Mathematics of Image and Data Analysis Math 5467

Lecture 3: Linear Algebra \& Python
Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

Last time

- Projection
- Introduction to Numpy

Today

- Reading images and audio in Python
- Diagonalization
- Some vector calculus

Images and audio in Python (.ipynb)

Diagonalization

Every symmetric matrix A can be diagonalized. That is, there exists an orthogonal matrix Q and a diagonal matrix D such that

$$
A=Q D Q^{T}
$$

An orthogonal matrix is a square matrix whose columns are orthonormal vectors.

- The columns of Q are exactly the eigenvectors of the matrix A.
- The diagonal entries of D are the corresponding eigenvalues.
- An orthogonal matrix also has the property that all rows are orthonormal and thus

$$
Q^{T} Q=I=Q Q^{T}
$$

- An orthogonal matrix is norm-preserving

$$
\|Q x\|=\|x\| .
$$

Optimization and eigenvalues
Exercise 1. Let A be a symmetric matrix, and consider the optimization problem
(1)

$$
\min \left\{x^{T} A x:\|x\|=1\right\} .
$$

Show that every minimizer x^{*} is an eigenvector of A with smallest eigenvalue. What happens if we switch the min to a max in (1)?
Write $y=Q^{\top} x$,

$$
\|y\|=\|x\|
$$

$$
A=Q\left[\begin{array}{lll}
\lambda_{1} & & \\
0^{\lambda_{2}} & \\
& \ddots & \\
& & \lambda_{n}
\end{array} Q^{\Delta T}\right.
$$

$$
\begin{aligned}
x^{\top} A x & =x^{\top} Q D Q^{\top} x \quad \lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n} \\
& =y^{\top}\left[\begin{array}{ccc}
\lambda_{1} & { }_{1} & 0 \\
0 & \ddots & \lambda_{n}
\end{array}\right] y=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}
\end{aligned}
$$

$$
\min \left\{\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}:\|y\|^{2}=\sum_{i=1}^{n} y_{i}^{2}=1\right\} .
$$

Minimizal by $y_{1}=1, \quad y_{2}=y_{3}=\cdots=y_{n}=0$
Indeed, $\sum_{i=1}^{n} \lambda_{i} y_{i}^{2} \geq \lambda_{1} \sum_{i=1}^{n} y_{i}^{2}=\lambda_{1}$
Thus $y=e_{1}=(1,0, \ldots, 0)$
Chack $x=Q_{y}=Q e_{1}=\frac{\text { first }}{\text { oisenvector }} A\binom{$ smallest }{ ersenvalue }

$$
\rightarrow \quad A x=\lambda_{1} x
$$

And

$$
\begin{aligned}
& x^{\top} A x=x^{\top} \lambda_{1} x=\lambda_{1} x^{\top} x \\
&=\lambda_{1}\|x\|^{2}=\lambda_{1} \\
& \lambda_{1}=x^{\top} A_{x}
\end{aligned}
$$

Vector Calculus

We recall that for a differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the gradient ∇f is defined by

$$
\nabla f=\left(\frac{\partial f}{\partial x(1)}, \frac{\partial f}{\partial x(2)}, \ldots, \frac{\partial f}{\partial x(n)}\right) .
$$

Example 1. For the function $f(x)=x(1)^{2}-x(2)^{2}$ on \mathbb{R}^{2}, the gradient is

$$
\nabla f(x)=(2 x(1),-2 x(2)) .
$$

$$
\begin{aligned}
& x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}^{n} \\
& \text { so common functions }
\end{aligned} \sum_{i=1}^{n} y(i) \times(i)
$$

Exercise 2. Show that
(i) For a linear function $f(x)=y^{T} x$, we clearly have $\nabla f(x)=y$.
(ii) For a quadratic function $f(x)=x^{T} A x$, where A is an $n \times n$ matrix, we have

$$
\nabla f(x)=\left(A+A^{T}\right) x
$$

(iii) Assume A is a symmetric matrix. For the function $f(x)=\|A x\|^{2}$, show that

Hew:

$$
\begin{aligned}
& \text { Hw: } 0=\nabla\left(\frac{x^{\top} A x}{x^{\top} x}\right)=\frac{x^{\top} x \nabla\left(x^{\top} A x\right)-x^{\top} A x \nabla^{\nabla\left(x^{\top} x\right)}}{\left(x^{\top} x\right)^{2}} \\
& \text { Note(ii) } f(x)=x^{\top} A x=\left(x^{\top} A x\right)^{\top}=x^{\top} A^{\top} x
\end{aligned}
$$

$$
f(x)=\frac{1}{2} x^{\top}\left(A+A^{\top}\right) x
$$

Can assume A is symmetric and
show that for $f(x)=x^{\top} A x$

$$
\begin{gathered}
\frac{\partial}{\partial x(k)}\left(x^{\top} A x\right)=\frac{\partial}{\partial x(k)} \sum_{i=1}^{n} \sum_{j=1}^{n} A(i, j) x(i) x(j) \\
=\sum_{i=1}^{n} \sum_{j=1}^{n} A(i, j) \frac{\partial}{\partial x(k)}(x(i) x(j))
\end{gathered}
$$

$$
\begin{aligned}
&= \sum_{i=1}^{n} \sum_{j=1}^{n} A(i, j)\left(\delta_{i k} x(j)+\delta_{j k} x(i)\right) \\
& \text { Wher } \quad \delta_{i j}= \begin{cases}1, & i=j \\
0, & i \neq j\end{cases} \\
&= \sum_{j=1}^{n} A(k i j) x(j)+\sum_{i=1}^{n} A(i, k) x(i) \\
&=(A x)(k)+(A x)(k) \\
&= 2(A x)(k)
\end{aligned}
$$

$$
\Rightarrow \nabla\left(x^{\top} A x\right)=2 A x
$$

for symmetric matrices A

$$
A=A^{T} .
$$

