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Boundary of a point cloud

Goal: Identify “boundary points” of a point cloud, in a way that allows setting boundary
conditions for solving PDEs.
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Previous work

To fix some notation, X = {z',...,z"} is an i.i.d. sample from Q C R¢ with density p.
1 [Devroye & Wise, 1980] set

Q, =BG, r) and 89, = 09..
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Previous work
To fix some notation, X’ = {z!,
1 [Devroye & Wise, 1980] set

, 2"} is an i.i.d. sample from Q C R? with density p.

U a: ,7n) and 5f\ln:89n.

* [Cuevas and Rodriguez-Casal, 2004] showed that

(00, 09) ~ (n~ ' log(n)) 7

provided 7, ~ (n™! log(n))%
* Computation of Q,, is via alpha-shapes, which are only computationally

feasible in d = 2,3 dimensions.
* [Casal 2007] and [Aamari, Aaron, & Levrard, 2021] improve the rate by

interpolating the boundary points better.

2 [Cuevas and Fraiman, 1997] use kernel density estimators to detect the boundary as
a level set of p.

3 [Lachiéze-Rey & Vega, 2017] Voronoi-cell based boundary estimator (similar to

alpha-shapes for complexity).
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Previous work

4 [Wu & Wu, 2019] and [Aaron & Cholaquidis, 2020] use the size of the vector
Z (z' —27).
jtlai—ai|<r

@ There are many other works that use similar ideas, but without theoretical
guarantees

» BORDER [Xia et al., 2006] and BRIM [Qiu et al., 2007].
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Posing the problem

There are 2 different ways to pose the problem:

© Estimate 99 from the i.i.d. sample X.

» Computationally very hard in high dimensions.

@ Estimate the points in the sample X’ that are close (within €) of the boundary.
» As we will show, this is tractable in high dimensions.

» This is all we need to set boundary conditions for solving PDEs on X.
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Distance to the boundary

We first change gears and look at estimating the distance to the boundary
da(z) = dist(z, 0Q).

Provided B(z,r) N 9N is not empty

do(z) = max  {do(z)~da(y)}
= einax  {Vda(@) - (z—y)} + 007
T yeBamne {v(z) - (z —y)} + O(r?),

since Vdqo(z) = v(z) is the inward normal vector.

Note: Estimating dq boils down to estimating the inward normal vector v(z).
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First order estimator of dg

For each z° € X we define the normal vector estimator
1 "1 0 (z . 0, (20
ﬁr(xo) _ 1 Z B(x ,r)( )(xz . mo)’ f/r(xo) _ 'Ur('r )

ni o) |0 (20)|”

. 1 /2\¢— :
= — | - 1 7).
0(z) wan (r) Z; B/ (@)
-

We define the first order distance function estimator d*- : X — R by

di(z®)y=  max (2% —z") -0, (2").
zie€B(z%,r)NX
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First order error estimates

Theorem (Calder, Park, Slepcev, 2021)
Let 2° € X with do(z°) < cr and v > 2. Then for r > C, (l°g") , both of
|17T(m0) — V(x0)| <Cr,

and R
|dQ(1:O) - di(w0)| <COr?

hold with probability at least 1 — 5dn~".

The result is first order since do = O(r) near the boundary. Taking the smallest r
allowed yields errors

2
logn) a1
" .

da(a") — d}a")] < €
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First order error estimates

Theorem (Calder, Park, Slepcev, 2021)
Let 2° € X with do(z°) < cr and v > 2. Then for r > C, (l°g") , both of
|17T(x0) — V(x0)| < Cr?,

and R
|dQ(1:O) - di(w0)| <COr?

hold with probability at least 1 — 5dn~".

The result is first order since do = O(r) near the boundary. Taking the smallest r
allowed yields errors

2
logn) a1
" .

da(a") — d}a")] < €
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Distance to the boundary

To get a second order estimator, we go back to the formula

do(z) = max {do(z) —da(y)},

y€B(z,m)NQ
and use the second order Taylor expansion
1
do(z) —da(y) = 5(Vda(z) + Vda(y)) - (z —y) + o(r?).
This yields, provided B(z,r) N 9N is not empty

do(z) = max {do(z) —da(y)}

yEB(z,r)N

yEB(z,r)NQ

max {3 (Vda(e) + Vda(y) - (o~ ) } + O(")
1
2

= _max {ow@+vp)- @ -y} + 06,

yEB(z,r)N
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Second order estimator of dg

Our Taylor expansion would suggest the second order estimator

o iy 1
~ max (z" —z") - =
2i1€B(z0,r)NX,, 2

This test has difficulties with false positives at interior points, where £,-(z°) and o, ()
are not reliable, and can cancel each other out.

