Mathematics of Image and Data Analysis Math 5467

Lecture 8: PageRank
Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

Last time

- Spectral Clustering

Today

- PageRank

PageRank

The PageRank algorithm ranks websites based on the link structure of the internet. It was used to sort Google search results until 2006, and has been used in

- Biology (GeneRank), chemistry, ecology, neuroscience, physics, sports, and computer systems...

PageRank

Main Idea: Take a random walk on the internet for T steps.

$$
\text { Rank of site } i=\lim _{T \rightarrow \infty} \frac{1}{T} \text { (Number of times site } i \text { is visited). }
$$

Problem: Random walks can get stuck in disconnected components of the internet, and may never visit a given site i.

Solution: Every so often, the random walker teleports to a random site on the internet. The walker is called a random surfer.

Code demo

Mathematics of PageRank

To describe PageRank mathematically, we start with an adjacency matrix W

$$
W(i, j)= \begin{cases}1, & \text { if site } i \text { links to site } j \\ 0, & \text { otherwise }\end{cases}
$$

We also have a probability transition matrix P for the random walk:

$$
P(i, j)=\text { Probability of stepping from } j \text { to } i .
$$

Both P and W are $n \times n$ matrices, $n=$ number of webpages.

Mathematics of PageRank

Clicking on a link at random from webpage j leads to the transition probabilities

$$
P(i, j)=\frac{W(j, i)}{\sum_{k=1}^{n} W(j, k)} .
$$

Exercise 1. Show that $P=W^{T} D^{-1}$, where D is the diagonal matrix with diagonal entries $D(i, i)=\sum_{j=1}^{n} W(i, j)$.

Random surfer

Let $\alpha \in[0,1)$ be the random walk probability, and let $v \in \mathbb{R}^{n}$ be the teleportation probability distribution. That is, $v(i) \geq 0$ for all i, and $\sum_{i} v(i)=1$.

Random surfer dynamics: When at website j, the random surfer chooses the next site as follows:

1. With probability α the surfer clicks an outgoing link at random, that is, the surfer navigates to website i with probability $P(i, j)$.
2. With probability $1-\alpha$ the surfer teleports to website i with probability $v(i)$.

Teleportation

Teleportation distribution: Common choices are

- $v(i)=1 / n$ for all i (jump to a site uniformly at random).
- (Localized PageRank) $v(i)=\delta_{i j}$ (always jump back to site j).

Localized PageRank ranks all sites based on their similarity to site j.

The PageRank vector

For $k \geq 0$ define
$x_{k}(i)=$ Probability that the random surfer is at page i on step k.

Definition 2. The PageRank vector x is

$$
x(i)=\lim _{k \rightarrow \infty} x_{k}(i),
$$

provided the limit exists.

Transition probabilities

To see how x_{k} transitions to x_{k+1} requires some probability. We condition on the location of the surfer at step k, and on the outcome of the coin flip, to obtain

$$
\begin{equation*}
x_{k+1}(i)=(1-\alpha) v(i)+\alpha \sum_{\left(\sum_{k=1}\right)(i, j) x_{k}(j)}^{(i)} \tag{1}
\end{equation*}
$$

If x_{k} converges to a vector x as $k \rightarrow \infty$, then x should satisfy

$$
x=(1-\alpha) v+\alpha P x .
$$

Question: Does x_{k} converge as $k \rightarrow \infty$, and if so, how quickly does it converge?

Analysis of PageRank
We consider the PageRank equation

$$
\begin{equation*}
x=(1-\alpha) v+\alpha P x \tag{2}
\end{equation*}
$$

Lemma 3. Let $v \in \mathbb{R}^{n}$ and $0 \leq \alpha<1$. Then there is a unique vector $x \in \mathbb{R}^{n}$ solving the PageRank equation (2). Furthermore, the following hold.
(i) We have $\sum_{i=1}^{n} x(i)=\sum_{i=1}^{n} v(i)$. \leftarrow if $\sum v(i)=1$ then
(ii) If $v(i) \geq 0$ for all i, then $x(i) \geq 0$ for all i.

$$
\sum x(i)=1
$$

Tit $v(i)$ are probabilities
So are $x(i)$.

The ℓ_{1}-norm ${ }^{\text {Recall }}\left\|_{k}\right\|=\sqrt{\sum x(i)^{2}}$ Endidean norm It will be more convenient to work in the ℓ_{1}-norm $\|\cdot\|_{1}$ defined by $\quad\|x\|=\|x\|_{2}$

$$
\|x\|_{1}=\sum_{i=1}^{n}|x(i)| .
$$

In the ℓ_{1}-norm, the transition matrix P is non-expansive.

