Mathematics of Image and Data Analysis Math 5467

Lecture 2: Linear Algebra \& Python
Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

Announcements

- HW1 due Friday. Submission will be via Google drive shared folder. Details to come on Wednesday.
- Code as Google Colab Notebook (or .py or .ipynb files)
- Math can be included in Google Colab Notebook (it supports LaTeX), or typed up in LaTeX (submit a PDF), or handwritten and scanned (high quality) with scanner or smartphone app.
- 3 choices for project 1 are up on the website. Choose 1 to complete. http://www-users.math.umn.edu/~jwcalder/5467S21/homework.html
- Project descriptions are in the course notes, and Python notebooks on course website.
- Glad to see students using Piazza. I will try to answer questions nightly from now on.

Last time: Linear algebra review

- Capital letters A, B, C for matrices (entries are $A(i, j))$
- Lower case letteers $x, y, z, x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ for (column) vectors.
- $e_{1}, e_{2}, \ldots, e_{n}$ are the standard basis vectors in \mathbb{R}^{n}.
- Matrix multiplication: A is $m \times n$ and B is $n \times p$ then $C=A B$ is the $m \times p$ matrix with entries

$$
C(i, j)=\sum_{k=1}^{n} A(i, k) B(k, j)
$$

- A^{T} denotes the transpose of A.
- Dot product $x^{T} y=\sum_{i=1}^{n} x(i) y(i)$.
- Norm: $\|x\|=\sqrt{x^{T} x}=\sqrt{x(1)^{2}+x(2)^{2}+\cdots+x(n)^{2}}$.
- Algebra: $\|x \pm y\|^{2}=\|x\|^{2} \pm 2 x^{T} y+\|y\|^{2}$.

Rank-one matrix

For vectors x, y of length n, the rank-one matrix $A=x y^{T}$ is the $n \times n$ matrix with entries

$$
A(i, j)=x(i) y(j)
$$

It is called rank-one since the range of A is one dimensional and spanned by the vector x. Indeed,

$$
A z=x y^{T} z=\left(y^{T} z\right) x
$$

for any vector z.

Exercise
Let $x_{1}, x_{2}, x_{3}, \ldots, x_{m}$ be a collection of vectors of length n. Define the $m \times n$ matrix

$$
X=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{m}
\end{array}\right]^{T}=\left[\begin{array}{c}
x_{1}^{T} \\
x_{2}^{T} \\
\vdots \\
x_{m}^{T}
\end{array}\right]
$$

Show that

$$
\begin{aligned}
& \sum_{i=1}^{m} x_{i} x_{i}^{T}=X^{T} X \\
& \times^{T} \times z=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{m}
\end{array}\right]\left[\begin{array}{c}
x_{1}^{T} \\
x_{2}^{\top} \\
\vdots \\
x_{m}^{T}
\end{array}\right] z \\
&=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{m}
\end{array}\right]\left[\begin{array}{c}
x_{1}^{T} z \\
x_{2}^{\top} z
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =x_{1} x_{1}^{\top} z+x_{2} x_{2}^{\top} z+\cdots+x_{m} x_{m}^{\top} z \\
& =\left(\sum_{i=1}^{m} x_{i} x_{i}^{\top}\right) z \quad \text { Vाid }
\end{aligned}
$$

Today

- Projection
- Introduction to Numpy

Projection

Let $L \subset \mathbb{R}^{n}$ be a linear subspace spanned by the orthonormal vectors $v_{1}, v_{2}, \ldots, v_{p}$, where $p \leq n$. That is

$$
L=\left\{\sum_{i=1}^{p} a_{i} v_{i}: a_{i} \in \mathbb{R}\right\}
$$

In this case, L is p-dimensional.

$$
v_{-} v_{i}^{T}=\left\|v_{i}\right\|^{2}=1
$$

- Orthonormal means that $\left\|v_{i}\right\|=1$ and $\frac{T_{2}}{2}=0$ for $i \neq j$.

