Mathematics of Image and Data Analysis Math 5467

Lecture 8: PageRank

Instructor: Jeff Calder Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

Last time

• Spectral Clustering

Today

• PageRank

PageRank

The PageRank algorithm ranks websites based on the link structure of the internet. It was used to sort Google search results until 2006, and has been used in

• Biology (GeneRank), chemistry, ecology, neuroscience, physics, sports, and computer systems...

PageRank

Main Idea: Take a random walk on the internet for T steps.

Rank of site
$$i = \lim_{T \to \infty} \frac{1}{T}$$
 (Number of times site *i* is visited).

Problem: Random walks can get stuck in disconnected components of the internet, and may never visit a given site i.

Solution: Every so often, the random walker teleports to a random site on the internet. The walker is called a random surfer.

Code demo

Mathematics of PageRank

To describe PageRank mathematically, we start with an adjacency matrix \boldsymbol{W}

$$W(i,j) = \begin{cases} 1, & \text{if site } i \text{ links to site } j \\ 0, & \text{otherwise.} \end{cases}$$

We also have a probability transition matrix P for the random walk: P(i, j) = Probability of stepping from j to i.

Both P and W are $n \times n$ matrices, n =number of webpages.

Mathematics of PageRank

Clicking on a link at random from webpage j leads to the transition probabilities

$$P(i,j) = \frac{W(j,i)}{\sum_{k=1}^{n} W(j,k)}$$

Exercise 1. Show that $P = W^T D^{-1}$, where D is the diagonal matrix with diagonal entries $D(i, i) = \sum_{j=1}^{n} W(i, j)$.

Random surfer

Let $\alpha \in [0, 1)$ be the random walk probability, and let $v \in \mathbb{R}^n$ be the teleportation probability distribution. That is, $v(i) \ge 0$ for all i, and $\sum_i v(i) = 1$.

Random surfer dynamics: When at website j, the random surfer chooses the next site as follows:

- 1. With probability α the surfer clicks an outgoing link at random, that is, the surfer navigates to website *i* with probability P(i, j).
- 2. With probability 1α the surfer teleports to website *i* with probability v(i).

Teleportation

Teleportation distribution: Common choices are

- v(i) = 1/n for all *i* (jump to a site uniformly at random).
- (Localized PageRank) $v(i) = \delta_{ij}$ (always jump back to site j).

Localized PageRank ranks all sites based on their similarity to site j.

The PageRank vector

For $k \ge 0$ define

 $x_k(i) =$ Probability that the random surfer is at page *i* on step *k*.

Definition 2. The **PageRank** vector x is

$$x(i) = \lim_{k \to \infty} x_k(i),$$

provided the limit exists.

Transition probabilities

To see how x_k transitions to x_{k+1} requires some probability. We condition on the location of the surfer at step k, and on the outcome of the coin flip, to obtain

Question: Does x_k converge as $k \to \infty$, and if so, how quickly does it converge?

Analysis of PageRank

We consider the PageRank equation

(2)
$$x = (1 - \alpha)v + \alpha Px.$$

Lemma 3. Let $v \in \mathbb{R}^n$ and $0 \le \alpha < 1$. Then there is a unique vector $x \in \mathbb{R}^n$ solving the PageRank equation (2). Furthermore, the following hold.

(i) We have
$$\sum_{i=1}^{n} x(i) = \sum_{i=1}^{n} v(i)$$
. If $\sum v(i) = 1$ then
(ii) If $v(i) \ge 0$ for all i , then $x(i) \ge 0$ for all i .
 $f_{-1}f_{-1}v(i)$ are probabilities

The l_1 -norm Reall $||x|| = \int \Sigma x i S^2 = Euclidean$

 $||x|| = ||x||_{2}$

It will be more convenient to work in the ℓ_1 -norm $\|\cdot\|_1$ defined by

$$||x||_1 = \sum_{i=1}^n |x(i)|.$$

Proposition 4. We have $||Px||_1 \le ||x||_1$. Proof: Recall $\sum_{i=1}^{n} P(i,j) = 1$ In the ℓ_1 -norm, the transition matrix P is non-expansive. $\|P_{X}\|_{2} = \sum_{i=1}^{n} |P_{X}(i)| = \sum_{i=1}^{n} |\widehat{f}_{i}(i,j) \times (j)|$ $\leq \sum_{i=1}^{n} \sum_{j=1}^{n} P(i,j) | \times (j)|$ $\in \sum_{i=1}^{n} \sum_{j=1}^{n} P(i,j) | \times (j)|$

 $(\product) = \hat{\sum}_{j=1}^{\infty} |x_{(j)}| = ||x||_{1}$ Sum over i

Proot: (of lemma 3) X= (1-x) V + xPx Write as Ax = V where $A = (I - \alpha)^{-1} (I - \alpha P) (\alpha < I)$ $Ax = (1-\alpha)'(x-\alpha P_x)$ Since

