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Boundary of a point cloud

Goal: Identify “boundary points” of a point cloud, in a way that allows setting boundary
conditions for solving PDEs.
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Previous work
To fix some notation, X = {x1, . . . , xn} is an i.i.d. sample from Ω ⊂ Rd with density ρ.

1 [Devroye & Wise, 1980] set

Ωn =
n⋃
i=1

B(xi, r) and ∂̂Ωn = ∂Ωn.
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Previous work
To fix some notation, X = {x1, . . . , xn} is an i.i.d. sample from Ω ⊂ Rd with density ρ.

1 [Devroye & Wise, 1980] set

Ωn =
n⋃
i=1

B(xi, rn) and ∂̂Ωn = ∂Ωn.

* [Cuevas and Rodriguez-Casal, 2004] showed that

dH(∂Ωn, ∂Ω) ∼ (n−1 log(n))
1
d

provided rn ∼ (n−1 log(n)) 1
d .

* Computation of Ωn is via alpha-shapes, which are only computationally
feasible in d = 2, 3 dimensions.

* [Casal 2007] and [Aamari, Aaron, & Levrard, 2021] improve the rate by
interpolating the boundary points better.

2 [Cuevas and Fraiman, 1997] use kernel density estimators to detect the boundary as
a level set of ρ̂.

3 [Lachiéze-Rey & Vega, 2017] Voronoi-cell based boundary estimator (similar to
alpha-shapes for complexity).
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Previous work

4 [Wu & Wu, 2019] and [Aaron & Cholaquidis, 2020] use the size of the vector∑
j : |xi−xj |≤r

(xi − xj).

There are many other works that use similar ideas, but without theoretical
guarantees

I BORDER [Xia et al., 2006] and BRIM [Qiu et al., 2007].
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Posing the problem

There are 2 different ways to pose the problem:

1 Estimate ∂Ω from the i.i.d. sample X .

I Computationally very hard in high dimensions.

2 Estimate the points in the sample X that are close (within ε) of the boundary.

I As we will show, this is tractable in high dimensions.

I This is all we need to set boundary conditions for solving PDEs on X .

Calder (UMN) HJ-equations on point clouds Univ. of Utah 6 / 59



Distance to the boundary

We first change gears and look at estimating the distance to the boundary

dΩ(x) = dist(x, ∂Ω).

Provided B(x, r) ∩ ∂Ω is not empty

dΩ(x) = max
y∈B(x,r)∩Ω

{dΩ(x)− dΩ(y)}

= max
y∈B(x,r)∩Ω

{∇dΩ(x) · (x− y)}+O(r2)

= max
y∈B(x,r)∩Ω

{ν(x) · (x− y)}+O(r2),

since ∇dΩ(x) = ν(x) is the inward normal vector.

Note: Estimating dΩ boils down to estimating the inward normal vector ν(x).
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First order estimator of dΩ

For each x0 ∈ X we define the normal vector estimator

v̂r(x0) = 1
n

n∑
i=1

1B(x0,r)(xi)
θ̂(xi)

(xi − x0), ν̂r(x0) = v̂r(x0)
|v̂r(x0)| ,

θ̂(x) = 1
ωdn

(2
r

)d n∑
j=1

1B(x,r/2)(xj).

We define the first order distance function estimator d̂1
r : X → R by

d̂1
r (x0) = max

xi∈B(x0,r)∩X
(x0 − xi) · ν̂r(x0).
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First order error estimates

Theorem (Calder, Park, Slepcev, 2021)

Let x0 ∈ X with dΩ(x0) ≤ cr and γ > 2. Then for r ≥ Cγ
( logn

n

) 1
d+2 , both of

|ν̂r(x0)− ν(x0)| ≤ Cr ,

and
|dΩ(x0)− d̂1

r (x0)| ≤ Cr2

hold with probability at least 1− 5dn−γ .

The result is first order since dΩ = O(r) near the boundary. Taking the smallest r
allowed yields errors

|dΩ(x0)− d̂1
r (x0)| ≤ C

( logn
n

) 2
d+1

.
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First order error estimates
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Let x0 ∈ X with dΩ(x0) ≤ cr and γ > 2. Then for r ≥ Cγ
( logn

n

) 1
d+2 , both of

|ν̂r(x0)− ν(x0)| ≤ Cr2,

and
|dΩ(x0)− d̂1

r (x0)| ≤ Cr2

hold with probability at least 1− 5dn−γ .

