal change of coordinates so that for some $r > 0$, $\partial U \cap B(0, r)$ is the graph of a smooth function $u : \mathbb{R}^{n-1} \to \mathbb{R}$. If ∂U is smooth, we can define an outward normal vector $\nu = \nu(x)$ at each point $x \in \partial U$, and ν varies smoothly with x. Here, $\nu = (\nu_1, \ldots, \nu_n) \in \mathbb{R}^n$ and ν is a unit vector so

$$|\nu| = \sqrt{\nu_1^2 + \cdots + \nu_n^2} = 1.$$

The normal derivative of $u \in C^1(U)$ at $x \in \partial U$ is

$$\frac{\partial u}{\partial \nu}(x) := \nabla u(x) \cdot \nu(x).$$

Integration by parts in \mathbb{R}^n is based on the Gauss-Green Theorem.

Theorem A.30 (Gauss-Green Theorem). Let $U \subset \mathbb{R}^n$ be an open and bounded set with a smooth boundary ∂U. If $u \in C^1(U)$ then

$$\int_U u_x \, dx = \int_{\partial U} u \nu_1 \, dS.$$

The Gauss-Green Theorem is the natural extension of the fundamental theorem of calculus to dimensions $n \geq 2$. A proof of the Gauss-Green Theorem is outside the scope of this course.

We can derive a great many important integration by parts formulas from the Gauss-Green Theorem. These identities are often referred to as Green’s identities or simply integration by parts.

Theorem A.31 (Integration by parts). Let $U \subset \mathbb{R}^n$ be an open and bounded set with a smooth boundary ∂U. If $u, v \in C^2(U)$ then

(i) $\int_U u \Delta v \, dx = \int_{\partial U} \frac{\partial v}{\partial \nu} \, dS - \int_U \nabla u \cdot \nabla v \, dx,$

(ii) $\int_U u \Delta v - v \Delta u \, dx = \int_{\partial U} \frac{\partial v}{\partial \nu} - \frac{\partial u}{\partial \nu} \, dS,$ and

(iii) $\int_U \Delta v \, dx = \int_{\partial U} \frac{\partial v}{\partial \nu} \, dS.$

Proof. (i) Notice that

$$\partial_{x_i}(uv_{x_i}) = u_{x_i}v_{x_i} + uv_{x_i x_i}.$$
Applying the Gauss-Green Theorem to uv_x, we have
\[\int_{\partial U} uv_x \nu_i \, dS = \int_U u_x v_x + uv_{x,x_i} \, dx. \]
Summing over i we have
\[\int_{\partial U} u \frac{\partial v}{\partial v} \, dS = \int_U \nabla u \cdot \nabla v + u \Delta v \, dx, \]
which is equivalent to (i).

(ii) Swap the roles of u and v in (i) and subtract the resulting identities to prove (ii).

(iii) Take $u = 1$ in (i).

It will also be useful to prove the following version of the divergence theorem. Recall that for a vector field $F(x) = (F^1(x), \ldots, F^n(x))$ the divergence of F is
\[\text{div}(F) = F^1_{x_1} + F^2_{x_2} + \cdots + F^n_{x_n}. \]

Theorem A.32 (Divergence theorem). Let $U \subset \mathbb{R}^n$ be an open and bounded set with a smooth boundary ∂U. If $u \in C^1(\overline{U})$ and F is a C^1 vector field (i.e., $F^i \in C^1(\overline{U})$ for all i) then
\[\int_U u \, \text{div}(F) \, dx = \int_{\partial U} u F \cdot \nu \, dS - \int_U \nabla u \cdot F \, dx. \]

Proof. The proof is similar to Theorem A.31 (i). Notice that
\[(uF^i)_{x_i} = u_{x_i} F^i + u F^i_{x_i}, \]
and apply the Gauss-Green Theorem to find that
\[\int_{\partial U} uF^i \nu_i \, dS = \int_U u_{x_i} F^i + u F^i_{x_i} \, dx. \]
Summing over i we have
\[\int_{\partial U} u F \cdot \nu \, dS = \int_U \nabla u \cdot F + u \, \text{div}(F) \, dx, \]
which is equivalent to the desired result.

