Mathematics of Image and Data Analysis Math 5467

Lecture 3: Linear Algebra & Python

Instructor: Jeff Calder Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

Last time

- Projection
- Introduction to Numpy

Today

- Reading images and audio in Python
- Diagonalization
- Some vector calculus

Images and audio in Python (.ipynb)

Diagonalization

Every symmetric matrix A can be diagonalized. That is, there exists an orthogonal matrix Q and a diagonal matrix D such that

$$A = QDQ^T.$$

An orthogonal matrix is a square matrix whose columns are orthonormal vectors.

- The columns of Q are exactly the eigenvectors of the matrix A.
- The diagonal entries of D are the corresponding eigenvalues.
- An orthogonal matrix also has the property that all rows are orthonormal and thus

$$Q^T Q = I = Q Q^T.$$

• An orthogonal matrix is norm-preserving

$$\|Qx\| = \|x\|.$$

Optimization and eigenvalues

Exercise 1. Let A be a symmetric matrix, and consider the optimization problem

(1)
$$\min\{x^T A x : \|x\| = 1\}.$$

Show that every minimizer x^* is an eigenvector of A with smallest eigenvalue. What happens if we switch the min to a max in (1)?

min $\{ \tilde{z}_{i}, \lambda_{i}, y_{i}^{2} : \|y\|^{2} = \tilde{z}_{i}, y_{i}^{2} = 1 \}.$ Minimized by $y_1 = 1$, $y_2 = y_3 = - = y_n = 0$ Indeed, $\hat{\mathcal{I}}_{1}$ λ_{1} λ_{2} λ_{1} $\hat{\mathcal{I}}_{2}$ λ_{2} $\hat{\mathcal{I}}_{2}$ $\hat{\mathcal{I}}_{1}$ $\hat{\mathcal{I}}_{1}$ $\hat{\mathcal{I}}_{1}$ $\hat{\mathcal{I}}_{2}$ $\hat{\mathcal{I}}_{1}$ $\hat{$ $y = e_1 = (1, 0, ..., 0)$ Thus X = Qy = Qe, = first eigenvector Au = 1 million (smallest Au = 1 million (ergenvalue) Check \rightarrow $Ax = \lambda, x$

And $x^{T}Ax = x^{T}\lambda_{i}x = \lambda_{i}x^{T}x$ = $\lambda_{i}||x_{i}|^{2} = \lambda_{i}$ $\lambda_{1} = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$

Vector Calculus

We recall that for a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$, the gradient ∇f is defined by

$$abla f = \left(\frac{\partial f}{\partial x(1)}, \frac{\partial f}{\partial x(2)}, \dots, \frac{\partial f}{\partial x(n)}\right).$$

Example 1. For the function $f(x) = x(1)^2 - x(2)^2$ on \mathbb{R}^2 , the gradient is

$$\nabla f(x) = (2x(1), -2x(2)).$$

\wedge	
L	

 $X_1, X_2, X_3, X_4 \in \mathbb{R}^{7}$ Gradients of common functions

Exercise 2. Show that

- (i) For a linear function $f(x) = y^T x$, we clearly have $\nabla f(x) = y$.
- (ii) For a quadratic function $f(x) = x^T A x$, where A is an $n \times n$ matrix, we have

$$\nabla f(x) = (A + A^T)x.$$

່ ຽ(t) X(i)

(iii) Assume A is a symmetric matrix. For the function $f(x) = ||Ax||^2$, show that

$$\nabla f(x) = 2A^{2}x,$$

$$H_{W}: O = \nabla \left(\frac{x^{T}Ax}{x^{T}x} \right) = \frac{x^{T}x (\nabla (x^{T}Ax) - x^{T}Ax (\nabla (x^{T}x)))}{(x^{T}x)}$$

$$(x^{T}x) = (x^{T}Ax)^{T} = x^{T}A^{T}x$$

$$Note(ii) \quad f(x) = x^{T}Ax = (x^{T}Ax)^{T} = x^{T}A^{T}x$$

$$f(x) = \frac{1}{2} \times^{T} (A + A^{T}) \times$$
Can assume A is symmetric and
show Mat for $f(x) = x^{T}A \times$
 $\left(\nabla f(x) = \partial A \times \right)$
 $\frac{\partial}{\partial x(k)} (x^{T}A \times) = \frac{\partial}{\partial x(k)} \sum_{i=1}^{n} \sum_{j=1}^{n} A(i,j) \times (i) \times (j)$
 $= \sum_{i=1}^{n} \sum_{j=1}^{n} A(i,j) \frac{\partial}{\partial x(k)} (x(i) \times (j))$

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} A(i,j) \left(S_{ik} \times (j) + S_{jk} \times (i) \right)$ Where $S_{ij} = \begin{cases} 1, i=j \\ 2, i\neq j \end{cases}$ $= \hat{\sum}_{j=1}^{n} A(K_{ij}) \times (j) + \hat{\sum}_{i=1}^{n} A(i,K) \times (i)$ $i = 1 \qquad (j = 1)$ $= (A_X)(K) + (A_X)(K)$ $= 2(A_X)(k)$

=> $\nabla(x^TAx) = 2Ax$ for symmetric matrices A $A = A^{\intercal}$