To avoid this problem, we define the second order estimator with cutoff

c?z(xo) = max (mo — ml) . ﬁr(mo) + M

1 Uy z - Dy 20
zt€B(z0,r)nX 2 ]R+( ( ) ( ))
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Second order error estimates

Theorem (Calder, Park, Slepcev, 2021)
Let 2° € X with do(z°) < cr and v > 2. Then forr > C, (IOg") , both of

19, (°) — ()] < O,

and
|da(2°) — d7 ()] < Cr*
hold with probability at least 1 — 5dn™".

Taking the smallest 7 allowed yields errors
3

da(e") - B (") < 0 (£ T

n
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Estimating the boundary for solving PDEs

For solving PDEs with Dirichlet conditions, we want an estimator of the boundary points
00 C X that...

@ ldentifies sufficiently many boundary points so that BC are attained as n — oo.

@ Does not identify any interior points as boundary points.
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Estimating the boundary for solving PDEs

Defining
0l={z € Q : do(z) <r},

we ask that our boundary estimator should satisfy

(1) X NO.QC 0 C 020

Given an empirical estimator d, we define the test YA},T : X — {0,1} by

2) T (a®) = {1 fie ) <3

0 otherwise.

Provided ¢ > 3, the second order test satisfies (1) with high probability.

Using our lower bound on r from before, we can identify the boundary with resolution

lo FEs
£~ (—g”) .
n
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Experiments

(a) Uniform density (b) Sinusoidal density

@ Blue points satisfy do < ¢.
@ Green points satisfy ¢ < do < 2¢
@ Red points are identified by our second order test.
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Comparison with other methods
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Extension to the manifold setting

We can extend our method to the manifold setting by:
@ Estimating the tangent space with PCA.
@ Projecting the normal estimation onto the estimated tangent space.

Figure: Boundary points of a point cloud on a manifold identified the second order test,
n = 3000, r = 0.21, € = 0.05. The point cloud is represented by blue dots, and the
boundary points identified are circled in red.
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Solving PDEs on point clouds

We now turn to solving PDEs on point clouds. We assume that we have computed a
boundary set 9. X C X that satisfies

3) X.CQ. and 0.X C 9.0,

where X; = X\ 0:X and Q. = Q\ 0:Q.

Main Point: We will show with a series of examples that (3) is sufficient to ensure that
boundary conditions (Dirichlet/Neumann/Robin) are preserved in the limit as n — co
and ¢ — 0.
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Graph eikonal equation

We first consider the graph eikonal equation

yE€Bp(zt,e)NX

min {us ua(a:i)—|—|y—zi|} =0, ifz'ex.
(4)

ug(:ci) =0, ifz'€d.nx,
where u. : X = R and Bo(z,¢) := B(z,¢) \ {z}.
Theorem (Calder, Park, Slepcev, 2021)
Assume e < £ Let u. solve (4) and let 0 < t < min{2, 1 — 2=} Assume that
X.CQ. and 8.X C 2.0,
Then A
—2e < u. —da < 2do (t—i—E) on X

holds with probability at least 1 — 2n exp (—f(;’—:)pmmngd@t)#) .

Calder (UMN) HJ-equations on point clouds Univ. of Utah

20/59



Numerical results

—— Box
—e— Ball
1071 >~
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5% 1072 N

L error

2.5 %1072

2x 1072 1x 1072 5x 107 2.5 % 1073
€

Figure: Plots of the solution to the graph eikonal equation (4) for n = 10 for both the
box and ball domains, and error plots for varying € averaged over 100 trials. The red
points indicate the detected boundary points used in solving (4).
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Second order equations with Robin condition

To proceed in generality, we assume there exists C, such that
(5) [0 (a") = v(a")| < Cue

for all ' € X N 92.Q. The graph PDEs we solve will involve the graph Laplacian

(©) conte') = o2 Yon () ) - e

where o, = fRd n(|z])2% dz, n is compactly supported on [0, 1], and f]Rd n(|z]) dz = 1.
We define the normal derivative V,u(z) = Vu(z) - v and the approximate normal
derivative V,, by

(7) ﬁyu(xi) — u(pn(l'i + Eﬁga(xi))) _ u(xi)7

where p,, : Q — X is the closest point map.
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Robin-type boundary conditions

We consider the following graph Poisson equation with Robin-type boundary conditions

(8) { Leu(z') = f(a'), ifaz' € X

yu(z') — (1 — 7)§Vu(xi) =g(z"), ifaz’€ad.X.