The result is first order since dΩ = O(r) near the boundary. Taking the smallest r
allowed yields errors

|dΩ(x0)− d̂1
r (x0)| ≤ C

( logn
n

) 2
d+1

.
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Distance to the boundary

To get a second order estimator, we go back to the formula

dΩ(x) = max
y∈B(x,r)∩Ω

{dΩ(x)− dΩ(y)} ,

and use the second order Taylor expansion

dΩ(x)− dΩ(y) = 1
2(∇dΩ(x) +∇dΩ(y)) · (x− y) +O(r3).

This yields, provided B(x, r) ∩ ∂Ω is not empty

dΩ(x) = max
y∈B(x,r)∩Ω

{dΩ(x)− dΩ(y)}

= max
y∈B(x,r)∩Ω

{1
2(∇dΩ(x) +∇dΩ(y)) · (x− y)

}
+O(r3)

= max
y∈B(x,r)∩Ω

{1
2(ν(x) + ν(y)) · (x− y)

}
+O(r3).
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Second order estimator of dΩ

Our Taylor expansion would suggest the second order estimator

max
xi∈B(x0,r)∩Xn

(x0 − xi) · 1
2(ν̂r(x0) + ν̂r(xi))

This test has difficulties with false positives at interior points, where ν̂r(x0) and ν̂r(xi)
are not reliable, and can cancel each other out.

To avoid this problem, we define the second order estimator with cutoff

d̂2
r (x0) = max

xi∈B(x0,r)∩X
(x0 − xi) ·

[
ν̂r(x0) + ν̂r(xi)− ν̂r(x0)

2 1R+ (ν̂r(xi) · ν̂r(x0))
]
.
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Second order error estimates

Theorem (Calder, Park, Slepcev, 2021)

Let x0 ∈ X with dΩ(x0) ≤ cr and γ > 2. Then for r ≥ Cγ
( logn

n

) 1
d+4 , both of

|ν̂r(x0)− ν(x0)| ≤ Cr2,

and
|dΩ(x0)− d̂2

r (x0)| ≤ Cr3

hold with probability at least 1− 5dn−γ .

Taking the smallest r allowed yields errors

|dΩ(x0)− d̂2
r (x0)| ≤ C

( logn
n

) 3
d+4

.
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Estimating the boundary for solving PDEs

For solving PDEs with Dirichlet conditions, we want an estimator of the boundary points

∂̂Ω ⊂ X that...

Identifies sufficiently many boundary points so that BC are attained as n→∞.

Does not identify any interior points as boundary points.
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Estimating the boundary for solving PDEs

Defining
∂rΩ = {x ∈ Ω : dΩ(x) ≤ r},

we ask that our boundary estimator should satisfy

(1) X ∩ ∂εΩ ⊂ ∂̂Ω ⊂ ∂2εΩ.

Given an empirical estimator d̂r we define the test T̂ε,r : X → {0, 1} by

(2) T̂ε,r(x0) =
{

1 if d̂r(x0) < 3ε
2

0 otherwise.

Provided ε & r3, the second order test satisfies (1) with high probability.

Using our lower bound on r from before, we can identify the boundary with resolution

ε ∼
( logn

n

) 3
d+1

.
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Experiments
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(a) Uniform density
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(b) Sinusoidal density

Blue points satisfy dΩ ≤ ε.

Green points satisfy ε < dΩ ≤ 2ε

Red points are identified by our second order test.
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Comparison with other methods
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Extension to the manifold setting
We can extend our method to the manifold setting by:

Estimating the tangent space with PCA.

Projecting the normal estimation onto the estimated tangent space.

Figure: Boundary points of a point cloud on a manifold identified the second order test,
n = 3000, r = 0.21, ε = 0.05. The point cloud is represented by blue dots, and the
boundary points identified are circled in red.
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Solving PDEs on point clouds

We now turn to solving PDEs on point clouds. We assume that we have computed a
boundary set ∂εX ⊂ X that satisfies

(3) Xε ⊂ Ωε and ∂εX ⊂ ∂2εΩ,

where Xε = X \ ∂εX and Ωε = Ω \ ∂εΩ.