Notice that when $u = 1$ Theorem A.32 reduces to
\[\int_U \, \text{div}(F) \, dx = \int_{\partial U} F \cdot \nu \, dS, \]
which is the usual divergence theorem. If we take $F = \nabla v$ for $v \in C^2(\overline{U})$, then we recover Theorem A.31 (i).

Exercise A.33. Let $u, w \in C^2(\overline{U})$ where $U \subset \mathbb{R}^n$ is open and bounded. Show that for $1 \leq p < \infty$
\[\int_U u \Delta_p w \, dx = \int_{\partial U} u |\nabla w|^{p-2} \frac{\partial w}{\partial \nu} \, dS - \int_U |\nabla w|^{p-2} \nabla u \cdot \nabla w \, dx. \]
The p-Laplacian Δ_p was defined in Exercise A.17.
A.8 Convex functions

Here, we review some basic theory of convex functions.

Definition A.34. A function \(u : \mathbb{R}^n \to \mathbb{R} \) is convex if
\[
(A.22) \quad u(\lambda x + (1 - \lambda) y) \leq \lambda u(x) + (1 - \lambda) u(y)
\]
for all \(x, y \in \mathbb{R}^n \) and \(\lambda \in (0, 1) \).

Definition A.35 (Strongly convex). Let \(\theta \geq 0 \). A function \(u : \mathbb{R}^n \to \mathbb{R} \) is \(\theta \)-strongly convex if \(u - \frac{\theta}{2} |x|^2 \) is convex.

Lemma A.36. Let \(u : \mathbb{R} \to \mathbb{R} \) be twice continuously differentiable and \(\theta \geq 0 \). The following are equivalent

(i) \(u \) is \(\theta \)-strongly convex.

(ii) \(u''(x) \geq \theta \) for all \(x \in \mathbb{R} \).

(iii) \(u(y) \geq u(x) + u'(x)(y - x) + \frac{\theta}{2} |y - x|^2 \) for all \(x, y \in \mathbb{R} \).

(iv) \((u'(x) - u'(y))(x - y) \geq \theta (x - y)^2 \) for all \(x, y \in \mathbb{R} \).

Proof. It is enough to prove the result for \(\theta = 0 \). Then if any statement holds for \(\theta > 0 \), we can define \(v(x) = u(x) - \frac{\theta}{2} |x|^2 \) and use the results for \(v \) with \(\theta = 0 \).

The proof is split into three parts.

1. (i) \(\Longrightarrow \) (ii): Assume \(u \) is convex. Let \(x_0 \in \mathbb{R} \) and set \(\lambda = \frac{1}{2} \), \(x = x_0 - h \), and \(y = x_0 + h \) for a real number \(h \). Then
\[
\lambda x + (1 - \lambda)y = \frac{1}{2}(x_0 - h) + \frac{1}{2}(x_0 + h) = x_0,
\]
and the convexity condition \((A.22)\) yields
\[
u(x_0) \leq \frac{1}{2} u(x_0 - h) + \frac{1}{2} u(x_0 + h).
\]

Therefore
\[
u(x_0 - h) - 2\nu(x_0) + \nu(x_0 + h) \geq 0
\]
for all \(h \), and so
\[
u''(x_0) = \lim_{h \to 0} \frac{\nu(x_0 - h) - 2\nu(x_0) + \nu(x_0 + h)}{h^2} \geq 0.
\]

2. (ii) \(\Longrightarrow \) (iii): Assume that \(u''(x) \geq 0 \) for all \(x \). Then recalling \((A.4)\) and \((A.5)\) we have
\[
u(y) = \nu(x) + u'(x)(y - x) + R_2(x, y)
\]
where \(R_2(x, y) \geq 0 \) for all \(x, y \), which completes the proof.

3. (iii) \(\implies \) (iv): Assume (iii) holds. Then we have
\[
u(y) \geq u(x) + u'(x)(y - x)
\]
and
\[
u(x) \geq u(y) + u'(y)(x - y).
\]
Subtracting the equations above proves that (iv) holds.