$$
V_{i}^{T} V_{j}=0 \quad i \neq j
$$

Definition 1. The projection of a point $x \in \mathbb{R}^{n}$ onto L, denoted $\operatorname{Proj}_{L} x$, is the closest point in the subspace L to x. That is, $\operatorname{Proj}_{L} x \in L$ satisfies

$$
\left\|\operatorname{Proj}_{L} x-x\right\| \leq\|y-x\| \text { for all } y \in L
$$

Projection

$$
\|x-y\|^{2}=\|x\|^{2}-2 x^{\top} y+\|y\|^{2}
$$

We claim that

$$
\operatorname{Proj}_{L} x=\sum_{i=1}^{p}\left(x^{T} v_{i}\right) v_{i}
$$

Proof: $\left\|x-\sum_{i=1}^{p} a_{i} v_{i}\right\|^{2}$

$$
\begin{aligned}
&=\|x\|^{2}-2 x^{\top} \sum_{i=1}^{P} a_{i} v_{i}+\left\|\sum_{i=1}^{p} a_{i} v_{i}\right\|^{2} \\
&\left\|\sum_{i=1}^{p} a_{i} v_{i}\right\|^{2}=\left(\sum_{i=1}^{+} a_{i} v_{i}\right)^{\top}\left(\sum_{j=1}^{p} a_{j} v_{j}\right) \\
&=\sum_{i=1}^{+} a_{i} v_{i}^{\top} \sum_{j=1}^{\infty} a_{j} v_{j}
\end{aligned}
$$

$$
\begin{aligned}
&=\sum_{i=1}^{\infty} \sum_{j=1}^{?} a_{i} a_{j} v_{i}^{\top} v_{j} \\
&=\left\{\begin{array}{l}
i=j \\
0, i \neq j
\end{array}\right. \\
&=\sum_{i=1}^{q} a_{i}^{2} \\
&\left\|\sum_{i=1}^{?} a_{i} v_{i}\right\|^{2}=\sum_{i=1}^{\infty} a_{i}^{2} \\
&\left\|x-\sum_{i=1}^{?} a_{i} v_{i}\right\|^{2}=\|x\|^{2}-2 x^{\top} \sum_{i=1}^{T} a_{i} v_{i}+\sum_{i=1}^{p} a_{i}^{2} \\
&=\|x\|^{2}+\sum_{i=1}^{R}\left(a_{i}^{2}-2\left(x^{\top} v_{i}\right) a_{i}\right)
\end{aligned}
$$

To minimize, differentiate in a_{i}

$$
\begin{gathered}
2 a_{i}-2\left(x^{\top} v_{i}\right)=0 \\
a_{i}=x^{\top} v_{i}
\end{gathered}
$$

Projection
Since the v_{i} are orthonormal, we have by
(1)

$$
\left\|\operatorname{Proj}_{L} x\right\|^{2}=\sum_{j=1}^{p}\left(x^{T} v_{i}\right)^{2}
$$

Follows from

$$
\left\|\sum_{i=1}^{p} a_{i} v_{i}\right\|^{2}=\sum_{i=1}^{p} a_{i}^{2}
$$

with $\quad a_{i}=x^{T} v_{i}$.

$$
\begin{aligned}
\operatorname{proj}_{L} x & =\underbrace{\sum_{i=1}^{R}\left(x^{\top} v_{i}\right) v_{i}}_{V} \\
& =\underbrace{\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{p}
\end{array}\right]}_{V}\left[\begin{array}{c}
v_{1}^{\top} x \\
v_{2}^{\top} x \\
\vdots \\
v_{p}^{\top} x
\end{array}\right] \\
& =V\left[\begin{array}{c}
v_{1}^{\top} \\
v_{2}^{\top} \\
\vdots \\
v_{p}^{\top}
\end{array}\right] x=V V^{\top} x
\end{aligned}
$$

Projection
It can be useful to write the projection in matrix form. Let

$$
V=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{p}
\end{array}\right] .
$$

