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Graph-based learning
Let (X ,W) be a graph.

X ⊂ Rd are the vertices.
W = (wxy)x ,y∈X are nonnegative edge weights.
wxy is large when x and y are similar, and small or wxy = 0 otherwise.
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Some common graph-based learning tasks
1 Clustering

I Grouping similar datapoints
2 Semi-supervised learning.

I Propagating labels on a graph.
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MNIST (70,000 28× 28 pixel images of digits 0-9)

Each image is a datapoint

x ∈ R28×28 = R784.

Geometric weights:

wxy = η

(
|x − y |
ε

)

k -nearest neighbor graph:

wxy = η

(
|x − y |
εk (x)

)
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Clustering MNIST

https://divamgupta.com
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Graph-based semi-supervised learning

Given:

Graph (X ,W)

Labeled nodes Γ ⊂ X and labels g : Γ→ Rk ,

The i th class has label vector g(x) = ei = (0, , . . . , 0, 1, 0, . . . , 0).

Task: Extend the labels to the rest of the graph X \ Γ.

Semi-supervised: Goal is to use both the labeled and unlabeled data to get good
performance with far fewer labels than required by fully-supervised learning.

Applications of semi-supervised learning

1 Speech recognition

2 Classification (images, video, website, etc.)

3 Inferring protein structure from sequencing
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Why semi-supervised?

Calder (UMN) Random Walks and PDEs One World ML 9 / 64



Why semi-supervised?

Calder (UMN) Random Walks and PDEs One World ML 9 / 64



Why semi-supervised?

Calder (UMN) Random Walks and PDEs One World ML 9 / 64



Why semi-supervised?

Calder (UMN) Random Walks and PDEs One World ML 9 / 64



Why semi-supervised?

Calder (UMN) Random Walks and PDEs One World ML 9 / 64



Why semi-supervised?

Calder (UMN) Random Walks and PDEs One World ML 9 / 64



Laplacian regularization
Laplacian regularized semi-supervised learning solves the Laplace equation{

Lu = 0 in X \ Γ,

u = g on Γ,

where u : X → Rk , and L is the graph Laplacian

Lu(x) =
∑
y∈X

wxy(u(x)− u(y)).

The label decision for vertex x ∈ X is determined by the largest component of u(x)

`(x) = argmax
j∈{1,...,k}

{uj (x)}.

References:

Original work [Zhu et al., 2003]

Learning [Zhou et al., 2005, Ando and Zhang, 2007]

Manifold ranking [He et al., 2006, Zhou et al., 2011, Xu et al., 2011]
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Label propagation

The solution of Laplace learning satisfies

Lu(x) =
∑
y∈X

wxy(u(x)− u(y)) = 0. (y ∈ X \ Γ)

Re-arranging, we see that u satisfies the mean-value property

u(x) =

∑
y∈X wxyu(y)∑

y∈X wxy
.

Label propagation [Zhu 2005] iterates

uk+1(x) =

∑
y∈X wxyu

k (y)∑
y∈X wxy

.

and at convergence is equivalent to Laplace learning.
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Variational interpretation

Laplace learning is equivalent to the variational problem

min
u:X→Rk

{ ∑
x ,y∈X

wxy |u(x)− u(y)|2 : u(x) = g(x) for all x ∈ Γ

}
.

Many soft-constrained versions have been proposed

min
u:X→Rk

{ ∑
x ,y∈X

wxy |u(x)− u(y)|2 + λ
∑
x∈Γ

`(u(x), g(x)))

}
.
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Ill-posed with small amount of labeled data
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Graph is n = 105 i.i.d. random variables uniformly drawn from [0, 1]2.

wxy = 1 if |x − y | < 0.01 and wxy = 0 otherwise.

Two labels: g(x) = 0 at the Red point and g(x) = 1 at the Green point.

[Nadler et al., 2009]
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MNIST (70,000 28× 28 pixel images of digits 0-9)

[Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998.]
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Laplace learning on MNIST at low label rates

# Labels per class 1 2 3 4 160

Laplace Learning 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 97.0 (0.1)
Nearest Neighbor 65.4 (5.2) 74.2 (3.3) 77.8 (2.6) 80.7 (2.0) 92.4 (0.2)

Average accuracy over 100 trials with standard deviation in brackets.

