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Last time
• Spectral Clustering

Today
• PageRank



PageRank
The PageRank algorithm ranks websites based on the link structure of the internet.
It was used to sort Google search results until 2006, and has been used in

• Biology (GeneRank), chemistry, ecology, neuroscience, physics, sports, and
computer systems. . .



PageRank
Main Idea: Take a random walk on the internet for T steps.

Rank of site i = lim
T!1

1

T
(Number of times site i is visited).

Problem: Random walks can get stuck in disconnected components of the internet,
and may never visit a given site i.

Solution: Every so often, the random walker teleports to a random site on the
internet. The walker is called a random surfer.

Code demo



Mathematics of PageRank
To describe PageRank mathematically, we start with an adjacency matrix W

W (i, j) =

(
1, if site i links to site j

0, otherwise.

We also have a probability transition matrix P for the random walk:

P (i, j) = Probability of stepping from j to i.

Both P and W are n⇥ n matrices, n =number of webpages.



Mathematics of PageRank
Clicking on a link at random from webpage j leads to the transition probabilities

P (i, j) =
W (j, i)Pn

k=1 W (j, k)
.

Exercise 1. Show that P = WTD�1, where D is the diagonal matrix with diagonal
entries D(i, i) =

Pn
j=1 W (i, j). 4



Random surfer
Let ↵ 2 [0, 1) be the random walk probability, and let v 2 Rn be the teleportation
probability distribution. That is, v(i) � 0 for all i, and

P
i v(i) = 1.

Random surfer dynamics: When at website j, the random surfer chooses the
next site as follows:

1. With probability ↵ the surfer clicks an outgoing link at random, that is, the
surfer navigates to website i with probability P (i, j).

2. With probability 1� ↵ the surfer teleports to website i with probability v(i).



Teleportation
Teleportation distribution: Common choices are

• v(i) = 1/n for all i (jump to a site uniformly at random).

• (Localized PageRank) v(i) = �ij (always jump back to site j).

Localized PageRank ranks all sites based on their similarity to site j.



The PageRank vector

For k � 0 define

xk(i) = Probability that the random surfer is at page i on step k.

Definition 2. The PageRank vector x is

x(i) = lim
k!1

xk(i),

provided the limit exists.



Transition probabilities
To see how xk transitions to xk+1 requires some probability. We condition on the
location of the surfer at step k, and on the outcome of the coin flip, to obtain

xk+1(i) = (1� ↵)v(i) + ↵
nX

j=1

P (i, j)xk(j).

We can write this in matrix/vector form as

(1) xk+1 = (1� ↵)v + ↵Pxk.

If xk converges to a vector x as k ! 1, then x should satisfy

x = (1� ↵)v + ↵Px.

Question: Does xk converge as k ! 1, and if so, how quickly does it converge?



Analysis of PageRank
We consider the PageRank equation

(2) x = (1� ↵)v + ↵Px.

Lemma 3. Let v 2 Rn and 0  ↵ < 1. Then there is a unique vector x 2 Rn solving
the PageRank equation (2). Furthermore, the following hold.

(i) We have
Pn

i=1 x(i) =
Pn

i=1 v(i).

(ii) If v(i) � 0 for all i, then x(i) � 0 for all i.



The `1-norm
It will be more convenient to work in the `1-norm k · k1 defined by

kxk1 =
nX

i=1

|x(i)|.

In the `1-norm, the transition matrix P is non-expansive.

Proposition 4. We have kPxk1  kxk1.













Eigenvector problem
Remark 5. When v is a probability distribution, it is common to re-write the
PageRank problem (2) as an eigenvector problem

P↵x = x

where
P↵ := (1� ↵)v1T + ↵P.







Convergence of the PageRank iteration
Let v 2 Rn and 0  ↵ < 1. Let xk satisfy the PageRank iteration

xk+1 = (1� ↵)v + ↵Pxk,

and let x be the unique solution of the PageRank problem

x = (1� ↵)v + ↵Px.

Theorem 6. We have

(3) kxk � xk1  ↵kkx0 � xk1.

Since 0  ↵ < 1, this is convergence of xk ! x with a linear convergence rate of ↵.















Power iteration
Remark 7. In the eigenvector formulation discussed above, the PageRank iteration
xk+1 = P↵xk is basically the power iteration to find the largest eigenvector of P .
The normalization step is not needed since kxkk1 = 1 for all k.



Personalized PageRank for image retrieval (.ipynb)

https://colab.research.google.com/drive/1WKpzLLu6P4kW7ObnATne3T-G7KvEN49d?usp=sharing

