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Two Player Games and PDEs
There is a long history connecting two player games and PDEs

Differential Games (Isaacs Equation)

Kohn-Serfaty game for curvature motion [Kohn & Serfaty, 2006]

I Fully nonlinear parabolic equations [Kohn & Serfaty, 2010]

Stochastic Tug-of-War games for the p-Laplacian (inlcuding p =∞)

I [Peres & Scheffield, 2008]
I [Peres, Schramm, Scheffield, Wilson, 2009]
I [Manfredi, Parviainen, Rossi, 2010, 2012]
I [Armstrong & Smart, 2012]
I [Lewicka, Manfredi, 2014, 2017]
I Applications to machine learning [Calder 2018] [Slepčev & Thorpe,

2019]

Convex Hull Peeling and the affine flow [Calder & Smart, 2020]

Prediction from expert advice [Kohn & Drenska, 2020] [Drenska & Calder, 2020]

I Generalization of the Kohn-Serfaty game
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Kohn-Serfaty Game
The game is played in a convex domain Ω ⊂ R2 starting at x0 ∈ Ω and involves a small
parameter ε > 0. The rules of the game are

1 Paul chooses a direction vector vk ∈ S1.

2 Carol moves the token from xk to xk+1 = x0 ±
√

2εvk .

Paul wants to escape Ω and Carol wants to obstruct.

xk
xk +

√
2εvkxk −

√
2εvk

xk +
√

2εvk +
√

2εvk+1

xk +
√

2εvk −
√

2εvk+1
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Kohn-Serfaty Game

Let us define
uε(x0) = ε2(Number of steps for Paul to escape Ω)

given that both players play optimally and the game starts at x0. The value function u
satisfies the dynamic programming principle

uε(x) = ε2 + min
|v|=1

max
b=±1

uε(x +
√

2εbv).

We assume uε ≈ u where u is smooth and Taylor expand to obtain

u(x) ≈ ε2 + min
|v|=1

max
b=±1

{
u(x) +

√
2εb∇u(x)Tv + ε2vT∇2u(x)v

}
.

Paul should choose v = ∇⊥u/|∇u|, where ∇⊥u = (−ux2 , ux1), yielding

0 ≈ 1 +
(∇⊥u)T

|∇u| ∇
2u
∇⊥u
|∇u| = 1 + |∇u|div

(
∇u
|∇u|

)
.
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Kohn-Serfaty Game
Kohn & Serfaty showed that uε → u as ε→ 0 where u is the viscosity solution of

(1)

−|∇u|div

(
∇u
|∇u|

)
= 1 in Ω

u = 0 on ∂Ω.

This is the level-set equation for motion by mean curvature of the level sets of u.

The number of steps for Paul to escape concides in the limit as ε→ 0 with the
arrival time for the boundary evolving under curvature motion.

Paul’s asymptotically optimal strategy to choose v tangent to level sets of u.
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Playing the Kohn-Serfaty game on a point cloud

Players: Paul and Carol

State space: X := {X1, . . . ,Xn}

Paul’s goal: Reach vertex of convex hull

Carol’s goal: Obstruct Paul

Rules of the game: Token starts at
x0 ∈ X and is moved according to:

1 Paul picks v ∈ Sd−1

2 Carol moves token to any
x k+1 ∈ X satisfying

(x k+1 − x k )Tv > 0.
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Convex hull peeling

Introduced by Barnet 1976 as a notion of multivariate median.

Used in robust statistics, machine learning, mathcing of point clouds, fingerprint
identification, etc.
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Convex hull peeling

Introduced by Barnet 1976 as a notion of multivariate median.

Used in robust statistics, machine learning, mathcing of point clouds, fingerprint
identification, etc.

Convex hull peeling median := Centroid of final layer
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Optimal strategies come from Convex Hull Peeling

Paul’s optimal choice: Any halfspace supporting current convex layer

Carol’s optimal choice: Any point on the previous convex layer
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Optimal strategies come from Convex Hull Peeling

Paul’s optimal choice: Any halfspace supporting current convex layer

Carol’s optimal choice: Any point on the previous convex layer

Value function = Un(x0) = Convex depth function.
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Convex hull peeling: Demo - Uniform distribution
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n = 102 points
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Convex hull peeling: Demo - Triangle distribution
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Convex hull peeling: Demo - Gaussian distribution
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A PDE continuum limit for convex hull peeling

Let X1, . . . ,Xn be i.i.d. with a continuous density ρ on a convex set Ω ⊂ Rd .

