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Graph-based learning

Let (X , W) be a graph.

Vertices X ⊂ Rd.

Nonnegative edge weights W = (wxy)x,y∈X .

Some common graph-based learning tasks:
1 Clustering

2 Semi-supervised learning

3 Data Depth

4 Link prediction

5 Ranking

Applications of graph-based learning:
1 Image classification

2 Social media networks

3 Biological networks

4 Drug discovery

5 Wireless networks

div(ρ2∇u) = λu
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Similarity graphs

MNIST: 70000 digits

Each image is a datapoint

x ∈ R28×28 = R784.

Geometric weights:

wxy = η

(
|x − y|

ε

)
Often η(t) = e−t2

.

k-nearest neighbor graph:

wxy = η

(
|x − y|
εk(x)

)
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Similarity graphs via deep learning

Set wxy = η
( |Ψ(x)−Ψ(y)|

ε

)
where Ψ : Rd → RN is a learned feature map.

Synthetic Aperture Radar (SAR) Images

Raw Pixels Autoencoder Embedding Contrastive (SimCLR) Embedding

Calder, J., Cook, B., Thorpe, M., & Slepcev, D. (2020). Poisson learning: Graph based semi-supervised learning at very
low label rates. In International Conference on Machine Learning (pp. 1306-1316). PMLR.

Brown, J., O’Neill, R., Calder, J., Bertozzi, A.L. (2023). Utilizing Contrastive Learning for Graph-Based Active Learning of
SAR Data. To appear in Algorithms for Synthetic Aperture Radar Imagery XXX. SPIE.
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Graph distances and eikonal equations

Let G be a connected graph on X = {x1, . . . , xn} with edge weights wij = wxixj .

Graph eikonal equation:

(1)

{
max
xj ∈X

wji(u(xi) − u(xj)) = f(xi), if xi ∈ X \ Γ

u(xi) = 0, if xi ∈ Γ.

Weighted graph distances: We have

u(x) = dG,f (x, Γ) := min
xj ∈Γ

dG,f (xi, xj),

where

(2) dG,f (xi, xj) := min
m≥1

τ1=i,τm=j

m−1∑
i=1

w−1
τi,τi+1 f(xτi+1 ).

It is common to choose f = ρ̂−α, for some density estimation ρ̂.
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Prior work on graph distances

Applications of graph distances:

Dimensionality reduction (e.g., ISOMAP) (Tenenbaum et al., 2000)

Semi-supervised learning on graphs (Bijral, et al, 2003) (Chapelle and Zien, 2005)

Graph classification (Borgwardt and Kriegel, 2005)

Data depth (Calder, Park and Slepcev, 2022) (Molina-Fructuoso and Murray, 2022)

Discrete to continuum:

k-nn graphs (Alamgir and Von Luxburg, 2012)

Geodesic manifold distance (Hwang, Damelin, and Hero, 2016)

Geodesic distance on Euclidean domains (Bungert, Calder, and Roith, 2022)
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Graph distances on point clouds
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Figure: Plots of the solution to the graph eikonal equation for n = 104 for both the box
and ball domains, and error plots for varying ε averaged over 100 trials. The red points
indicate the detected boundary points used in solving the PDE.
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MNIST: Depth from eikonal equations

Boundary digits Eikonal Median digits

Calder, J., Park, S., & Slepčev, D. (2022). Boundary estimation from point clouds: Algorithms, guarantees and
applications. Journal of Scientific Computing, 92(2), 1-59.
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MNIST

Boundary digits Medians
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Lack of robustness to corrupted edges

(a) Graph distance function with corrupted edges

Figure: From left to right we added an increasing number of corrupted edges (0, 10, 50,
and 200) with edge weight wij = 1 (graph has 1M edges, so 200 edges is 0.02%).
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The p-eikonal equation

For p > 0, we define the p-eikonal operator AG,p : F (X ) → F (X ) by

(3) AG,pu(xi) =
n∑

j=1

wji(u(xi) − u(xj))p
+,

where a+ := max{a, 0} is the positive part. For Γ ⊂ X and f : X → R, we consider the
p-eikonal equation

(4)

{
AG,pu = f, in X \ Γ

u = 0, on Γ.