Claim: Ker(A) = {of far o < x < | To see this, let ZE Ker(A), AZ=0 or $(1-x)^{-1}(2-x)^{-2}=0$ モニメアモ Thus, $\|2\|_{2} = \|\alpha P_{2}\|_{2}$ $= \propto ||P_{2}||_{1}$ $\leq \propto ||Z||_{1}$ (Prop 4)

 $\implies (1-\alpha) || z ||_{1} \leq 0$ = (1 - d) || = 0So either Z=0 or d=1 and x < 1 50 7=0/ Hence for every VERM there exists a unique X ERM solving $X = (1 - \alpha) v + \alpha P x.$

To prove (i): $\hat{\sum}_{i=1}^{n} x_{i}(i) = \hat{\sum}_{i=1}^{n} x_{i}(i)$ $\hat{\sum}_{i=1}^{n} \chi(i) = \hat{\sum}_{i=1}^{n} \left((1-\omega) v(i) + \omega \hat{\sum}_{j=1}^{n} P(i,j) \chi(j) \right)$ $= (1-\alpha) \widehat{\sum}_{i=1}^{n} v(i) + \alpha \widehat{\sum}_{j=1}^{n} x_{ij} \widehat{\sum}_{i=1}^{n} P(i,j)$ $= (1-\alpha) \sum_{i=1}^{n} v(i) + \alpha \sum_{i=1}^{n} x(i) = 1$ $= \sum_{i=1}^{n} (1 - \alpha) \sum_{i=1}^{n} \chi_{ii} = (1 - \alpha) \sum_{i=1}^{n} \chi_{ii}$

Sinu 2 < 1 To prove (ii): If v(i) 20 for all i Assume v(i) 20 per x(i) 20 for all i for all i $|X(i)| = |(1-\alpha)V(i) + \alpha \sum_{j=1}^{\infty} P(i,j)X(j)|$ $\begin{array}{l} \mathcal{L} \left(\left(1 - \omega \right) \vee (i) \right) + \chi \stackrel{\sim}{\underset{i=1}{\sum}} P(i,j) \left[\chi(j) \right] \\ \mathcal{L} \left(1 - \omega \right) \stackrel{\sim}{\underset{i=1}{\sum}} \nabla (i) + \chi \stackrel{\sim}{\underset{i=1}{\sum}} P(i,j) \\ \mathcal{L} \left[\chi(i) \right] \stackrel{\sim}{\underset{i=1}{\sum}} \left(1 - \omega \right) \stackrel{\sim}{\underset{i=1}{\sum}} \nabla (i) + \chi \stackrel{\sim}{\underset{i=1}{\sum}} \left[\chi(i) \right] \\ \end{array}$ $(1-x)\hat{z}|x(i)| \leq (1-x)\hat{z}v(i) = (1-x)\hat{z}x(i)$ i=1 f part(i)

 $=> x(i) \ge 0$ Eigenvector problem **Remark 5.** When v is a probability distribution, it is common to re-write the PageRank problem (2) as an eigenvector problem X(i) 20 $P_{\alpha}x = x$ Tx = 1 $P_{\alpha} := (1 - \alpha)v\mathbf{1}^{T} + \alpha P. \quad = \quad \sum (\mathbf{x}, \mathbf{x})$ where $X = (1 - \alpha)v + \alpha Px$ $= (1-\alpha) \vee 1 \times + \alpha P \times$ $= ((1-\alpha)v_1^T + \alpha P)x$ = $R_{x} = x$

Convergence of the PageRank iteration

Let $v \in \mathbb{R}^n$ and $0 \leq \alpha < 1$. Let x_k satisfy the PageRank iteration

$$x_{k+1} = (1 - \alpha)v + \alpha P x_k,$$

and let x be the unique solution of the PageRank problem

$$x = (1 - \alpha)v + \alpha Px.$$

Theorem 6. We have

(3)
$$||x_k - x||_1 \le \alpha^k ||x_0 - x||_1.$$

Since $0 \le \alpha < 1$, this is convergence of $x_k \to x$ with a linear convergence rate of α .

Proat:
$$X = ((-\alpha)v + \alpha Px$$

 $X_{k} = ((-\alpha)v + \alpha Px_{k-1})$

 $||X_{k} - x|| = ||X(P_{x_{k_{1}}} - P_{x})||_{1}$ $= \times ||P(x_{k-1} - x)||_{1}$ Prop 4 Ex 11 XK, - × 112 By induction ... $\leq \chi^{k} || x_{o} - \chi ||_{1}$ Since acl, at >0 as k->~

Power iteration

Remark 7. In the eigenvector formulation discussed above, the PageRank iteration $x_{k+1} = P_{\alpha}x_k$ is basically the power iteration to find the largest eigenvector of P_{κ} . The normalization step is not needed since $||x_k||_1 = 1$ for all k.

Personalized PageRank for image retrieval (.ipynb)