Here, v € (0,1] and f and g are given smooth functions.

We will show that the solution of (8) converges as n — oo and € — 0 to the solution of
the Robin problem

9) —p Ydiv(p®Vu) = f, inQ
yu— (1 —=~)Vyu=g, on 9.
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Error estimate

Theorem (Calder, Park, Slepcev, 2021)

Let € > 0 and assume Cye < 1. Let u be the solution of (9) with v > 0, and let u.
satisfy (8). Then for any 0 < A < e~ ' andt > 0, the event that

Ju(a’) — ue ()] < Ce

holds for all ' € X has probability at least

1
1 —nexp (—gwdpmmnsm) — 2nexp (—Cn5d+4) .
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Numerical results

—4— Robin Problem
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Figure: On the left, plots of the solution to the Robin problem and principal Dirichlet
eigenvector for n = 10° points on the disk, compared to the exact solutions of each
problem. On the right we show an error plot for varying € averaged over 100 trials.
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Dirichlet eigenfunction

Figure: First 7 Laplacian Dirichlet eigenfunctions on the disk computed via
approximation with graph Laplacian eigenvectors with n = 10° points.
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MNIST
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(a) Random digits (b) Boundary digits

Figure: MNIST experiments.
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MNIST
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(a) Eigen Median digits (b) Eikonal Median digits

Figure: MNIST experiments.
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FashionMNIST
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(a) Random images (b) Boundary images

Figure: FashionMNIST experiments.
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FashionMNIST
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(a) Eigen Median images (b) Eikonal Median images

Figure: FashionMNIST experiments.
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Paper and Code
Paper:

J. Calder, S. Park, and D. SlepZev (2021). Boundary Estimation from Point Clouds:
Algorithms, Guarantees and Applications. arXiv:2111.03217.

Code for all experiments is on GitHub

https://github.com/sangmin-park0/BoundaryTest

The boundary estimation method is implemented in the GraphLearning python package

https://github.com/jwcalder/GraphLearning (pip install graphlearning)

Python Notebook Example:

https://colab.research.google.com/drive/
1tWO0SZ9vZEAZO8T248EAiOCNtpzmpDFDT 7usp=sharing
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Graph distance functions

Suppose we have a graph G on n vertices X’ with edge weights w;;.

Set I, = {1,...,n}. The graph distance dg : X X X — R is defined by

m>1relm TmoJ

m—1
(10) da(zi,z;) = min min {w;ll + Z wT_:.riH +w ! } ,
=1

qu?\l\ Disﬁmmce G—eomc DiS“'av\CQ

X
/\_/.)(3
X.
X‘; :
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Graph distance functions: density weighting

The weighted graph distance dg,f : X x X — R is defined by
(11)

m—1
S -1 -1 -1
da,f(wi,z5) = min min {wwlf(a:n) + E Wr e f (@) + w_,m’jf(ij)} .
> 7

i=1

It is common to choose f = p~, for some density estimation p.

( Exfev@”" .

[ L]
. .
¢ L] - M . . .. b ]
4 \/ o .
) ° . .
LI S . . o o
3 ° . . [ ]
) [} - . ® .
" e o L °® o ’..o L]
. L
. o0 P) . .
eo o
. . o . o i
o - - ° o
[ 4
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Prior work /References

Applications of graph distances:
@ Dimensionality reduction (e.g., ISOMAP) [Tenenbaum et al., 2000]

@ Semi-supervised learning on graphs, e.g., [Bijral, et al, 2003] [Chapelle and Zien,
2005]

@ Graph classification [Borgwardt and Kriegel, 2005]
@ Data depth [Calder, Park and Slepcev, 2021] [Molina-Fructuoso and Murray, 2022]

Discrete to continuum:
@ k-nn graphs [Alamgir and Von Luxburg, 2012]
@ Geodesic manifold disatnce [Hwang, Damelin, and Hero, 2016]
@ Geodesic distance on Euclidean domains [Bungert, Calder, and Roith, 2021]

Calder (UMN) HJ-equations on point clouds Univ. of Utah 34 /59



Lack of robustness to corrupted edges

(a) Graph distance function with corrupted edges

Figure: From left to right we added an increasing number of corrupted edges (0, 10, 50,
and 200) with edge weight w;; = 1.
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Graph distance functions: The eikonal equation

Let us define the graph distance to a set I' by

de,f(z,T) :== min de f(xi, z5).
z; €l

If G is connected then u(xz) = dg, ¢(x,T') is the unique solution of the graph eikonal
equation

EZAS

{max wji(u(z;) —ulz;)) = fx;), fz, € X\T
(12)

u(z;) =0, ifx; €l
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The p-eikonal equation
For p > 0, we define the p-eikonal operator Ag,p, : F(X) — F(X) by
(13) Ac pu(i) Z wji(u(w:) — u(z;))5,

where a; := max{a, 0} is the positive part.

