Mathematics of Image and Data Analysis Math 5467

Lecture 22: Neural Networks

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

Last time

- Graph-based embeddings (spectral and t-SNE)

Today

- Neural networks

Artificial neural networks

(Artificial) neural networks are parameterized functions made up of simple building blocks: linear functions and simple nonlinearities. The basic building block is a neuron

$$
f(x)=\sigma\left(\omega^{T} x+b\right),
$$

which is a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Common choices for the activation function σ is the rectified linear unit (ReLU)

$$
\begin{equation*}
\sigma(t)=\max \{t, 0\} . \tag{1}
\end{equation*}
$$

and the sigmoid activation function

$$
\begin{equation*}
\sigma(t)=\frac{1}{1+e^{-t}} \tag{2}
\end{equation*}
$$

Common activation functions

(a) ReLU

(b) Sigmoid

Figure 1: Plots of the ReLU and Sigmoid activation functions. Both activation functions have the behavior that they give zero, or close to zero, responses when the input is below a certain threshold, and give positive responses above.

Neural network

Figure 2: An example of a fully connected neural network with three hidden layers. The blue nodes are the hidden layers, the red is the input, and the green is the output. The hidden layers have width $n_{1}=2, n_{2}=6$, and $n_{3}=4$ and the number of input variables is $n_{0}=6$.

Neural network

In more compact notation, we can write a fully connected neural network with L layers recursively as

$$
\begin{equation*}
f_{k}=\sigma_{k}\left(W_{k} f_{k-1}+b_{k}\right), \quad k=1, \ldots, L \tag{3}
\end{equation*}
$$

where

- $f_{0} \in \mathbb{R}^{n_{0}}$ is the input to the network,
- $f_{k} \in \mathbb{R}^{n_{k}}$ for $k=1, \ldots, L-1$ are the values of the network at the hidden layers,
- f_{L} is the output of the neural network,
- n_{k} is the number of hidden nodes in the $k^{\text {th }}$ layer,
- The weights $W_{k} \in \mathbb{R}^{n_{k} \times n_{k-1}}$ and biases $b_{k} \in \mathbb{R}^{n_{k}}$ are the learnable parameters in the neural network.

Loss

The output of the neural network $f_{L} \in \mathbb{R}^{n_{L}}$ is typically fed into a loss function

$$
\mathcal{L}: \mathbb{R}^{n_{L}} \rightarrow \mathbb{R}
$$

which measures the performance of the network for the given learning task.

Typically the loss has the form

$$
\begin{equation*}
\mathcal{L}\left(W_{1}, b_{1}, \ldots, W_{L}, b_{L}\right)=\sum_{i=1}^{m} \ell\left(f_{L}\left(x_{i}\right), y_{i}\right) \tag{4}
\end{equation*}
$$

where $\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, m$ are the training data. Here, we write $f_{L}(x)$ to denote the value of the output of the network f_{L} given the input is $f_{0}=x$.

Neural networks are trained by minimizing the loss function \mathcal{L} with gradient descent.

Gradient descent

Let $\frac{\partial \mathcal{L}}{\partial W_{k}}$ and $\frac{\partial \mathcal{L}}{\partial b_{k}}$ denote the gradients of \mathcal{L} with respect to W_{k} and b_{k}, respectively.

- The gradient $\frac{\partial \mathcal{L}}{\partial W_{k}}$ is the $n_{k} \times n_{k-1}$ matrix whose (i, j) entry is the partial derivative of \mathcal{L} in $W_{k}(i, j)$.
- The gradient $\frac{\partial \mathcal{L}}{\partial b_{k}} \in \mathbb{R}^{n_{k}}$ is the vector whose $i^{\text {th }}$ entry is the partial derivative of \mathcal{L} in $b_{k}(i)$.

Gradient descent for minimizing \mathcal{L} corresponds to updating the weights W_{k} and biases b_{k} according to

$$
\begin{equation*}
W_{k}^{j+1}=W_{k}^{j}-\alpha \frac{\partial \mathcal{L}}{\partial W_{k}} \text { and } b_{k}^{j+1}=b_{k}^{j}-\alpha \frac{\partial \mathcal{L}}{\partial b_{k}} \tag{5}
\end{equation*}
$$

where $\alpha>0$ is the time step, also called the learning rate.

Toy example

Figure 3: A toy example of fitting the function $\sin (\pi x)$ with a 2 -layer neural network with 100 hidden nodes. The loss is $\mathcal{L}=\sum_{i=1}^{m}\left|f_{L}\left(x_{i}\right)-\sin \left(\pi x_{i}\right)\right|$ for evenly spaced points $-1=x_{1} \leq x_{2} \leq \cdots \leq x_{m}=1$.

Stochastic Gradient Descent (SGD)

For modern machine learning problems with very large training sets, it is sometimes impractical to compute the full gradients $\frac{\partial \mathcal{L}}{\partial W_{k}}$ and $\frac{\partial \mathcal{L}}{\partial b_{k}}$, since the loss involves all of the training data.

Stochastic gradient descent (SGD) fixes this by computing the gradient of the loss over a random subset of the training data

$$
\widetilde{\mathcal{L}}\left(W_{1}, b_{1}, \ldots, W_{L}, b_{L}\right)=\sum_{i \in I} \ell\left(f_{L}\left(x_{i}\right), y_{i}\right),
$$

where $I \subset\{1,2, \ldots, n\}$ is a random subset, called a mini-batch. The mini-batch changes at each iteration of SGD.

One pass over all the mini-batches in the dataset is called an epoch, and training usually proceeds for some number of ephochs, say 100.