Note: When p → ∞ we recover the graph eikonal equation and graph distance function.

Desquesnes, X., Elmoataz, A., & Lézoray, O. (2013). Eikonal equation adaptation on weighted graphs: fast geometric
diffusion process for local and non-local image and data processing. Journal of Mathematical Imaging and Vision, 46(2),
238-257.

Calder, J., & Ettehad, M. (2022). Hamilton-Jacobi equations on graphs with applications to semi-supervised learning and
data depth. Journal of Machine Learning Research.
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Robustness

(a) Graph distance function with corrupted edges

(b) p-eikonal equation with p = 1 with corrupted edges
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Robustness

Theorem (Calder & Ettehad, 2022)

Let δW ∈ Rn×n such that W̃ := W + δW ≥ 0 and G̃ := (X , W̃ ) is connected. Let
Γ ⊂ X , f ∈ F (X ) with f > 0 and let u, ũ ∈ F (X ) satisfy

(5)

{
AG̃,pũ(xi) = AG,pu(xi) = f(xi), if xi ∈ X \ Γ

ũ(xi) = u(xi) = 0, if xi ∈ Γ.

Then for all xi ∈ X we have

(6) −
(

max
X \Γ

AδG−,pũ

f

) 1
p

≤ u(xi) − ũ(xi)
min{u(xi), ũ(xi)}

≤
(

max
X \Γ

AδG+,pu

f

) 1
p

,

where δG± = (X , ±δW±).

The theorem can be simplified to give the weaker bound

u(xi) − ũ(xi)
min{u(xi), ũ(xi)}

≤ C

(
fmax

fmin

) 1
p

∥δW ∥
1
p

1 .

Calder, J., & Ettehad, M. (2022). Hamilton-Jacobi equations on graphs with applications to semi-supervised learning and
data depth. Journal of Machine Learning Research.
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Discrete to continuum
Let X = {x1, x2, . . . , xn} be an i.i.d sample on Ω ⊂ Rd with density ρ and let{

An,εun,ε(x) = f(x) if x ∈ X \ Γ
un,ε(x) = 0 if x ∈ Γ.

where Γ ⊂ Ω is a finite set of points and

An,εu(x) = 1
nσpεp+d

∑
y∈X

η

(
|x − y|

ε

)(
u(x) − u(y)

)p

+
.

Continuum limit: State-constrained eikonal equation{
ρ|∇u|p = f in Ω \ Γ

u = 0 on Γ.

Variational interpretation: The solution u is given by

u(x) = dg(x, Γ) := min
y∈Γ

dg(x, y), g = ρ
− 1

p f
1
p ,

where

dg(x, y) := inf
{∫ 1

0
g(γ(t))|γ′(t)| dt : γ ∈ C1([0, 1]; Ω), γ(0) = x, and γ(1) = y

}
.
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Theorem (Calder & Ettehad, 2022)

If ε is sufficiently small then with probability at least 1 − 6n2 exp
(
−cnεd+1) we have

max
x∈X

|dg(x, Γ) − un,ε(x)| ≤ C
(√

ε +
(
nεp+d

) 1
p

)

(c) ε = 0.03, p = 1 (d) ε = 0.06, p = 1 (e) ε = 0.09, p = 1

(f) ε = 0.03, p = 2 (g) ε = 0.06, p = 2 (h) ε = 0.09, p = 2

Calder, J., & Ettehad, M. (2022). Hamilton-Jacobi equations on graphs with applications to semi-supervised learning and
data depth. Journal of Machine Learning Research.

Calder (UMN) PDEs and graphs Columbia 15 / 39



Discrete to continuum

Main ideas in proof:

Pointwise consistency An,εφ(x) ≈ ρ|∇φ|p for smooth φ, with high probability.