Main Point: We will show with a series of examples that (3) is sufficient to ensure that
boundary conditions (Dirichlet/Neumann/Robin) are preserved in the limit as n→∞
and ε→ 0.
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Graph eikonal equation

We first consider the graph eikonal equation

(4)

{
min

y∈B0(xi,ε)∩X

{
uε(y)− uε(xi) + |y − xi|

}
= 0, if xi ∈ Xε

uε(xi) = 0, if xi ∈ ∂εX ,

where uε : X → R and B0(x, ε) := B(x, ε) \ {x}.

Theorem (Calder, Park, Slepcev, 2021)

Assume ε ≤ R
8 . Let uε solve (4) and let 0 < t ≤ min{ 1

d
, 1

2 −
4ε
R
}. Assume that

Xε ⊂ Ωε and ∂εX ⊂ ∂2εΩ,

Then

−2ε ≤ uε − dΩ ≤ 2dΩ

(
t+ 4ε

R

)
on X

holds with probability at least 1− 2n exp
(
− ωd−1

4(d+1)ρminnε
d(2t)

d+1
2

)
.
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Numerical results
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Figure: Plots of the solution to the graph eikonal equation (4) for n = 104 for both the
box and ball domains, and error plots for varying ε averaged over 100 trials. The red
points indicate the detected boundary points used in solving (4).
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Second order equations with Robin condition

To proceed in generality, we assume there exists Cν such that

(5) |ν̂ε(xi)− ν(xi)| ≤ Cνε

for all xi ∈ X ∩ ∂2εΩ. The graph PDEs we solve will involve the graph Laplacian

(6) Lεu(xi) = 2
σηnεd+2

n∑
j=1

η

(
|xi − xj |

ε

)
(u(xj)− u(xi)),

where ση =
∫
Rd η(|z|)z2

1 dz, η is compactly supported on [0, 1], and
∫
Rd η(|z|) dz = 1.

We define the normal derivative ∇νu(x) = ∇u(x) · ν and the approximate normal

derivative ∇̂ν by

(7) ∇̂νu(xi) = u(pn(xi + εν̂ε(xi)))− u(xi)
ε

,

where pn : Ω→ X is the closest point map.

Calder (UMN) HJ-equations on point clouds Univ. of Utah 22 / 59



Robin-type boundary conditions

We consider the following graph Poisson equation with Robin-type boundary conditions

(8)

{
Lεu(xi) = f(xi), if xi ∈ Xε

γu(xi)− (1− γ)∇̂νu(xi) = g(xi), if xi ∈ ∂εX .

Here, γ ∈ (0, 1] and f and g are given smooth functions.

We will show that the solution of (8) converges as n→∞ and ε→ 0 to the solution of
the Robin problem

(9)

{
−ρ−1div(ρ2∇u) = f, in Ω
γu− (1− γ)∇νu = g, on ∂Ω.
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Error estimate

Theorem (Calder, Park, Slepcev, 2021)

Let ε > 0 and assume Cνε ≤ 1. Let u be the solution of (9) with γ > 0, and let uε
satisfy (8). Then for any 0 < λ ≤ ε−1 and t > 0, the event that

|u(xi)− uε(xi)| ≤ Cε

holds for all xi ∈ X has probability at least

1− n exp
(
−1

6ωdρminnε
2d
)
− 2n exp

(
−Cnεd+4) .
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Numerical results
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Figure: On the left, plots of the solution to the Robin problem and principal Dirichlet
eigenvector for n = 105 points on the disk, compared to the exact solutions of each
problem. On the right we show an error plot for varying ε averaged over 100 trials.
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Dirichlet eigenfunction

Figure: First 7 Laplacian Dirichlet eigenfunctions on the disk computed via
approximation with graph Laplacian eigenvectors with n = 105 points.
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MNIST

(a) Random digits (b) Boundary digits

Figure: MNIST experiments.
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MNIST

(a) Eigen Median digits (b) Eikonal Median digits

Figure: MNIST experiments.

Calder (UMN) HJ-equations on point clouds Univ. of Utah 28 / 59



FashionMNIST

(a) Random images (b) Boundary images

Figure: FashionMNIST experiments.
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FashionMNIST

(a) Eigen Median images (b) Eikonal Median images

Figure: FashionMNIST experiments.
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Paper and Code

Paper:

J. Calder, S. Park, and D. Slepčev (2021). Boundary Estimation from Point Clouds:
Algorithms, Guarantees and Applications. arXiv:2111.03217.