Nearest neighbor is geodesic graph-nearest neighbor.

Calder (UMN) Random Walks and PDEs One World ML 15 / 64



Recent work

The low-label rate problem was originally identified in [Nadler 2009].

A lot of recent work has attempted to address this issue with new graph-based
classification algorithms at low label rates.

Higher-order regularization: [Zhou and Belkin, 2011], [Dunlop et al., 2019]

p-Laplace regularization: [Alaoui et al., 2016], [Calder 2018,2019], [Slepcev &
Thorpe 2019]

Re-weighted Laplacians: [Shi et al., 2017], [Calder & Slepcev, 2019]

Centered kernel method: [Mai & Couillet, 2018]

While we have lots of new models, the problem with Laplace learning at low label rates
was still not well-understood.
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Spikes in Laplacian regularized learning

Label function: g(x) = cos(x1).

10 labels 100 labels 1000 labels

Q1 How many labels do we need to ensure that spikes do not form?

Q2 Why does Laplace learning perform poorly at low label rates?

I Are the spikes too localized? Do they propagate information globally?

Q3 How should we propagate labels in a stable and informative way?
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A related numerical analysis problem

ε

Discrete Laplace equation:{
∆εuε = 0 in Zd

ε \ Zd
mε

uε = g on Zd
mε.

∆εu(x) =

d∑
i=1

∑
b=±1

(u(x+bεei)−u(x)).

Dirichlet energy:

Jεu(x) =

d∑
i=1

∑
b=±1

(u(x+bεei)−u(x))2.

Label rate is β = m−d . By energy balancing arguments

Energy of smooth part ∼ 2dε2, Energy of spikes ∼ 2dβ|uε − g |2∞.

Conjecture: |uε − g |∞ ∼
C ε√
β

. We can prove |uε − g |∞ ≤
C ε

β
1
2

+ 1
d

.
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Random geometric graph

Random Geometric Graph: Assume the vertices of the graph are

Xn = {x1, . . . , xn}

where x1, . . . , xn is a sequence of i.i.d. random variables on Ω ⊂ Rd with positive density
ρ, and the weights are given by

(1) wxy = η

(
|x − y |
ε

)
,

where η : [0,∞)→ [0, 1] is smooth with compact support.
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Pointwise consistency of the graph Laplacian

The graph Laplacian is defined as

Lu(x) =
∑
y∈Xn

η

(
|x − y |
ε

)
(u(x)− u(y)).

In the large data n →∞ and sparse graph ε→ 0 limit, L is consistent with

∆ρu = −ρ−1div(ρ2∇u).

In particular, it is a standard result [Hein et al., 2007] that∣∣∣ 1

nεd+2
Lu(x)− ση∆ρu(x)

∣∣∣ ≤ C (λ+ ε)

holds for any u ∈ C 3(Ω) with probability at least 1− 2 exp
(
−cnεd+2λ2

)
.

Note: The density ρ acts as an edge detector encouraging sharp changes in u between
clusters.
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Model for labeled data

Model 1. Let β ∈ (0, 1] and Ω̃ ⊂⊂ Ω. Each xi ∈ Ω̃ is selected as training data
independently with probability β. Let Γn = training data.

The Laplacian learning problem is

(2)

{
Lun(x) = 0, if x ∈ Xn \ Γn

un(x) = g(x), if x ∈ Γn ,

where g : Ω→ R is Lipschitz and

Xn = {x1, x2, . . . , xn}.
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Main result

The continuum PDE is

(3)


div(ρ2∇u) = 0 in Ω \ Ω̃

u = g on Ω̃

∇u · n = 0 on ∂Ω.

Theorem (C.-Slepcev-Thorpe, 2020)

Let un : Xn → R be the solution of (2), and let u ∈ C 3(Ω) be the solution of (3). If
β ≥ ε2 and ε ≤ λ ≤ c then

(4) max
x∈Xn

|un(x)− u(x)| ≤ C

(
ε√
β

log

(√
β

ε

)
+ λ

)
holds with probability at least 1− Cn exp

(
−cnεd+2λ2

)
.
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“Proof:” Let X0,X1,X2, . . . be a random walk on Xn with transition probabilities

P (Xk+1 = y |Xk = x) =
wxy∑

z∈Xn
wxz

.