The O(
√

ε) rate comes from a doubling variables argument in the viscosity solutions
framework.

Rate requires Lipschitzness of un,ε, we show that

|un,ε(x) − un,ε(y)| ≤ cpγ−1
p max

X
f

1
p dΩ(x, y) + γp

(
nεp+d

) 1
p , for all x, y ∈ X

with probability at least 1 − n2 exp
(

− cdrd

22d+3 ρminnεd
)
. The proof uses a geodesic

cone barrier function with an additional spike:

vβ,y(x) := β(1 − δy(x)) + dΩ(x, y)

State constrained boundary condition handled with domain perturbation results.
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Back to the MNIST Median

Eikonal Median digits p-eikonal Median digits (p = 1)
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Data depth
Recall the geometric median:

x∗ ∈ arg min
x∈Rd

n∑
i=1

|xi − x|.

Generalizations to other metrics are called Karcher means or barycenters. For the
p-eikonal equation we define

xp,α ∈ arg min
x∈X

∑
xi∈X

dx(xi).

where

(7)

{
AG,pdx = ρ̂−α, in X \ {x}

dx(x) = 0.

Then we can define data depth as the distance to the median

depthp,α(x) = max
X

dxp,α − dxp,α (x).
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Data depth

(i) Helix (j) Half Sphere (k) Swiss Roll

Figure: The p-eikonal data depth on 3D toy datasets sampled from manifolds embedded
in R3. We use p = 1 and α = 1.
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Data depth

(a) Deepest images (median) (b) Shallowest images (outliers)

Figure: Comparison of deepest (median) images to shallowest (outlier) images from each
MNIST digit.
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Data depth

(a) Deepest images (median) (b) Shallowest images (outliers)

Figure: Comparison of deepest (median) images to shallowest (outlier) images from each
FashionMNIST class.
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Data depth

(a) MNIST (b) FashionMNIST

Figure: Paths from shallowest point to median for each class.

J. Calder & M. Ettehad (2022). Hamilton-Jacobi equations on graphs with
applications to semi-supervised learning and data depth. Journal of Machine
Learning Research (JMLR). Code: https://github.com/jwcalder/peikonal
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Graph-based semi-supervised learning

Given: Graph (X , W), labeled nodes Γ ⊂ X , and labels g : Γ → Rk.

Task: Extend the labels to the rest of the graph X \ Γ.

Semi-supervised: Goal is to use both the labeled and unlabeled data.
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Laplacian regularization
Laplacian regularized semi-supervised learning solves the Laplace equation{

Lu = 0 in X \ Γ,

u = g on Γ,

where u : X → Rk, and L is the graph Laplacian

Lu(x) =
∑
y∈X

wxy(u(x) − u(y)).

The label decision for vertex x ∈ X is determined by the largest component of u(x)

ℓ(x) = argmax
j∈{1,...,k}

{uj(x)}.

Variational Interpretation:

min
u:X →Rk

{ ∑
x,y∈X

wxy|u(x) − u(y)|2 : u(x) = g(x) for all x ∈ Γ
}

.

Zhu, X., Ghahramani, Z., & Lafferty, J. D. (2003). Semi-supervised learning using gaussian fields and harmonic functions.
In Proceedings of the 20th International conference on Machine learning (ICML-03) (pp. 912-919).
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Active learning

Problem: How to choose the best training data points for a particular task?

Active learning chooses the training data points in a sequential (often online) setting,
using information from the classifier and unlabeled data.

Goal is to achieve good results with as few labeled examples as possible.
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Acquisition functions

Graph-based active learning methods usually choose the next data point xk+1 to label by
minimizing (or maximizing) an acquisition function Ak : X → R:

xk+1 = arg min
x∈X \Γk

Ak(x) and Γk+1 = Γk ∪ {xk+1}.

Previous work:

Uncertainty sampling: Ak(x) is the uncertainty of the classifier at node x.