Code for all experiments is on GitHub

https://github.com/sangmin-park0/BoundaryTest

The boundary estimation method is implemented in the GraphLearning python package

https://github.com/jwcalder/GraphLearning (pip install graphlearning)

Python Notebook Example:

https://colab.research.google.com/drive/
1tWOSZ9vZEAZO8T248EAi0CNtpzmpDFDT?usp=sharing
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Graph distance functions
Suppose we have a graph G on n vertices X with edge weights wij .

Set In = {1, . . . , n}. The graph distance dG : X × X → R is defined by

(10) dG(xi, xj) = min
m≥1

min
τ∈Imn

{
w−1
i,τ1 +

m−1∑
i=1

w−1
τi,τi+1 + w−1

τm,j

}
,
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Graph distance functions: density weighting

The weighted graph distance dG,f : X × X → R is defined by
(11)

dG,f (xi, xj) := min
m≥1

min
τ∈Imn

{
w−1
i,τ1f(xτ1 ) +

m−1∑
i=1

w−1
τi,τi+1f(xτi+1 ) + w−1

τm,j
f(xτj )

}
.

It is common to choose f = ρ̂−α, for some density estimation ρ̂.
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Prior work/References

Applications of graph distances:

Dimensionality reduction (e.g., ISOMAP) [Tenenbaum et al., 2000]

Semi-supervised learning on graphs, e.g., [Bijral, et al, 2003] [Chapelle and Zien,
2005]

Graph classification [Borgwardt and Kriegel, 2005]

Data depth [Calder, Park and Slepcev, 2021] [Molina-Fructuoso and Murray, 2022]

Discrete to continuum:

k-nn graphs [Alamgir and Von Luxburg, 2012]

Geodesic manifold disatnce [Hwang, Damelin, and Hero, 2016]

Geodesic distance on Euclidean domains [Bungert, Calder, and Roith, 2021]
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Lack of robustness to corrupted edges

(a) Graph distance function with corrupted edges

Figure: From left to right we added an increasing number of corrupted edges (0, 10, 50,
and 200) with edge weight wij = 1.
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Graph distance functions: The eikonal equation

Let us define the graph distance to a set Γ by

dG,f (x,Γ) := min
xj∈Γ

dG,f (xi, xj).

If G is connected then u(x) = dG,f (x,Γ) is the unique solution of the graph eikonal
equation

(12)

{
max
xj∈X

wji(u(xi)− u(xj)) = f(xi), if xi ∈ X \ Γ

u(xi) = 0, if xi ∈ Γ.
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The p-eikonal equation

For p > 0, we define the p-eikonal operator AG,p : F (X )→ F (X ) by

(13) AG,pu(xi) =
n∑
j=1

wji(u(xi)− u(xj))p+,

where a+ := max{a, 0} is the positive part.

For Γ ⊂ X and f ∈ F (X ), we consider the p-eikonal equation

(14)

{
AG,pu = f, in X \ Γ

u = 0, on Γ.

References:

The p-eikonal equation originally appeared in [Desquenes, Elmoataz and Lezoray,
2013] with applications to image processing (p = 1, 2,∞).
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Well-posedness

Let K be the maximum unweighted degree of the graph, and Gα be the graph with
weights wαij .

Theorem (Calder, Ettehad, 2022)

Let p > 0 and f > 0. If G is connected, then the p-eikonal equation

(15)

{
AG,pu = f, in X \ Γ

u = 0, on Γ.

has a unique solution u ∈ F (X ), and

(16) K
− 1
p

(
min
X

f
1
p

)
d
G

1
p

(xi,Γ) ≤ u(xi) ≤
(

max
X

f
1
p

)
d
G

1
p

(xi,Γ).

Note that the estimates above imply that u recovers the graph distance as p→∞.
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Robustness

(a) Graph distance function with corrupted edges

(b) p-eikonal equation with p = 1 with corrupted edges
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Robustness

Theorem (Calder, Ettehad, 2022)

Let δW have nonnegative entries, and set G̃ = (X ,W + δW ) and δG = (X , δW ). Let
u, ũ ∈ F (X ) satisfy

(17)

{
AG̃,pũ(xi) = AG,pu(xi) = f(xi), if xi ∈ X \ Γ

ũ(xi) = u(xi) = 0, if xi ∈ Γ.

Then for all xi ∈ X we have

(18) 0 ≤ u(xi)− ũ(xi)
u(xi)

≤
(

max
X\Γ

AδG,pu
f

) 1
p

.