Let Un be the function that ‘counts’ the associated convex layers.
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Partial differential equation (PDE) continuum limit

Theorem (Calder & Smart, 2020)

There exists a universal constant αd such that with probability one

n−
2

d+1Un −→ αdu uniformly on Ω,

where u ∈ C (Ω) is the unique viscosity solution of

(2)

{
∇uT cof(−∇2u)∇u = ρ2 in Ω

u = 0 on ∂Ω.

This is just motion by a power of Gauss curvature

dS

dt
= ρ−2/(d+1)κ

1/(d+1)
G n.

Known as affine invariant curvature motion when ρ ≡ 1.
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Theorem (Calder & Smart, 2020)

There exists a universal constant αd such that with probability one

n−
2

d+1Un −→ αdu uniformly on Ω,

where u ∈ C (Ω) is the unique viscosity solution of

(3)

{
∇uT cof(−∇2u)∇u = ρ2 in Ω

u = 0 on ∂Ω.

Un satisfies a dynamic programming principle arising from the two player game

Un(x) = inf
p∈Rd\{0}

sup
pT (y−x)>0

[1{X1,...,Xn}(y) + Un(y)].

Proof requires more than Taylor expansion and reading off the optimal strategies.

Involves analyzing the scaling limit of the game after a large number of steps
(locally), which has connections to stochsatic growth models.

Calder, J., and Smart, C.K. The limit shape of convex hull peeling. Duke Mathematical
Journal, 169.11 (2020): 2079-2124.
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A PDE continuum limit for convex hull peeling
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Figure: Convex layers vs continuum limit for n = 5× 103.
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A nonconvex example

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Samples

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Convex layers

Figure: Convex layers corresponding to disjoint clusters.
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A nonconvex example
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Figure: Two different solutions continuum PDE.
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The halfmoon
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Figure: Convex layers corresponding to the halfmoon distribution.
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The halfmoon

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Samples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) PDE

Figure: Solution of PDE for the halfmoon example.
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Prediction with expert advice

One of the oldest online machine learning problems [Cover, 1966].

We are given a stream of data b1, b2, b3, . . . .

A pool of “experts” makes predictions about future values bk .

The player must use the expert advice to make their own prediction.

The player’s performance is measured by regret

Regret to expert i := Expert i ’s performance− Player’s performance.

Calder (UofM) PDEs and prediction Rutgers, March 31 23 / 52



Prediction with expert advice

Key feature: Worst case analysis.

No modeling assumptions made on the data stream b1, b2, b3, . . . .

The data stream (environment) is assumed to be controlled by an adversary.

Yields two player zero-sum games with minimax optimal strategies.

Applications: Financial math, weather prediction, click prediction,. . .
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Example: Weather prediction

Goal: Each morning predict whether it will rain or not.

Possible Experts:

1 The Weather Network

2 AccuWeather

3 Weather Underground

4 Your own deep neural network

5 It will rain today if it rained yesterday

6 It always rains

7 It never rains

8 Toss a coin

9 Red sky in the morning
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Previous work

2 constant experts:

Optimal strategies [Cover, 1966]

Multiplicative weights algorithm (MWA):

[Littlestone and Warmuth, 1994, Vovk, 1990]

Also called weighted majority algorithm.

Provably optimal as n,T →∞ [Cesa-Bianchi and Lugosi, 2006].

For finite number of experts n, MWA is not optimal.

Optimal strategies:

n = 2, 3 experts [Gravin et al., 2016, Abbasi et al., 2017].

n = 4 experts [Bayraktar et al., 2019]

Connection to PDEs for n ≥ 2 experts

I [Zhu, 2014, Drenska, 2017, Drenska and Kohn, 2019b]
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Problem setup: History dependent experts

Daily stock price movements b1, b2, b3, . . . , bk , . . . with bk ∈ B := {−1, 1}.

We have n experts predicting bi based on d-days of history

m i := (bi−d , bi−d+1, . . . , bi−1) ∈ Bd .

The expert predictions are publicly available algorithms

q1, . . . , qn : Bd → [−1, 1],

and we write q = (q1, . . . , qn).