(Ji & Han 2012): Variance minimization (V-OPT): Acquisition function Ak involves
full inversion of LΓc

k
Γc

k
(minimizes Trace(L−1

Γc
k

Γc
k
)).

(Ma et al. 2013): Σ-optimality: Similar to V-OPT but minimizes 1T L−1
Γc

k
Γc

k
1.

(Dasarathy, Nowak, & Zhu, 2015): S2 (Shortest-shortest path)

(Murphy & Maggioni, 2019): Learning by Active Non-linear Diffusion (LAND)

(Miller & Bertozzi, 2021): Model change active learning.

(Cloninger & Mhaskar, 2021): Cautious Active Learning (CAL)
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The exploration vs exploitation tradeoff

Ground Truth Exploration Exploitation

Ground Truth Exploration Exploitation
Calder (UMN) PDEs and graphs Columbia 27 / 39



Continuum perspective

Let x1, x2, . . . , xn be i.i.d random variables on Ω ⊂ Rd with density ρ and set

Ln,εu(x) = 1
nεd+2ση

n∑
j=1

η
(

|x−xj |
ε

)
(u(xj) − u(x)).

Then we can compute (via concentration inequalities and Taylor expansion)

Ln,εu(x) = 1
εd+2ση

∫
B(x,ε)

η
(
ε−1|x − y|

)
(u(y) − u(x))ρ(y) dy + O

(√
σ2

n

)

= ρ−1div(ρ2∇u) + O

(
ε2 +

√
1

nεd+2

)
.

Thus, the continuum limit for Laplace learning is

(8)

{
div(ρ2∇u) = 0, in Ω \ Γ

u = g, on Γ.
⇐⇒ min

u|Γ=g

∫
Ω

ρ2|∇u|2 dx.

This equation is ill-posed when Γ contains isolated points.
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Previous work

Higher-order regularization: (Zhou and Belkin, 2011), (Dunlop et al., 2019)

p-Laplace regularization: (Alaoui et al., 2016), (Calder 2018, 2019), (Slepcev &
Thorpe 2019)

Re-weighted Laplacians: (Shi et al., 2017), (Calder & Slepcev, 2020)

Poisson learning (Calder et al., 2020, 2022)
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Poisson Reweighted Laplace Learning (PWLL)
We recently developed Poisson ReWeighted Laplace Learning (PWLL) which solves{

Lγu = 0 on X \ Γ,

u = g on Γ,

where

Lγ =
∑
y∈Γ

(
δy − 1

n

)
on X ,

and
Lγu(x) =

∑
y∈X

γ(x)γ(y)wxy(u(x) − u(y)).

The continuum limit of PWLL should be the equations

(9)

{
div(ρ2γ2∇u) = 0, in Ω \ Γ

u = g, on Γ.

Provided γ(x)2 ∼ dist(x, Γ)−α with α > d − 2, then (9) is well-posed.

Calder, J., & Slepčev, D. (2020). Properly-weighted graph Laplacian for semi-supervised learning. Applied mathematics &
optimization, 82(3), 1111-1159.

Calder, J., Cook, B., Thorpe, M., & Slepcev, D. (2020). Poisson learning: Graph based semi-supervised learning at very
low label rates. In International Conference on Machine Learning (pp. 1306-1316). PMLR.
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Uncertainty norm active learning
We propose uncertainty norm active learning which solves{

τu + Lγu = 0 on X \ Γk,

u = g on Γk,

and selects the next point xk by minimizing the acquisition function

Ak(x) = ∥u(x)∥2
2.

Intuitively, the additional τu term localizes the solution around the labeled data points.

In the 1D case τu − u′′ = 0, the solution decays like e−
√

τx away from labels.