The theorem can be simplified to give the weaker bound

0 ≤ u(xi)− ũ(xi)
u(xi)

≤ C
(
fmax
fmin

) 1
p

‖δW‖
1
p

u,1,

‖A‖u,1 = max
1≤j≤n

n∑
i=1

|Aij |1u(xj)>u(xi).
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Discrete to continuum

Let x1, x2, . . . , xn be a sequence of i.i.d random variables on Ω ⊂ Rd with
Lipschitz and positive density ρ and set

(19) X := {x1, x2, . . . , xn}.

Assume that Ω ⊂ Rd is open, bounded and connected with a C1,1 boundary ∂Ω.

We define the p-eikonal operator on a random geometric graph as

An,εu(x) := 1
nσpεp

∑
y∈X

ηε
(
|x− y|

)(
u(x)− u(y)

)p
+
,

where ηε(t) := 1
εd
η( t
ε
) and set σp :=

∫
Rd ηε(|z|)|z1|pdz

Let Γ ⊂ X such that
dist(Γ, ∂Ω) ≥ R,

where R is the reach of ∂Ω.
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Discrete to continuum

For p ≥ 1 we consider the p-eikonal equation with arbitrary right hand side f :{
An,εu(x) = f(x) if x ∈ X \ Γ

u(x) = 0 if x ∈ Γ.

Continuum limit: State-constrained eikonal equation [Capuzzo-Dolcetta & Lions, 1990]{
ρ|∇u|p = f in Ω \ Γ

u = 0 on Γ. 
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Discrete to continuum

Define the geodesic weighted distance

df (x, y) := inf
{∫ 1

0
f(γ(t))|γ′(t)| dt : γ ∈ C1([0, 1]; Ω), γ(0) = x, and γ(1) = y

}
.

and set
u(x) = min

y∈Γ
df (x, y).
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Discrete to continuum

Define the geodesic weighted distance

df (x, y) := inf
{∫ 1

0
f(γ(t))|γ′(t)| dt : γ ∈ C1([0, 1]; Ω), γ(0) = x, and γ(1) = y

}
.

and set
u(x) = min

y∈Γ
df (x, y).

Then u is the unique viscosity solution of the state constrained eikonal equation{
|∇u| = f in Ω \ Γ

u = 0 on Γ.

In particular, the solution of the continuum problem{
ρ|∇u|p = f in Ω \ Γ

u = 0 on Γ.

is given by u(x) = dg(x,Γ), where g = ρ
− 1
p f

1
p .
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Discrete to continuum

Let un,ε be the solution of{
An,εun,ε(x) = f(x) if x ∈ X \ Γ

un,ε(x) = 0 if x ∈ Γ.

Theorem (Calder, Ettehad, 2022)

There exists C, c > 0 such that for ε sufficiently small and any 0 < λ ≤ 1 we have

P
[
max
x∈X

(dg(x,Γ)− un,ε(x)) ≤ C(
√
ε+ λ)

]
≥ 1− 2n exp(−cnεdλ2).

and

P
[
max
x∈X

(un,ε(x)− dg(x,Γ)) ≤ C
(√

ε+
(
nεp+d

) 1
p + λ

)]
≥ 1− 3n2 exp(−cnεdλ2).
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Discrete to continuum

Theorem (Calder, Ettehad, 2022)

There exists C, c > 0 such that for ε sufficiently small and any 0 < λ ≤ 1 we have

P
[
max
x∈X

(dg(x,Γ)− un,ε(x)) ≤ C(
√
ε+ λ)

]
≥ 1− 2n exp(−cnεdλ2).

P
[
max
x∈X

(un,ε(x)− dg(x,Γ)) ≤ C
(√

ε+
(
nεp+d

) 1
p + λ

)]
≥ 1− 3n2 exp(−cnεdλ2).

In order for the results to be non-vacuous, we require that

(20) nεd � log(n) and nεd+p � 1

which can be reformulated as

(21)

(
log(n)
n

) 1
d

� ε�
( 1
n

) 1
p+d

.

For any p > 0 we can find feasible ε (we use p ≥ 1).

A similar lower bound appears in p-Laplacian learning [Slepcev & Thorpe, 2019].
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Discrete to continuum

(c) ε = 0.03, p = 1 (d) ε = 0.06, p = 1 (e) ε = 0.09, p = 1

(f) ε = 0.03, p = 2 (g) ε = 0.06, p = 2 (h) ε = 0.09, p = 2
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Discrete to continuum

Main ideas in proof:

Pointwise consistency An,εϕ(x) ≈ ρ|∇ϕ|p for smooth ϕ, with high probability.

