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Last time

• Projection

• Introduction to Numpy



Today

• Reading images and audio in Python

• Diagonalization

• Some vector calculus



Images and audio in Python (.ipynb)



Diagonalization

Every symmetric matrix A can be diagonalized. That is, there exists an orthogonal
matrix Q and a diagonal matrix D such that

A = QDQT .

An orthogonal matrix is a square matrix whose columns are orthonormal vectors.

• The columns of Q are exactly the eigenvectors of the matrix A.

• The diagonal entries of D are the corresponding eigenvalues.

• An orthogonal matrix also has the property that all rows are orthonormal and
thus

QTQ = I = QQT .

• An orthogonal matrix is norm-preserving

kQxk = kxk.



Optimization and eigenvalues

Exercise 1. Let A be a symmetric matrix, and consider the optimization problem

(1) min{xTAx : kxk = 1}.

Show that every minimizer x⇤ is an eigenvector of A with smallest eigenvalue. What
happens if we switch the min to a max in (1)? 4











Vector Calculus

We recall that for a differentiable function f : Rn ! R, the gradient rf is defined
by

rf =
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Example 1. For the function f(x) = x(1)2 � x(2)2 on R2, the gradient is

rf(x) = (2x(1),�2x(2)).
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Gradients of common functions

Exercise 2. Show that

(i) For a linear function f(x) = yTx, we clearly have rf(x) = y.

(ii) For a quadratic function f(x) = xTAx, where A is an n⇥ n matrix, we have

rf(x) = (A+AT )x.

(iii) Assume A is a symmetric matrix. For the function f(x) = kAxk2, show that

rf(x) = 2A2x,
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