−2 −1 0 1 2
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0.0
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τ = 100
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Uncertainty norm active learning

(a) Clusters and Init. Labeled (b) Ground Truth Classification

(c) τ = 0 (d) τ = 10−9 (e) τ = 10−7
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Uncertainty norm active learning
Uncertainty norm active learning uses the acquisition function A(x) = ∥u(x)∥2

2:

τu + Lγu = 0︸ ︷︷ ︸
Discrete

⇐⇒ τu − ρ−1div
(
ρ2γ2∇u

)
= 0︸ ︷︷ ︸

Continuum

.

Theorem (Miller & Calder, 2022)

Let α > d − 2. Given a clusterability assumption on ρ, for τ sufficiently large we have

1 On any unexplored cluster D we have

sup
D

A ≤
(√

#Classes
)

exp
(

− s

4

√
τ

δ

)
, where δ = max

∂D+B2s

ρ.

2 For r > 0 sufficiently small: infΓ+Br A ≥ 1 − Crβ , where β = 1
2 (α + 2 − d).

This is an exploration guarantee:

When τ ≫ 0, uncertainty norm sampling will explore new clusters before selecting a
point within r of an existing labeled data point.

The parameter τ controls the exploration (τ ≫ 0) vs exploitation (τ ≪ 1) tradeoff.

Miller, K., & Calder, J. (2022). Poisson reweighted Laplacian uncertainty sampling for graph-based active learning.
arXiv:2210.15786.
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Active Learning Results

Ground Truth 8 Labels 100 Labels

Ground Truth 15 Labels 50 Labels
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Active learning results

MNIST-mod3:

We group the classes modulo 3.

Our method is Unc. (Norm) in blue and yellow.

Accuracy Cluster proportion

Miller, K., & Calder, J. (2022). Poisson reweighted Laplacian uncertainty sampling for graph-based active learning.
arXiv:2210.15786.
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Active learning results

FashionMNIST-mod3:

We group the classes modulo 3.

Our method is Unc. (Norm) in blue and yellow.

Accuracy Cluster proportion

Miller, K., & Calder, J. (2022). Poisson reweighted Laplacian uncertainty sampling for graph-based active learning.
arXiv:2210.15786.
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Active learning results
EMNIST-mod5: Extended MNIST with letters and numbers (47 classes)

We group the classes modulo 5.

Our method is Unc. (Norm) in blue and yellow.

Accuracy Cluster Proportion

Miller, K., & Calder, J. (2022). Poisson reweighted Laplacian uncertainty sampling for graph-based active learning.
arXiv:2210.15786.
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Active learning results

ISOLET: Spoken letter dataset (audio)

26 classes, 7800 letters with 150 different speakers.

Our method is Unc. (Norm) in blue and yellow.

Accuracy Cluster Proportion

Ji, Ming, and Jiawei Han. A variance minimization criterion to active learning on graphs. Artificial Intelligence and
Statistics. PMLR, 2012.
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Future work, papers, and code
Future Work:

1 p-eikonal equation: Manifold setting and applications (e.g., ISOMAP)

2 Poisson reweighted Laplace learning: Discrete to continuum, consistency, and
clustering.

3 Active learning: Batch active learning.

Papers:

J. Calder & M. Ettehad (2022). Hamilton-Jacobi equations on graphs with
applications to semi-supervised learning and data depth. Journal of Machine
Learning Research (JMLR). Code: https://github.com/jwcalder/peikonal

K. Miller, & J. Calder, J. (2022). Poisson reweighted Laplacian uncertainty sampling
for graph-based active learning. arXiv:2210.15786.
Code: https://github.com/millerk22/rwll_active_learning

Code: All code uses the GraphLearning python package

https://github.com/jwcalder/GraphLearning (pip install graphlearning)

Collaborators: Faculty: Andrea Bertozzi, Dejan Slepčev, Matthew Thorpe. Postdocs: Mahmood Ettehad,
Kevin Miller. Grad students: Jason Brown, Brendan Cook, Riley O’Neill, Sangmin Park. Undergrads:
Xoaquin Baca, John Mauro, Jason Setiadi, Zhan Shi.
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