The O(
√
ε) rate comes from a doubling variables argument in the viscosity solutions

framework.

Rate requires Lipschitzness of un,ε, we show that

|un,ε(x)− un,ε(y)| ≤ cpγ−1
p max

X
f

1
p dΩ(x, y) + γp

(
nεp+d

) 1
p , for all x, y ∈ X

with probability at least 1− n2 exp
(
− cdr

d

22d+3 ρminnε
d
)

. The proof uses a geodesic

cone barrier function with an additional spike:

vβ,y(x) := β(1− δy(x)) + dΩ(x, y)

State constrained boundary condition handled with domain perturbation results.
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Applications

Given a set Γ ⊂ X and a density estimation ρ̂ : X → R, we consider solving the density
reweighted p-eikonal equation

(22)

{
AG,pu = ρ̂−α, in X \ Γ

u = 0, on Γ,

where the exponent α is a tunable parameter. We denote the solution of (22) by

Dp,α
Γ (x) = u(x).

When Γ = {x} is a single point we write Dp,α
x .
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Data depth
Recall the geometric median:

x∗ ∈ arg min
x∈Rd

n∑
i=1

|xi − x|.

We can generalize this to the p-eikonal graph setting as follows:

xp,α ∈ arg min
x∈X

∑
xi∈X

Dp,α
x (xi).

Then we can define data depth as the distance to the median

depthp,α(x) = max
X

Dp,α
xp,α −D

p,α
xp,α(x).

Note: Other approaches include first finding the “boundary” nodes and defining depth as
distance to the boundary.

[Calder, Park, & Slepcev, 2021]

[Molina-Fructuoso and Murray, 2022]
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Data depth

(i) Moon (j) Gaussian (k) Gaussian mixture

Figure: The p-eikonal medians and depth on 2D toy datasets with p = 1. The medians
are shown for α = −1 (O), α = 0 (�) and the α = 1 (4), while the points are colored
by the α = 1 data depth.
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Data depth

(a) Helix (b) Half Sphere (c) Swiss Roll

Figure: The p-eikonal data depth on 3D toy datasets sampled from manifolds embedded
in R3. We use p = 1 and α = 1.
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Data depth

(a) Deepest images (median) (b) Shallowest images (outliers)

Figure: Comparison of deepest (median) images to shallowest (outlier) images from each
MNIST digit.
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Data depth

(a) Deepest images (median) (b) Shallowest images (outliers)

Figure: Comparison of deepest (median) images to shallowest (outlier) images from each
FashionMNIST class.
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Data depth

(a) MNIST (b) FashionMNIST

Figure: Paths from shallowest point to median for each class.
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Semi-supervised learning

Suppose we have k classes, and for each class j = 1, . . . , k, we are provided some
labeled nodes Γj ⊂ X .

The label prediction `i for an unlabeled node xi 6∈ Γj for any j, is the label of the
closest labeled node, under the distance Dp,α

Γ , that is

`i = arg min
1≤j≤k

Dp,α
Γj (xi).

We can incorporate prior information about class sizes by introducing weights sj in
the label decision [Calder et al, 2020]

`i = arg min
1≤j≤k

{
sjD

p,α
Γj (xi)

}
.
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Semi-supervised learning
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(a) MNIST
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(b) FashionMNIST

Figure: Comparison of the p-eikonal equation with p = 1 for semi-supervised image
classification to Poisson learning [Calder et al., 2020] and the eikonal equation.
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Semi-supervised learning
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(a) CIFAR-10
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(b) Accuracy vs α

Figure: (a) Accuracy results for the p-eikonal equation with p = 1 for semi-supervised
image classification on CIFAR-10, and (b) change in accuracy as the density reweighting
exponent α is adjusted.

Calder (UMN) HJ-equations on point clouds Univ. of Utah 58 / 59



Paper and Code

Paper:

J. Calder & M. Ettehad (2022). Hamilton-Jacobi equations on graphs with
applications to semi-supervised learning and data depth. arXiv:2202.08789.

Code for all experiments is on GitHub

https://github.com/jwcalder/peikonal

The p-eikonal equation is implemented in the GraphLearning python package

https://github.com/jwcalder/GraphLearning (pip install graphlearning)
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