Rules of the game: For i = 1 up to N

1 The investor views q(mi) and decides on an investment fi ∈ [−1, 1].

2 The market chooses bi ∈ B.

3 Investor accumulates regret qj (m
i)bi − fibi with respect to expert j .
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Problem setup: History dependent experts

After N steps of the game, the accumulated regret is

RN :=

N∑
i=1

bi(q(m i)− fi1), 1 = (1, . . . , 1).

Objective: Given a payoff function g : Rn → R

I Market’s goal is to maximize g(RN ).

I Investor’s goal is to minimize g(RN ).

Common choice for payoff is

g(x) = max{x1, x2, . . . , xn},

where xi = regret with respect to expert i .

Drenska, N., and Kohn R.V. A PDE approach to the prediction of a binary sequence
with advice from two history-dependent experts. arXiv preprint:2007.12732 (2020).
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Problem setup: History dependent experts

Notation: For m = (m1, . . . ,md) ∈ Bd and b ∈ B we denote

m|b := (m2,m3, . . . ,md , b) ∈ Bd .

The history transition is m i+1 = m i |bi .

Definition (Value function)

Let g : Rn → R. Given N ∈ N, m ∈ Bd , and 1 ≤ ` ≤ N , the value function VN (x , `;m)
is defined by VN (x , `;m) = g(x) for ` = N , and

(4) VN (x , `;m) = min
|f`|≤1

max
b`=±1

· · · min
|fN−1|≤1

max
bN−1=±1

g

(
x +

N−1∑
i=`

bi(q(m i)− fi1)

)

for 1 ≤ ` ≤ N − 1, where m` = m and m i+1 = m i |bi for i = `, . . . ,N − 1.

Calder (UofM) PDEs and prediction Rutgers, March 31 29 / 52



Problem setup: History dependent experts

Notation: For m = (m1, . . . ,md) ∈ Bd and b ∈ B we denote

m|b := (m2,m3, . . . ,md , b) ∈ Bd .

The history transition is m i+1 = m i |bi .

Definition (Value function)

Let g : Rn → R. Given N ∈ N, m ∈ Bd , and 1 ≤ ` ≤ N , the value function VN (x , `;m)
is defined by VN (x , `;m) = g(x) for ` = N , and

(4) VN (x , `;m) = min
|f`|≤1

max
b`=±1

· · · min
|fN−1|≤1

max
bN−1=±1

g

(
x +

N−1∑
i=`

bi(q(m i)− fi1)

)

for 1 ≤ ` ≤ N − 1, where m` = m and m i+1 = m i |bi for i = `, . . . ,N − 1.

Calder (UofM) PDEs and prediction Rutgers, March 31 29 / 52



De Bruijn graph d = 1

-1 1

Calder (UofM) PDEs and prediction Rutgers, March 31 30 / 52
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De Bruijn graph d = 3
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Assumptions

For T > 0,N ∈ N, define ε > 0 by T = ε2N and set

uN (x , t ;m) :=
1√
N

VN (
√
Nx , dNte;m),

We assume g ∈ C 4(Rn) with uniformly bounded derivatives of order up to 4 over
Rn , there exists θ > 0 such that

(5) ∇g(x)T1 ≥ θ for all x ∈ Rn ,

and that g is positively 1-homogeneous, that is

(6) g(sx) = sg(x) for all x ∈ Rn , s > 0.

We also assume the expert strategies q = (q1, . . . , qn) satisfy

(7) q : Bd → [−µ, µ]n for some µ ∈ (0, 1).
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Our main result

Let u be the viscosity solution of

(8)


ut +

1

2d+1

∑
m∈Bd

η(m)T∇2u η(m) = 0, in Rn × (0, 1)

u = g , on Rn × {t = 1},

where

(9) η(m) = q(m)− ∇u
Tq(m)

∇uT1
1.

Theorem (Drenska & Calder, 2020)

There exists C1,C2 > 0, depending on u, n and θ, such that

(10) |uN (x , t ;m)− u(x , t)| ≤ C1d(1− t + ε)ε

holds for all N ≥ C2d
2/µ2, (x , t) ∈ Rn × [0, 1] and m ∈ Bd , where ε = N−1/2.
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Optimal strategies
An O(ε) asymptotically optimal investor strategy is

f ∗ =
∇uTq

∇uT1
+
ε

2

(
H(m+)−H(m−)

∇uT1

)
,

where H satisfies the graph Poisson equation

∆BdH = h − 1

2d

∑
m∈Bd

h(m)

where

∆BdH(m) = H(m)− 1

2
H(m+)− 1

2
H(m−),

and

h(m) =
1

2
η(m)T∇2u η(m) and η(m) = q(m)− ∇u

Tq(m)

∇uT1
1.