Define the stopping time
τ = inf{k ≥ 0 : Xk ∈ Γn}.

Then un(Xk ) is a martingale up to the stopping time, and so

un(x) = E[g(Xτ ) |X0 = x ].

Therefore
|un(x)− g(x)| ≤ Lip(g)E[|Xτ −X0| |X0 = x ].

Each step has probability O(β) of hitting a labeled point, so

τ ≤ C

β
with high probability (w.h.p.)

In k steps, the walk moves at most C ε
√
k from X0, w.h.p., and so

|Xτ −X0| ≤
C ε√
β

w.h.p.
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The negative result

Theorem (C.-Slepcev-Thorpe, 2020)

Assume that β = βn → 0+ and ε = εn → 0+ satisfy

(5) βn � ε2n , and nεdn � log(n).

Then, with probability one, the sequence un is pre-compact in TL2 and any convergent
subsequence converges to a constant.

Summary: Laplace learning propagates labels well when

Label rate = β � ε2.

Below this label rate, spikes form and the solution is degenerate.
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Error on MNIST
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Figure: Error plots for MNIST experiment showing testing error versus number of
labels, averaged over 100 trials.

Fits very well to the error rate β−1/2.
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A numerical analysis-inspired model

Model 2. Let β ∈ (0, 1), δ ∈ (0, ε]. Each xi ∈ ∂δΩ is selected as training data
independently with probability β, where

∂δΩ = {x ∈ Ω : dist(x , ∂Ω) < δ}.

Here, the continuum PDE is

(6)

{
div(ρ2∇u) = 0 in Ω

u = g on ∂Ω.

J. Calder, D. Slepčev, D., and M. Thorpe. Rates of convergence for Laplacian
semi-supervised learning with low label rates. arXiv:2006.02765, 2020.
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Random Walk Perspective
Suppose u : X → Rk solves the Laplace learning equation{

Lu = 0, in X \ Γ,

u = g , on Γ.

The random walk interpretation u(x) = E[g(Xτ ) |X0 = x ] can help us understand the
degeneracy at low label rates.
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Random Walk Perspective
Suppose u : X → Rk solves the Laplace learning equation{

Lu = 0, in X \ Γ,

u = g , on Γ.

The random walk interpretation u(x) = E[g(Xτ ) |X0 = x ] can help us understand the
degeneracy at low label rates.

MNIST Classification Example

# Labels per class 1 2 3 4 160

Laplace Learning 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 97.0 (0.1)
Average # Steps 220,409 22,980 16,403 14,145 51
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The random walk perspective
At low label rates, the random walk mixes before hitting a label, and the distribution of
the random walker is close to the invariant distribution π, given by

π(x) =
d(x)∑

y∈X d(x),

where the degree is d(x) =
∑

y∈X wxy . Thus, the solution of Laplace learning is

u(x) = E[g(Xτ ) |X0 = x ] ≈
∑

y∈Γ
d(y)g(y)∑

y∈Γ
d(y)

=: c ∈ Rk .

To test this, we considered a shifted label decision

`(x) = argmax
j∈{1,...,k}

{uj (x)− cj}.

# Labels/class 1 2 3 4 5

Laplace 16.1 (6.2) 28.2 (10) 42.0 (12) 57.8 (12) 69.5 (12)
Shift Laplace 88.3 (5.7) 92.6 (2.4) 94.3 (1.4) 94 (1.5) 95 (0.6)
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A related Poisson equation

If the solution to Laplace learning u is roughly constant u ≈ c, then at a labeled node
x ∈ Γ we can compute

Lu(x) =
∑
y∈X

wxy(u(x)− u(y))

≈
∑
y∈X

wxy(g(x)− c) (since u ≈ c)

= d(x)(g(x)− c).