Then we have

$$
\operatorname{Proj}_{L} x=V V^{T} x
$$

The residual is

$$
x-\operatorname{Proj}_{L} x=\left(I-V V^{T}\right) x .
$$

Exercise 2. Show that the projection is orthogonal, that is

$$
\left(x-\operatorname{Proj}_{L} x\right)^{T} v_{i}=0, \quad i=1, \ldots, p
$$

Use this to show that

$$
\left(x-\sum_{j=1}^{\rho}\left(x^{\top} v_{j}\right) v_{j}\right)^{\|x\|^{2}=\| V_{i}=x^{\top} v_{i}-\sum_{j=1}^{p}\left(x^{\top} v_{j}\right) \underbrace{\top}_{i=1} v_{i}^{\top} \stackrel{\Delta}{i}_{i}}
$$

$$
\begin{aligned}
C & =x^{\top} v_{i}-x^{\top} v_{i}=0 \\
\left\|x-p r \sigma_{L} x\right\|^{2} & =\|x\|^{2}-2 x^{\top} p r_{j_{j}} x+\left\|p r_{i} x\right\|^{2} \\
& =\|x\|^{2}-2 x^{\top} \sum_{i=1}^{\&}\left(x^{\top} v_{i}\right) v_{i}+\sum_{i=1}^{2}\left(x^{\top} v_{i}\right)^{2} \\
& =\|x\|^{2}-2 \sum_{i=1}^{8}\left(x^{\top} v_{i}\right)^{2}+\sum_{i=1}^{\&}\left(x^{\top} v_{i}\right)^{2} \\
& =\|x\|^{2}-\| p\left(r_{j} x \|^{2}\right.
\end{aligned}
$$

Pythagorean Therem

$$
\begin{gathered}
m_{\times n} \text { matrix } \quad A=\left[\begin{array}{ccc}
A(1,1) & A(1,2) & \cdots \\
A(i, 1) & A(z, 2) & \cdots \\
\vdots & & \ddots
\end{array}\right] \\
z=A \times, \quad z(i)=\sum_{j=1}^{n} A(i, j) \times(j) \\
A: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\
x
\end{gathered}
$$

Exercises

$$
V=\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{p}
\end{array}\right]
$$

Exercise 3. Show that
(i) $V^{T} V=I$.
(ii) $\left(V V^{T}\right)^{2}=V V^{T}$
(iii) $\left(I-V V^{T}\right)^{2}=I-V V^{T}$.

$$
V^{T} V=\left[\begin{array}{c}
v_{1}^{T} \\
v_{2}^{T} \\
\vdots \\
v_{p}^{T}
\end{array}\right]\left[\begin{array}{lll}
v_{1} & \cdots & v_{p}
\end{array}\right]
$$

$$
\begin{aligned}
& \left.(V \vee T)^{2}=V V T V V T=V V T\right) \\
& \text { Exercise 4. Let } L \text { be a linear subspace of } \mathbb{R}^{n} . \\
& \text { (i) Show that }\left\|\operatorname{Proj}_{L} x\right\| \leq\|x\| \text {. } \\
& \text { (ii) Show that } \operatorname{Proj}_{L} x=x \text { if and only if } x \in L .
\end{aligned}
$$

(iii) Show that if $\operatorname{Proj}_{L} x=x$ for all $x \in \mathbb{R}^{n}$, then $L=\mathbb{R}^{n}$.

$$
=I
$$

Affine projection

An affine space has the form

$$
\mathcal{A}=x_{0}+L=\left\{x_{0}+y: y \in L\right\}
$$

where L is a linear subspace of \mathbb{R}^{n}. Projection onto an affine space is given by

$$
\begin{equation*}
\operatorname{Proj}_{A} x=x_{0}+\operatorname{Proj}_{L}\left(x-x_{0}\right) \tag{2}
\end{equation*}
$$

Introduction to Numpy(.ipynb)