An asymptotically optimal market strategy is

b∗ = sign(f ∗ − f ),
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∇uTq

∇uT1
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ε

2

(
H(m+)−H(m−)

∇uT1

)
,

where H satisfies the graph Poisson equation

∆BdH = h − 1

2d

∑
m∈Bd

h(m)
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Underlying linear heat equation

y1

y2

x1

x2

y2 = h(y1, t ;λ)

{u(x , t) = λ}

Change coordinates so yn = x1 + · · ·+ xn , yi = xi − xn and define h by

v(y1, . . . , yn−1, h(y1, . . . , yn−1, t ;λ), t) = λ,

where v(y , t) = u(x , t).

We find h satisfies a linear heat equation

(11) ht +
1

2d+1

∑
m∈{−1,1}d

r(m)T∇2h r(m) = 0,

where ri(m) := qi(m)− qn(m). The condition g ∈ C 4 ensures u is smooth.
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Dynamic programming principle (DPP)

Recall the value function

VN (x , `;m) = min
|f`|≤1

max
b`=±1

· · · min
|fN−1|≤1

max
bN−1=±1

g

(
x +

N−1∑
i=`

bi(q(m i)− fi1)

)

Proposition (1-Step Dynamic Programming Principle)

For ` ≤ N − 1 and m ∈ {−1, 1}d

(12) VN (x , `;m) = min
|f |≤1

max
b=±1

VN (x + b(q(m)− f 1), `+ 1;m|b).

Note: The DPP is a coupled set of 2d equations.
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Dynamic programming principle
Let us assume that

uN (x , t ;m) =
1√
N

VN (
√
Nx , dNte;m) ≈ u(x , t),

for some u ∈ C 3.

With ε = N−1/2, the dynamic programming principle (DPP) becomes

u(x , t) = min
|f |≤1

max
b=±1

u(x + εb(q(m)− f 1), t + ε2)

= min
|f |≤1

max
b=±1

{
u(x , t) + ε2ut + εb∇uT (q(m)− f 1)

+
ε2

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
+ O(ε3)

ut + min
|f |≤1

max
b=±1

{
ε−1b∇uT (q(m)− f 1) +

1

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
= O(ε).

Investor (player) may wish to choose f to cancel out ε−1 term:

f =
∇uTq(m)

∇uT1
and ut +

1

2
η(m)T∇2u η(m) = O(ε),

where η(m) = q(m)− ∇uT q(m)

∇uT1
1.

Calder (UofM) PDEs and prediction Rutgers, March 31 38 / 52



Dynamic programming principle
Let us assume that

uN (x , t ;m) =
1√
N

VN (
√
Nx , dNte;m) ≈ u(x , t),

for some u ∈ C 3. With ε = N−1/2, the dynamic programming principle (DPP) becomes

u(x , t) = min
|f |≤1

max
b=±1

u(x + εb(q(m)− f 1), t + ε2)

= min
|f |≤1

max
b=±1

{
u(x , t) + ε2ut + εb∇uT (q(m)− f 1)

+
ε2

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
+ O(ε3)

ut + min
|f |≤1

max
b=±1

{
ε−1b∇uT (q(m)− f 1) +

1

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
= O(ε).

Investor (player) may wish to choose f to cancel out ε−1 term:

f =
∇uTq(m)

∇uT1
and ut +

1

2
η(m)T∇2u η(m) = O(ε),

where η(m) = q(m)− ∇uT q(m)

∇uT1
1.

Calder (UofM) PDEs and prediction Rutgers, March 31 38 / 52



Dynamic programming principle
Let us assume that

uN (x , t ;m) =
1√
N

VN (
√
Nx , dNte;m) ≈ u(x , t),

for some u ∈ C 3. With ε = N−1/2, the dynamic programming principle (DPP) becomes

u(x , t) = min
|f |≤1

max
b=±1

u(x + εb(q(m)− f 1), t + ε2)

= min
|f |≤1

max
b=±1

{
u(x , t) + ε2ut + εb∇uT (q(m)− f 1)

+
ε2

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
+ O(ε3)

ut + min
|f |≤1

max
b=±1

{
ε−1b∇uT (q(m)− f 1) +

1

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
= O(ε).