4. (iv) \(\implies \) (i): Assume (iv) holds. Then \(u' \) is nondecreasing and so \(u''(x) \geq 0 \) for all \(x \in \mathbb{R} \). Let \(x, y \in \mathbb{R}^n \) and \(\lambda \in (0, 1) \), and set \(x_0 = \lambda x + (1 - \lambda)y \). Define
\[
L(z) = u(x_0) + u'(x_0)(z - x_0).
\]
Since \(u''(z) \geq 0 \) for all \(z \), the Taylor series inequality ?? with \(\theta = 0 \) yields \(u(z) \geq L(z) \) for all \(z \). Therefore
\[
u(\lambda x + (1 - \lambda)y) = u(x_0) = \lambda L(x) + (1 - \lambda)L(y) \leq \lambda u(x) + (1 - \lambda)u(y),
\]
and so \(u \) is convex.

Lemma A.36 has a natural higher dimensional analog, but we first need some new notation. For a symmetric real-valued \(n \times n \) matrix \(A = (a_{ij})_{i,j=1}^n \), we write
\[
A \geq 0 \iff v \cdot Av = \sum_{i,j=1}^n a_{ij}v_i v_j \geq 0, \forall v \in \mathbb{R}^n.
\]
For symmetric real valued matrices \(A, B \), we write \(A \geq B \) if \(A - B \geq 0 \).

Theorem A.37. Let \(u : \mathbb{R}^n \to \mathbb{R} \) be twice continuously differentiable. The following are equivalent

(i) \(u \) is \(\theta \)-strongly convex.

(ii) \(\nabla^2 u \geq \theta I \) for all \(x \in \mathbb{R}^n \).

(iii) \(u(y) \geq u(x) + \nabla u(x) \cdot (y - x) + \frac{\theta}{2} |y - x|^2 \) for all \(x, y \in \mathbb{R}^n \).

(iv) \((\nabla u(x) - \nabla u(y)) \cdot (x - y) \geq \theta |x - y|^2 \) for all \(x, y \in \mathbb{R}^n \).

Proof. Again, we may prove the result just for \(\theta = 0 \). The proof follows mostly from Lemma A.36, with some additional observations.

1. (i) \(\implies \) (ii): Assume \(u \) is convex. Since convexity is defined along lines, we see that \(g(t) = u(x + tv) \) is convex for all \(x, v \in \mathbb{R}^n \), and by Lemma A.36 \(g''(t) \geq 0 \) for all \(t \). By (A.10) we have
\[
g''(t) = \frac{d^2}{dt^2} u(x + tv) = \sum_{i=1}^n \sum_{j=1}^n u_{x_i x_j}(x) v_i v_j = v \cdot \nabla^2 u(x)v,
\]
and so $\nabla^2 u(x) \geq 0$ for all $x \in \mathbb{R}^n$.

2. (ii) \implies (iii): Assume (ii) holds and let $g(t) = u(x + tv)$ for $x, v \in \mathbb{R}^n$. Let $y \in \mathbb{R}^n$. Then by (A.24) we have $g''(t) \geq 0$ for all t, and so by Lemma A.36

$$g(t) \geq g(s) + g'(s)(t - s)$$

for all s, t. Set $v = y - x$, $t = 1$ and $s = 0$ to obtain

$$u(y) \geq u(x) + \nabla u(x) \cdot (y - x),$$

where we used the fact that $g'(0) = \left. \frac{d}{dt} \right|_{t=0} u(x + tv) = \nabla u \cdot v$.

3. (iii) \implies (iv): The proof is similar to Lemma A.36.

4. (iv) \implies (i): Assume (iv) holds, and define $g(t) = u(x + tv)$ for $x, v \in \mathbb{R}^n$. Then we have

$$(g'(t) - g'(s))(t - s) = (\nabla u(x + tv) - \nabla u(x + sv)) \cdot v(t - s) \geq 0$$

for all t, s. By Lemma A.36 we have that g is convex for all $x, v \in \mathbb{R}^n$, from which it easily follows that u is convex. \hfill \Box

A.9 Miscellaneous results

A.9.1 Vanishing lemma

Lemma A.38. Let $U \subset \mathbb{R}^n$ be open and bounded and let $u \in C(U)$. If

$$\int_U u(x)\varphi(x) \, dx = 0 \quad \text{for all } \varphi \in C_c^\infty(U)$$

then $u(x) = 0$ for all $x \in U$.