At unlabeled nodes we have Lu = 0. Thus, u approximately solves

Lu(x) =
∑
y∈Γ

d(y)(g(y)− c)δxy , c =

∑
y∈Γ

d(y)g(y)∑
y∈Γ

d(y)
,

where δxy = 1 if x = y and δxy = 0 otherwise.
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Poisson learning

We propose to replace Laplace learning{
Lu = 0, in X ,
u = g , on Γ,

with Poisson learning

Lu(x) =
∑
y∈Γ

(g(y)− g)δxy ,

subject to
∑

x∈X d(x)u(x) = 0, where g = 1
|Γ|

∑
y∈Γ

g(y).

In both cases, the label decision is the same:

`(x) = argmax
j∈{1,...,k}

{uj (x)}.
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Poisson learning

We propose to replace Laplace learning{
Lu = 0, in X ,
u = g , on Γ,

with Poisson learning

Lu(x) =
∑
y∈Γ

(g(y)− g)δxy ,

subject to
∑

x∈X d(x)u(x) = 0, where g = 1
|Γ|

∑
y∈Γ

g(y).

For Poisson learning, unbalanced class sizes can be incorporated:

`(x) = argmax
j∈{1,...,k}

{
pj
nj

uj (x)

}
, pj = Fraction of data in class j

nj = Fraction of training data from class j .
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The random walk interpretation
Let X x

0 ,X
x
1 ,X

x
2 be a random walk on X starting from x ∈ X , and define

uT (x) := E

[
T∑

k=0

1

d(x)

∑
y∈Γ

(g(y)− g)1{X y
k

=x}

]
, where g =

1

|Γ|
∑
y∈Γ

g(y).

Theorem (C.-Cook-Thorpe-Slepcev, 2020)

For every T ≥ 0 we have

uT+1(x) = uT (x) +
1

d(x)

(∑
y∈Γ

(g(y)− g)δxy − LuT (x)

)
.

If the graph G is connected and the Markov chain induced by the random walk is
aperiodic, then uT → u as T →∞, where u : X → R is the solution of

Lu(x) =
∑
y∈Γ

(g(y)− g)δxy ,

satisfying
∑

x∈X d(x)u(x) = 0.
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The variational interpretation

Consider the variational problem

(7) min
u∈`2

0
(X )

{ ∑
x ,y∈X

wxy |u(x)− u(y)|2 −
∑
x∈Γ

(g(x)− g) · u(x)

}
,

where g = 1
|Γ|

∑
x∈Γ

g(x).

Theorem (C.-Cook-Thorpe-Slepcev, 2020)

Assume G is connected. Then there exists a unique minimizer u ∈ `20(X ) of (7), and
furthermore, u satisfies the Poisson equation

Lu(x) =
∑
y∈Γ

(g(y)− g)δxy .

J. Calder, B. Cook, M. Thorpe, and D. Slepčev. Poisson Learning: Graph based
semi-supervised learning at very low label rates. International Conference on Machine
Learning (ICML), PMLR 119:1306–1316, 2020.
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The continuum perspective
Manifold assumption: Let x1, . . . , xn be a sequence of i.i.d. random variables with
density ρ supported on a d-dimensional compact, closed, and connected Riemannian
manifold M embedded in RD , where d � D . Fix a finite set of points Γ ⊂M and set

Xn := {x1, . . . , xn}︸ ︷︷ ︸
Unlabeled

∪ Γ︸︷︷︸
Labeled

.

Conjecture

Let n →∞ and ε = εn → 0 so that limn→∞
nεd+2

n
log n

=∞. Let un be the solution of the

Poisson learning problem(
2

σηnε
d+2
n

)
Lun(x) =

∑
y∈Γ

(g(y)− g)(nδxy) for x ∈ Xn .

Then with probability one un → u locally uniformly on M\ Γ as n →∞, where
u ∈ C∞(M\ Γ) is the solution of the Poisson equation

− divM
(
ρ2∇Mu

)
=
∑
y∈Γ

(g(y)− g)δy on M.
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Spectral representation

Theorem

The solution of the Poisson learning equation

Lu(x) =
∑
y∈Γ

(g(y)− g)δxy

is given by

u(x) =
∑
y∈Γ

n∑
k=2

(g(y)− g)λ−1
k vk (x)vk (y),

where v1, v2, . . . , vn are the normalized eigenvectors of L, with corresponding
eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn .

Proof of the conjecture reduces to spectral convergence. We proved O(ε) spectral
convergence rates in the C 0,1 sense:

J. Calder, N. Garcia Trillos, and M. Lewicka, Lipschitz regularity of graph Laplacians
on random data clouds, arXiv:2007.06679, 2020.
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GraphLearning Python Package

https://github.com/jwcalder/GraphLearning
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Algorithmic details

Algorithm 1 Poisson Learning

1: Input: W,F = [y1, y2, . . . , ym ],T
2: D← diag(W1)
3: L← D−W
4: c← 1

mF1
5: B← [F− c, zeros(k ,n −m)]
6: U← zeros(n, k)
7: for i = 1 to T do
8: U← U + D−1(BT − LU)
9: end for

10: `i ← argmax
1≤j≤k

Uij

11: return: ` := [`1, `2, . . . , `n ]

We only need about T = 100 iterations on MNIST, FashionMNIST, CIFAR-10, to get
good results. CPU Time: 4 seconds on CPU, 1 second on GPU.
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MNIST (70,000 28× 28 pixel images of digits 0-9)

[Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998.]
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FashionMNIST (70,000 28× 28 images of fashion items)

[Xiao, Han, Kashif Rasul, and Roland Vollgraf. ”Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms.” arXiv:1708.07747 (2017).]
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CIFAR-10

[Krizhevsky, Alex, and Geoffrey Hinton. ”Learning multiple layers of features from tiny
images.” (2009).]

Calder (UMN) Random Walks and PDEs One World ML 44 / 64



Autoencoders

For each dataset, we build the graph by training autoencoders.

www.compthree.com
Autoencoders are “Nonlinear versions of PCA”
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Building graphs from autoencoders

For MNIST and FashionMNIST, we use a 4-layer variational autoencoder with 30 latent
variables:

[Kingma and Welling. Auto-encoding variational Bayes. ICML 2014]

For CIFAR-10, we use the autoencoding framework from [Zhang et al. AutoEncoding
Transformations (AET), CVPR 2019] with 12,288 latent variables.
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First comparison

We compared against many other graph-based learning algorithms

Laplace/Label propagation: [Zhu et al., 2003]

Graph nearest neighbor (using Dijkstra)

Lazy random walks: [Zhou et al., 2004]

Mutli-class MBO: [Garcia-Cardona et al., 2014]

Centered kernel method: [Mai & Couillet, 2018]

Sparse Label Propagation: [Jung et al., 2016]

Weighted Nonlocal Laplacian (WNLL): [Shi et al., 2017]

p-Laplace regularization: [Flores et al. 2019]
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MNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)
Nearest Neighbor 65.4 (5.2) 74.2 (3.3) 77.8 (2.6) 80.7 (2.0) 82.1 (2.0)
Random Walk 66.4 (5.3) 76.2 (3.3) 80.0 (2.7) 82.8 (2.3) 84.5 (2.0)
MBO 19.4 (6.2) 29.3 (6.9) 40.2 (7.4) 50.7 (6.0) 59.2 (6.0)
Centered Kernel 19.1 (1.9) 24.2 (2.3) 28.8 (3.4) 32.6 (4.1) 35.6 (4.6)
Sparse Label Prop. 14.0 (5.5) 14.0 (4.0) 14.5 (4.0) 18.0 (5.9) 16.2 (4.2)
WNLL 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)
p-Laplace 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)
Poisson 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)
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FashionMNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)
Nearest Neighbor 46.6 (4.7) 53.5 (3.6) 57.2 (3.0) 59.3 (2.6) 61.1 (2.8)
Random Walk 49.0 (4.4) 55.6 (3.8) 59.4 (3.0) 61.6 (2.5) 63.4 (2.5)
MBO 15.7 (4.1) 20.1 (4.6) 25.7 (4.9) 30.7 (4.9) 34.8 (4.3)
Centered Kernel 11.8 (0.4) 13.1 (0.7) 14.3 (0.8) 15.2 (0.9) 16.3 (1.1)
Sparse Label Prop. 14.1 (3.8) 16.5 (2.0) 13.7 (3.3) 13.8 (3.3) 16.1 (2.5)
WNLL 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)
p-Laplace 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)
Poisson 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2 (2.2) 72.4 (2.3)