Investor (player) may wish to choose f to cancel out ε−1 term:

f =
∇uTq(m)

∇uT1
and ut +

1

2
η(m)T∇2u η(m) = O(ε),

where η(m) = q(m)− ∇uT q(m)

∇uT1
1.

Calder (UofM) PDEs and prediction Rutgers, March 31 38 / 52



Dynamic programming principle
Let us assume that

uN (x , t ;m) =
1√
N

VN (
√
Nx , dNte;m) ≈ u(x , t),

for some u ∈ C 3. With ε = N−1/2, the dynamic programming principle (DPP) becomes

u(x , t) = min
|f |≤1

max
b=±1

u(x + εb(q(m)− f 1), t + ε2)

= min
|f |≤1

max
b=±1

{
u(x , t) + ε2ut + εb∇uT (q(m)− f 1)

+
ε2

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
+ O(ε3)

ut + min
|f |≤1

max
b=±1

{
ε−1b∇uT (q(m)− f 1) +

1

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
= O(ε).

Investor (player) may wish to choose f to cancel out ε−1 term:

f =
∇uTq(m)

∇uT1
and ut +

1

2
η(m)T∇2u η(m) = O(ε),

where η(m) = q(m)− ∇uT q(m)

∇uT1
1.

Calder (UofM) PDEs and prediction Rutgers, March 31 38 / 52



Dynamic programming principle
Let us assume that

uN (x , t ;m) =
1√
N

VN (
√
Nx , dNte;m) ≈ u(x , t),

for some u ∈ C 3. With ε = N−1/2, the dynamic programming principle (DPP) becomes

u(x , t) = min
|f |≤1

max
b=±1

u(x + εb(q(m)− f 1), t + ε2)

= min
|f |≤1

max
b=±1

{
u(x , t) + ε2ut + εb∇uT (q(m)− f 1)

+
ε2

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
+ O(ε3)

ut + min
|f |≤1

max
b=±1

{
ε−1b∇uT (q(m)− f 1) +

1

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
= O(ε).

Investor (player) may wish to choose f to cancel out ε−1 term:

f =
∇uTq(m)

∇uT1
and ut +

1

2
η(m)T∇2u η(m) = O(ε),

where η(m) = q(m)− ∇uT q(m)

∇uT1
1.

Calder (UofM) PDEs and prediction Rutgers, March 31 38 / 52



De Bruijn graph d = 3

010 101000 111

100

001

110

011

Calder (UofM) PDEs and prediction Rutgers, March 31 39 / 52



Dynamic programming principle
Let us assume that

uN (x , t ;m) =
1√
N

VN (
√
Nx , dNte;m) ≈ u(x , t),

for some u ∈ C 3. With ε = N−1/2, the dynamic programming principle (DPP) becomes

u(x , t) = min
|f |≤1

max
b=±1

u(x + εb(q(m)− f 1), t + ε2)

= min
|f |≤1

max
b=±1

{
u(x , t) + ε2ut + εb∇uT (q(m)− f 1)

+
ε2

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
+ O(ε3)

ut + min
|f |≤1

max
b=±1

{
ε−1b∇uT (q(m)− f 1) +

1

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
= O(ε).

Investor (player) may wish to choose f to cancel out ε−1 term:

f =
∇uTq(m) + εf #(m)

∇uT1
and ut +

1

2
η(m)T∇2u η(m)− bf #(m) = O(ε),

where η(m) = q(m)− ∇uT q(m)

∇uT1
1. [Drenska and Kohn, 2019a]
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k -step Dynamic Programming Principle

Proposition (Dynamic Programming Principle)

For any N ≥ 1, x ∈ Rn , m ∈ Bd , k ≥ 1 and ` ≤ N − k it holds that

VN (x , `;m) = min
|f1|≤1

max
b1=±1

· · · min
|fk |≤1

max
bk=±1

VN

(
x +

k∑
i=1

bi(q(m i)− 1fi), `+ k ;mk+1

)
,

where m1 = m and m i+1 = m i |bi for i = 1, . . . , k .