Momentum descent

Various other trickes are used in the optimization, such as momentum

$$
W_{k}^{j+1}=W_{k}^{j}-\alpha \frac{\partial \mathcal{L}}{\partial W_{k}}+\beta\left(W_{k}^{j}-W_{k}^{j-1}\right)
$$

and

$$
b_{k}^{j+1}=b_{k}^{j}-\alpha \frac{\partial \mathcal{L}}{\partial b_{k}}+\beta\left(b_{k}^{j}-b_{k}^{j-1}\right),
$$

where $\beta \in[0,1]$ is the momentum parameter. Momentum can help to speed up convergence of gradient descent.

We will peform a careful analysis of gradient descent, SGD and momentum descent later.

Back Propagation

For notational simplicity, we will write

$$
\begin{equation*}
z_{k}=W_{k} f_{k-1}+b_{k} \tag{6}
\end{equation*}
$$

so that $f_{k}=\sigma_{k}\left(z_{k}\right)$. Let $\frac{\partial \mathcal{L}}{\partial z_{k}} \in \mathbb{R}^{n_{k}}$ denote the gradient of \mathcal{L} with respect to z_{k}. We also let D_{k} be the diagonal $n_{k} \times n_{k}$ matrix with diagonal entries given by the vector $\sigma_{k}^{\prime}\left(z_{k}\right)$. That is

$$
D_{k}=\operatorname{diag}\left(\sigma_{k}^{\prime}\left(z_{k}\right)\right)
$$

Theorem 1 (Back propagation). For $k=2, \ldots, L$ we have

$$
\begin{equation*}
\frac{\frac{\partial \mathcal{L}}{\partial z_{k-1}}=D_{k-1} W_{k}^{T} \frac{\partial \mathcal{L}}{\partial z_{k}}}{\frac{\partial \mathcal{L}}{\partial W_{k}}=\frac{\partial \mathcal{L}}{\partial z_{k}} f_{k-1}^{T}, \quad \text { and } \quad \frac{\partial \mathcal{L}}{\partial b_{k}}=\frac{\partial \mathcal{L}}{\partial z_{k}}} \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
& z_{k}=w_{k} f_{k-1}+b_{k} \quad\left(\begin{array}{l}
w_{k} \sim u_{k} \times n_{k-1} \\
b_{k} \in \mathbb{R}^{n}
\end{array}\right. \\
& z_{k}(i)=\sum_{l=1}^{n_{k-1}} w_{k}(i, l) f_{k-1}(l)+b_{k}(i) \xrightarrow{\frac{\partial L}{\partial w_{k}(i, j)}}= \\
&=\frac{\partial L}{\partial z_{k}(i)} \cdot \frac{\partial z_{k}(i)}{\partial w_{k}(i, j)}<\begin{array}{c}
\text { chain } \\
\text { rule }
\end{array} \\
&=\frac{\partial L}{\partial z_{k}(i)} f_{k-1}(j) \\
& \frac{\partial L}{\partial w_{k}}=\frac{\partial L}{\partial z_{k}} f_{k-1}^{T} \lll \text { rank-one matrix }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x}{\partial b_{k}(i)}=\frac{\partial L}{\partial z_{k}(i)} \underbrace{\frac{\partial L}{\partial b_{k}}=\frac{\partial L}{\partial z_{k}} \text {. This proves (8) }}_{\underbrace{\frac{\partial z_{k}(i)}{\partial k_{k}(i)}}=\frac{L L}{\partial z_{k}(i)}} \text {. }
\end{aligned}
$$

For (ح) wote $f_{k-1}=\sigma\left(z_{k-1}\right)$

$$
\begin{aligned}
z_{k} & =w_{k} f_{k-1}+b_{k}=w_{k} \sigma\left(z_{k-1}\right)+b_{k} \\
z_{k}(i) & =\sum_{\ell=1}^{n_{k-1}} w_{k}(i, \ell) \sigma\left(z_{k-1}(\ell)\right)+b_{k}(i)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial z_{k}(i)}{\partial z_{k-1}(j)} & =w_{k}(i, j) \sigma^{\prime}\left(z_{k-1}(j)\right) \\
\frac{\partial L}{\partial z_{k-1}(j)} & =\sum_{i=1}^{n_{k}} \frac{\partial L}{\partial z_{k}(i)} \frac{\partial z_{k}(i)}{\partial z_{k-1}(j)} \\
& =\sum_{i=1}^{n_{k}} \frac{\partial L}{\partial z_{k}(i)} w_{k}(i, j) \sigma^{\prime}\left(z_{k-1}(j)\right) \\
& =\sigma^{\prime}\left(z_{k-1}(j)\right) \sum_{i=1}^{n_{k}} \frac{\partial L}{\partial z_{k}(i)} w_{k}(i, j) \\
& =\sigma^{\prime}\left(z_{k-1}(j)\right)\left[w_{k}^{\top} \frac{\partial L}{\partial z_{k}}\right](j)
\end{aligned}
$$

$$
\begin{align*}
& =[\underbrace{\operatorname{diag}\left(\sigma^{\prime}\left(z_{k-1}\right)\right.}_{D_{k-1}}) \omega_{k}^{\top} \frac{\partial L}{\partial z_{k}}](j) \\
& =\left(D_{k-1} \omega_{k}^{\top} \frac{\partial L}{\partial z_{k}}\right)(j) \\
\Rightarrow \frac{\partial L}{\partial z_{k-1}} & =D_{k-1} \omega_{k}^{\top} \frac{\partial L}{\partial z_{k}} \text { m }
\end{align*}
$$

Intro to Pytorch (.ipynb)