Compare to clustering result of 67.2% [McConville et al., 2019]
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CIFAR-10 results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 10.4 (1.3) 11.0 (2.1) 11.6 (2.7) 12.9 (3.9) 14.1 (5.0)
Nearest Neighbor 33.1 (4.3) 37.3 (4.1) 39.7 (3.0) 41.7 (2.8) 43.0 (2.5)
Random Walk 36.4 (4.9) 42.0 (4.4) 45.1 (3.3) 47.5 (2.9) 49.0 (2.6)
MBO 14.2 (4.1) 19.3 (5.2) 24.3 (5.6) 28.5 (5.6) 33.5 (5.7)
Centered Kernel 15.4 (1.6) 16.9 (2.0) 18.8 (2.1) 19.9 (2.0) 21.7 (2.2)
Sparse Label Prop. 11.8 (2.4) 12.3 (2.4) 11.1 (3.3) 14.4 (3.5) 11.0 (2.9)
WNLL 16.6 (5.2) 26.2 (6.8) 33.2 (7.0) 39.0 (6.2) 44.0 (5.5)
p-Laplace 26.0 (6.7) 35.0 (5.4) 42.1 (3.1) 48.1 (2.6) 49.7 (3.8)
Poisson 40.7 (5.5) 46.5 (5.1) 49.9 (3.4) 52.3 (3.1) 53.8 (2.6)

Compare to clustering result of 41.2% [Mukherjee et al., ClusterGAN, CVPR 2019].
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Volume constrained semi-supervised learning

Classification results can be improved by incorporating prior knowledge of class sizes
through volume constraints.
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PoissonMBO: Volume constrained Poisson learning

Observation 1: The Poisson learning iteration with a fixed time step

uT+1(x) = uT (x) + dt

(∑
y∈Γ

(g(y)− g)δij − LuT (x)

)

is volume preserving. That is
∑

x∈X uT+1(x) =
∑

x∈X uT (x).

Observation 2: We can easily perform a volume constrained label projection

`(xi) = argmax
j∈{1,...,k}

{sjuj (x)} .

We adjust the weights sj to grow/shrink each region to achieve the correct class sizes.

Named after the Merriman-Bence-Osher (MBO) scheme for curvature motion, which
has been used before in graph-based learning [Garcia, et al., 2014, Jacobs et al., 2018].
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MNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)
WNLL 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)
p-Laplace 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)
VolumeMBO 89.9 (7.3) 95.6 (1.9) 96.2 (1.2) 96.6 (0.6) 96.7 (0.6)
Poisson 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)
PoissonMBO 96.5 (2.6) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)

# Labels per class 10 20 40 80 160

Laplace/LP 91.3 (3.7) 95.8 (0.6) 96.5 (0.2) 96.8 (0.1) 97.0 (0.1)
WNLL 95.6 (0.5) 96.1 (0.3) 96.3 (0.2) 96.4 (0.1) 96.3 (0.1)
p-Laplace 94.0 (0.8) 95.1 (0.4) 95.5 (0.1) 96.0 (0.2) 96.2 (0.1)
VolumeMBO 96.9 (0.2) 97.0 (0.1) 97.1 (0.1) 97.2 (0.1) 97.3 (0.1)
Poisson 95.9 (0.4) 96.3 (0.3) 96.6 (0.2) 96.8 (0.1) 96.9 (0.1)
PoissonMBO 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)
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FashionMNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)
WNLL 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)
p-Laplace 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)
VolumeMBO 54.7 (5.2) 61.7 (4.4) 66.1 (3.3) 68.5 (2.8) 70.1 (2.8)
Poisson 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2 (2.2) 72.4 (2.3)
PoissonMBO 62.0 (5.7) 67.2 (4.8) 70.4 (2.9) 72.1 (2.5) 73.1 (2.7)