Proof. Let us sketch the proof. Assume to the contrary that $u(x_0) \neq 0$ at some $x_0 \in U$. We may assume, without loss of generality that $\varepsilon := u(x_0) > 0$. Since u is continuous, there exists $\delta > 0$ such that

$$u(x) \geq \frac{\varepsilon}{2} \quad \text{whenever } |x - x_0| < \delta.$$

Now let $\varphi \in C_c^\infty(U)$ be a test function satisfying $\varphi(x) > 0$ for $|x - x_0| < \delta$ and $\varphi(x) = 0$ for $|x - x_0| \geq \delta$. Then

$$0 = \int_U u(x)\varphi(x) \, dx = \int_{B(x_0, \delta)} u(x)\varphi(x) \, dx \geq \frac{\varepsilon}{2} \int_{B(x_0, \delta)} \varphi(x) \, dx > 0,$$

which is a contradiction. \hfill \Box
A test function satisfying the requirements in the proof of Lemma A.38 is given by

$$\varphi(x) = \begin{cases} \exp\left(-\frac{1}{\delta^2-|x-x_0|^2}\right), & \text{if } |x-x_0| < \delta \\ 0, & \text{if } |x-x_0| \geq \delta. \end{cases}$$

A.9.2 Total variation of characteristic function is perimeter

Let $U \subset \mathbb{R}^n$ be an open and bounded set with a smooth boundary, and let

$$\chi_U(x) = \begin{cases} 1, & \text{if } x \in U \\ 0, & \text{otherwise.} \end{cases}$$

We show here that the length, also called perimeter, of ∂U, denoted $\text{Per}(\partial U)$, is given by

$$(A.26) \quad \text{Per}(\partial U) = \int_{\mathbb{R}^n} |\nabla \chi_U| \, dx.$$

We first need to understand how to interpret the total variation $\int_{\mathbb{R}^n} |\nabla u| \, dx$ for a non-smooth function $u : \mathbb{R}^n \to \mathbb{R}$. For this, we first note that when $u \in C^\infty(\mathbb{R}^n)$ with compact support we have

$$\int_{\mathbb{R}^n} |\nabla u| \, dx = \sup_{\varphi \in C^\infty_c(\mathbb{R}^n,\mathbb{R}^n)} \int_{\mathbb{R}^n} \nabla u \cdot \varphi \, dx.$$

Indeed, the equality is immediate, since for any φ we have $\nabla u \cdot \varphi \leq |\nabla u|$ due to the condition $|\varphi| \leq 1$, and we can take $\varphi = \frac{\nabla u}{|\nabla u|}$ to saturate the inequality. Since u has compact support in \mathbb{R}^n, we can integrate by parts to obtain the identity

$$(A.27) \quad \int_{\mathbb{R}^n} |\nabla u| \, dx = \sup_{|\varphi| \leq 1} \int_{\mathbb{R}^n} \nabla u \cdot \varphi \, dx = \int_{\mathbb{R}^n} \text{div} \, \varphi \, dx.$$

The identity (A.27) is taken to be the definition of the total variation $\int_{\mathbb{R}^n} |\nabla u| \, dx$ when u is not differentiable.

Therefore we have

$$\int_{\mathbb{R}^n} |\nabla \chi_U| \, dx = \sup_{|\varphi| \leq 1} \int_{\mathbb{R}^n} \chi_U(x) \text{div} \, \varphi(x) \, dx$$

$$= \sup_{|\varphi| \leq 1} \int_{\mathbb{R}^n} \text{div} \, \varphi \, dx$$

$$= \sup_{|\varphi| \leq 1} \int_{\partial U} \varphi \cdot \nu \, dS.$$
Since $\varphi \cdot \nu \leq 1$ and the choice of $\varphi = \nu$ for any smooth extension of ν to \mathbb{R}^n yields $\varphi \cdot \nu = 1$, we have

$$\int_{\mathbb{R}^n} |\nabla \chi_U| \, dx = \int_{\partial U} dS = \text{Per}(\partial U).$$
Bibliography