ForI' C X and f € F(X), we consider the p-eikonal equation

Agpru=f, inX\T
(14) { u=0, onl.

References:

@ The p-eikonal equation originally appeared in [Desquenes, Elmoataz and Lezoray,
2013] with applications to image processing (p = 1,2, 00).
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Well-posedness

Let K be the maximum unweighted degree of the graph, and G be the graph with
weights wy;.

Theorem (Calder, Ettehad, 2022)

Letp > 0 and f > 0. If G is connected, then the p-eikonal equation

{Aa,pu =f, inX\T

u=0, onT.

(15)
has a unique solution uw € F(X), and

(16) K™» (m;)nf%) dG% (z:,T) <u(z;) < (m;mxfz%) dG% (i, T).

@ Note that the estimates above imply that u recovers the graph distance as p — cc.
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Robustness

(b) p-eikonal equation with p = 1 with corrupted edges
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Robustness
Theorem (Calder, Ettehad, 2022)

Let W have nonnegative entries, and set G = (X, W + 6W) and 6G = (X,0W). Let

u, U € F(X) satisfy

(17) {A@,pﬁ(ﬂﬂi) = Agpu(z:) = f(z:), ifzi € X\T

u(z;) = u(z;) =0, ifr; €T.

Then for all x; € X we have

(18) 0< M < <maX Aaﬁ,pu) P .

u(z;) -

@ The theorem can be simplified to give the weaker bound

0< U(.’I?z) — ﬂ(xl) <C (fmax) » ||5W||%

u(ml) - fmln wl?

Al = max > 1A Luge > ute)-
i=1
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Discrete to continuum

o Let x1,x2,..., 2, be a sequence of i.i.d random variables on © C R? with
Lipschitz and positive density p and set

(19) X ={z1,22,..., 20}
@ Assume that Q C R? is open, bounded and connected with a C'**! boundary 9.

@ We define the p-eikonal operator on a random geometric graph as

= o Zns o~ y]) (ulz) — u(y))

Ap cu(z

where 7. (t) := Zn(%) and set o := [, n:(|2])]21[Pdz

@ Let I' C X such that
dist(T",092) > R

where R is the reach of 9.
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Discrete to continuum

For p > 1 we consider the p-eikonal equation with arbitrary right hand side f:

Apcu(z) = f(z) ifzeX\T
u(z) =0 ifzel.

Continuum limit: State-constrained eikonal equation [Capuzzo-Dolcetta & Lions, 1990]

{p|Vu|’D =f inQ\TD

u=0 onT.

Rl

(;lwl"ﬁ on DL
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Discrete to continuum

Define the geodesic weighted distance

df(z,y) = inf {/ FO@) @) dt = v € C'([0,1];2),7(0) = z, and 7(1) = y}

and set
u(z) = mlndf( Y-

<L
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Discrete to continuum

Define the geodesic weighted distance

dy(z,y) == inf{/ FO@)Y @)l dt - v € ¢'([0,1];9),7(0) = =, and (1) = y}

and set

= mind .
u(z) min 7z, y)

Then wu is the unique viscosity solution of the state constrained eikonal equation

{|Vu|:f in Q\T

u=0 onT.

In particular, the solution of the continuum problem

{p|Vu|p =f inQ\T

u=0 onl.

is given by u(x) = dg(z, "), where g = p_%f%.
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Discrete to continuum

Let un,. be the solution of

An,sun,e(x) = f(l') ifreX \ r
Un,e(z) =0 ifzel.

Theorem (Calder, Ettehad, 2022)
There exists C, ¢ > 0 such that for € sufficiently small and any 0 < X\ < 1 we have
P [ma))(((dg(x, I) —une(z)) < C(Ve + )\)} > 1 — 2nexp(—cne)?).
xE

and

P [rznea;(((un,g(x) —dy(z,T)) <C (\@-i- (nserd)% o A)] > 1 —3n” exp(—cne®\?).

W
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Discrete to continuum

Theorem (Calder, Ettehad, 2022)

There exists C,c > 0 such that for ¢ sufficiently small and any 0 < A < 1 we have

P [inea)}(((dg(m, ) — une(z)) < C(Ve+ )\)] > 1 — 2nexp(—cne)?).