# Labels per class 10 20 40 80 160

Laplace/LP 70.6 (3.1) 76.5 (1.4) 79.2 (0.7) 80.9 (0.5) 82.3 (0.3)
WNLL 74.4 (1.6) 77.6 (1.1) 79.4 (0.6) 80.6 (0.4) 81.5 (0.3)
p-Laplace 73.0 (0.9) 76.2 (0.8) 78.0 (0.3) 79.7 (0.5) 80.9 (0.3)
VolumeMBO 74.4 (1.5) 77.4 (1.0) 79.5 (0.7) 81.0 (0.5) 82.1 (0.3)
Poisson 75.2 (1.5) 77.3 (1.1) 78.8 (0.7) 79.9 (0.6) 80.7 (0.5)
PoissonMBO 76.1 (1.4) 78.2 (1.1) 79.5 (0.7) 80.7 (0.6) 81.6 (0.5)
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CIFAR-10 results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 10.4 (1.3) 11.0 (2.1) 11.6 (2.7) 12.9 (3.9) 14.1 (5.0)
WNLL 16.6 (5.2) 26.2 (6.8) 33.2 (7.0) 39.0 (6.2) 44.0 (5.5)
p-Laplace 26.0 (6.7) 35.0 (5.4) 42.1 (3.1) 48.1 (2.6) 49.7 (3.8)
VolumeMBO 38.0 (7.2) 46.4 (7.2) 50.1 (5.7) 53.3 (4.4) 55.3 (3.8)
Poisson 40.7 (5.5) 46.5 (5.1) 49.9 (3.4) 52.3 (3.1) 53.8 (2.6)
PoissonMBO 41.8 (6.5) 50.2 (6.0) 53.5 (4.4) 56.5 (3.5) 57.9 (3.2)

# Labels per class 10 20 40 80 160

Laplace/LP 21.8 (7.4) 38.6 (8.2) 54.8 (4.4) 62.7 (1.4) 66.6 (0.7)
WNLL 54.0 (2.8) 60.3 (1.6) 64.2 (0.7) 66.6 (0.6) 68.2 (0.4)
p-Laplace 56.4 (1.8) 60.4 (1.2) 63.8 (0.6) 66.3 (0.6) 68.7 (0.3)
VolumeMBO 59.2 (3.2) 61.8 (2.0) 63.6 (1.4) 64.5 (1.3) 65.8 (0.9)
Poisson 58.3 (1.7) 61.5 (1.3) 63.8 (0.8) 65.6 (0.6) 67.3 (0.4)
PoissonMBO 61.8 (2.2) 64.5 (1.6) 66.9 (0.8) 68.7 (0.6) 70.3 (0.4)
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Application: Segmenting broken bone fragments

AMAAZE consortium for mathematics and anthropology: https://amaaze.umn.edu/

Main collaborators: Peter J. Olver and Katrina Yezzi-Woodley (Anthropology)

REU students: Math: David Floeder, Anthropology: Paige Cody, Chloe Siewert
Math Graduate students: Riley O’Neill, Brendan Cook
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Application: Segmenting broken bone fragments

Graph-based clustering with weights

wij = exp (−C |ni − nj |p) .

between nearby points on the mesh, where ni is the outward normal vector at vertex i .
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Mesh Segmentation via Poisson Learning
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Mesh Segmentation via Poisson Learning
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Mesh Segmentation via Poisson Learning

Calder (UMN) Random Walks and PDEs One World ML 60 / 64



AMAAZE MeshLab plugins

https://amaaze.umn.edu/software
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Current/Future Work

1 Poisson learning

I Directed graphs, clustering

I Continuum limit

I Asymptotic consistency

2 Rates of convergence for p-Laplacian regularization

I Including other graphs, like stochastic block models

3 Graph convolutional networks for semi-supervised learning

I [Kipf & Welling, ICLR 2017]

4 Few-shot semi-supervised learning

I H. Huang, J. Zhang, J. Zhang, Q. Wu, C. Xu. PTN: A Poisson
Transfer Network for Semi-supervised Few-shot Learning. To
appear in proceedings of AAAI 2021 (arXiv preprint:2012.10844).
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Code: https://github.com/jwcalder/GraphLearning (pip install graphlearning)
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