The equivalent DPP for uN is

uN (x , t ;m) = min
|f1|≤1

max
b1=±1

· · · min
|fk |≤1

max
bk=±1

uN

(
x + ε

k∑
i=1

bi(q(m i)−1fi), t + ε2k ;mk+1

)
.
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The local problem

Assume uN (x , t ;m) ≈ u(x , t) for smooth u.

Then

u(x , t) = min
|f1|≤1

max
b1=±1

· · · min
|fk |≤1

max
bk=±1

{
u(x + ε∆x , t + kε2)

}
≈ min
|f1|≤1

max
b1=±1

· · · min
|fk |≤1

max
bk=±1

{
u + kε2ut + ε∇uT∆x +

ε2

2
∆xT∇2u∆x

}
,

and so

ut +
1

k
min
|f1|≤1

max
b1=±1

· · · min
|fk |≤1

max
bk=±1

{
ε−1∇uT∆x +

1

2
∆xT∇2u∆x

}
≈ 0.

Definition (Local Problem)

The local problem is defined by

L(ε, k ,X , p,m) := min
|f1|≤1

max
b1=±1

· · · min
|fk |≤1

max
bk=±1

{
ε−1pT∆x +

1

2
∆xTX∆x

}
where m1 = m, mi+1 = mi |bi , and ∆x :=

∑k
i=1 bi(q(mi)− 1fi).
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The local problem

Theorem (Local problem)

Let X ∈ S(n), p ∈ (0,∞)n , m ∈ Bd , k ≥ d + 1, ε > 0, and set γp = min1≤i≤n pi .
Then there exists C , c > 0, depending only on n, such that whenever ‖X ‖kε ≤ c ϑqγp
we have

(13)

∣∣∣∣∣∣ 1k Lk,ε(X , p,m)− 1

2d+1

∑
m∈Bd

η(m)TX η(m)

∣∣∣∣∣∣ ≤ C‖X ‖
(
d

k
+ ‖X ‖γ−1

p kε

)
.

Drenska, N., and Calder J. Online Prediction With History-Dependent Experts: The
General Case. To appear in Communications on Pure and Applied Mathematics
(CPAM), (2021).
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Back to the dynamic programming principle

With ε = N−1/2, the dynamic programming principle (DPP) becomes

ut + min
|f |≤1

max
b=±1

{
ε−1b∇uT (q(m)− f 1) +

1

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
= O(ε).

Investor (player) can choose a strategy of the form

f =
∇uTq(m) + ε

2
f #(m)

∇uT1
and ut + h(m)− b(m)

2
f #(m) = O(ε),

where η(m) = q(m)− ∇uT q(m)

∇uT1
1 and h(m) = 1

2
η(m)T∇2u η(m).

Question: How to choose f #(m) so the equation averages out to

ut + (h)Bd = 0 where (h)Bd :=
1

2d

∑
m∈Bd

h(m)

over many steps?
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Optimal investor strategy

Why not choose f #(m) so that

h(m)− b(m)

2
f #(m) = (h)Bd ?

This would violate the rules, since f # = 2
b(m)

(h(m)− (h)) depends on b.
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Optimal investor strategy
It turns out a small correction on this choice is possible. We choose f #(m) to satisfy

h(m)− b(m)

2
f #(m) = (h)Bd +H(m)−H(m|b(m)),

for a potential H to be determined.

Solving for f # we have

f # = 2b [h(m)− (h)Bd +H(m|b)−H(m)] .
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Poisson equation

The equation
∆BdH = h − (h)Bd

is a Poisson equation over the De Bruijn graph.

The solution is given by

H(m) = h(m) +

d−1∑
`=1

1

2`

∑
s∈B`

h(m|s).

The solution is unique up to an additive constant, and the optimal strategy

f # = H(m+)−H(m−)

is clearly independent of this constant.

It is possible to extend these ideas slightly to other directed graphs.

Calder, J., and Drenska, N. Asymptotically optimal strategies for online prediction with
history-dependent experts. Journal of Fourier Analysis and Applications 27.2 (2021):
1-20.
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Future work

1 Numerical schemes for solving the PDE and computing optimal strategies.

2 Generalizations to other games (e.g., Markov Decision Processes in adversarial
settings).

3 Prediction with mixed (randomized) strategies.
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