P [ma;((un,g(x) —dg(z,T)) < C (\/E—F (ns’”‘d)% + )\)] > 1 — 3n® exp(—cne®A?).

E4S

In order for the results to be non-vacuous, we require that

(20) ne? > log(n) and ne? <« 1

which can be reformulated as
1

(21) (@)i <ek (%)m

For any p > 0 we can find feasible ¢ (we use p > 1).
A similar lower bound appears in p-Laplacian learning [Slepcev & Thorpe, 2019].
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Discrete to continuum

(c)e=0.03,p=1 (d) e=0.06,p=1 (e) e=0.09,p=1

l

I

(f)e =0.03,p=2 (g) £ =0.06,p=2 (h) £ =0.09,p=2
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Discrete to continuum

Main ideas in proof:

@ Pointwise consistency A, p(x) = p|Vp|P for smooth ¢, with high probability.

@ The O(4/¢) rate comes from a doubling variables argument in the viscosity solutions
framework.

@ Rate requires Lipschitzness of u, ., we show that

1
.o (@) — tn, e (0)] < ey max 7 da(w, ) + 7 (ne" )7, for all @,y € X

d
with probability at least 1 — n? exp (f%pmmned). The proof uses a geodesic

cone barrier function with an additional spike:
g,y () := B(1 = 6y(2)) + da(z,y)

@ State constrained boundary condition handled with domain perturbation results.
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Applications

Given a set I' C X and a density estimation p: X — R, we consider solving the density
reweighted p-eikonal equation

(22) Agpu=p"% inX\T
u =0, onT,

where the exponent « is a tunable parameter. We denote the solution of (22) by
DY (x) = u(x).

When I' = {z} is a single point we write D2,
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Data depth

Recall the geometric median:

n
Z. € argmin E |z — x|
zERD =1

We can generalize this to the p-eikonal graph setting as follows:

Tp,a € argmin Z DP(z;).

rzeX ziEX
Then we can define data depth as the distance to the median

Tp,a Tp,a

_ P, P,
depth, ,(z) = m/ng DY (x).

Note: Other approaches include first finding the “boundary” nodes and defining depth as
distance to the boundary.

@ [Calder, Park, & Slepcev, 2021]
@ [Molina-Fructuoso and Murray, 2022]
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Data depth

A 2;"

(i) Moon (j) Gaussian (k) Gaussian mixture

Figure: The p-eikonal medians and depth on 2D toy datasets with p = 1. The medians
are shown for « = —1 (V), =0 (0) and the & = 1 (A), while the points are colored
by the o = 1 data depth.
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Data depth

(a) Helix (b) Half Sphere (c) Swiss Roll

Figure: The p-eikonal data depth on 3D toy datasets sampled from manifolds embedded
inR3. Weusep=1and a=1.
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Data depth
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(a) Deepest images (median)
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(b) Shallowest images (outliers)

Figure: Comparison of deepest (median) images to shallowest (outlier) images from each

MNIST digit.
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Data depth
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(b) Shallowest images (outliers)
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Figure: Comparison of deepest (median) images to shallowest (outlier) images from each

FashionMNIST class.
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Data depth
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Figure: Paths from shallowest point to median for each class.
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Semi-supervised learning

@ Suppose we have k classes, and for each class j = 1,...,k, we are provided some
labeled nodes I'; C X

@ The label prediction ¢; for an unlabeled node x; € I'; for any j, is the label of the
closest labeled node, under the distance DX'*, that is

4; = argmin D2 ().
1<j<k

@ We can incorporate prior information about class sizes by introducing weights s; in
the label decision [Calder et al, 2020]

{; = arg min {SjD?_a(wi)} .
1<5<k !
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Semi-supervised learning
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Figure: Comparison of the p-eikonal equation with p = 1 for semi-supervised image
classification to Poisson learning [Calder et al., 2020] and the eikonal equation.
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Semi-supervised learning
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Figure: (a) Accuracy results for the p-eikonal equation with p = 1 for semi-supervised
image classification on CIFAR-10, and (b) change in accuracy as the density reweighting

exponent « is adjusted.
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Paper and Code

Paper:

J. Calder & M. Ettehad (2022). Hamilton-Jacobi equations on graphs with
applications to semi-supervised learning and data depth. arXiv:2202.08789.

Code for all experiments is on GitHub

https://github.com/jwcalder/peikonal

The p-eikonal equation is implemented in the GraphLearning python package

https://github.com/jwcalder/GraphLearning (pip install graphlearning)
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