Proof: Recall $\sum_{i=1}^{n} p(i, j)=1$ (k)

$$
\begin{aligned}
\left\|P_{x}\right\|_{1}=\sum_{i=1}^{n}|P x(i)| & =\sum_{i=1}^{n}\left|\sum_{j=1}^{n} P(i, j) x(j)\right| \\
& \leq \sum_{i=1}^{n} \sum_{j=1}^{n} P(i, j)|x(j)|
\end{aligned}
$$

Sum
over i

$$
\left(S^{\prime}\right)=\sum_{j=1}^{n}|x(j)|=\|x\|_{1}
$$

Prot: (of lemma 3) $\quad x=(1-\alpha) v+\alpha P_{x}$
Write as $A x=v$ where

$$
A=(1-\alpha)^{-1}(I-\alpha P) \quad \alpha<1
$$

Since $A_{x}=(1-\alpha)^{-1}\left(x-\alpha P_{x}\right)$

Claim: $\operatorname{Ker}(A)=\{0\}$ far $0 \leq \alpha<1$ To see this, let $z \in \operatorname{ker}(A), A z=0$
or $(y-\alpha)^{-1}(z-\alpha P z)=0$

$$
z=\alpha P z
$$

Thus,

$$
\text { hus, } \begin{aligned}
\|z\|_{1} & =\|\alpha P z\|_{1} \\
& =\alpha\|P z\|_{1} \\
& \leq \alpha\|z\|_{1}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & (1-\alpha)\|z\|_{1} \leq 0 \\
\Rightarrow & (1-\alpha)\|z\|_{1}=0
\end{array}
$$

so either $z=0$ or $\alpha=1$ and $\alpha<1$ so $z=0$
Hence for every $v \in \mathbb{R}^{n}$ there exists a unique $x \in \mathbb{R}^{n}$ solving

$$
x=(1-\alpha) v+\alpha P_{x}
$$

To prove (i): $\sum_{i=1}^{n} x(i)=\sum_{i=1}^{n} v(i)$

$$
\begin{aligned}
& \sum_{i=1}^{n} x(i)=\sum_{i=1}^{n}\left((1-\alpha) v(i)+\alpha \sum_{j=1}^{n} P(i, j) x(j)\right) \\
&=(1-\alpha) \sum_{i=1}^{n} v(i)+\alpha \sum_{j=1}^{n} x(j) \sum_{i=1}^{n} P(i, j) \\
&=(1-\alpha) \sum_{i=1}^{n} v(i)+\alpha \sum_{i=1}^{n} x(i)=1 \\
& \Rightarrow(1-\alpha) \sum_{i=1}^{n} x(i)=(1-\alpha) \sum_{i=1}^{n} v(i)
\end{aligned}
$$

$\sin u \alpha<1$
To prove (ii): If $v(i) \geq 0$ for all i Assume $v(i) \geq 0$ then $x(i) \geq 0$ for all i

$$
\left.\begin{array}{l}
\text { for all } i \\
|x(i)|=\left|(1-\alpha) v(i)+\alpha \sum_{j=1}^{n} p(i, j) x(j)\right| \\
\leq(1-\alpha) v(i)+\alpha \sum_{j=1}^{n} P(i, j)|x(j)| \\
\sum_{i=1}^{n} \mid x(i, j)=1
\end{array}\right\} \leq(1-\alpha) \sum_{i=1}^{n} v(i)+\alpha \sum_{j=1}^{n}|x(j)|
$$

$$
\Longrightarrow x(i) \geq 0 \text { 四 }
$$

Eigenvector problem
Remark 5. When v is a probability distribution, it is common to rewrite the
PageRank problem (2) as an eigenvector problem

$$
\begin{array}{ll}
\text { tor problem } & X(i) \geq 0 \\
P_{a} x=x & 1^{\top} x=1
\end{array}
$$

where

$$
P_{a}:=(1-\alpha) u 1^{T}+\alpha P . \quad=\sum_{i=1}^{L} x(i)
$$

Note

$$
\begin{aligned}
x & =(1-\alpha) v+\alpha P_{x} \\
& =(1-\alpha) v 1^{\top} x+\alpha P_{x} \\
& =\underbrace{\left((1-\alpha) v 1^{\top}+\alpha P\right) x}_{P_{\alpha}} \Rightarrow P_{\alpha} x=x
\end{aligned}
$$

Convergence of the PageRank iteration

Let $v \in \mathbb{R}^{n}$ and $0 \leq \alpha<1$. Let x_{k} satisfy the PageRank iteration

$$
x_{k+1}=(1-\alpha) v+\alpha P x_{k},
$$

and let x be the unique solution of the PageRank problem

$$
x=(1-\alpha) v+\alpha P x .
$$

Theorem 6. We have

$$
\begin{equation*}
\left\|x_{k}-x\right\|_{1} \leq \alpha^{k}\left\|x_{0}-x\right\|_{1} \tag{3}
\end{equation*}
$$

Since $0 \leq \alpha<1$, this is convergence of $x_{k} \rightarrow x$ with a linear convergence rate of α.

$$
x=(1-\alpha) v+\alpha P x
$$

$$
x_{k}=(1-\alpha) v+\alpha P x_{k-1}
$$

$$
\begin{aligned}
\left\|x_{k}-x\right\|_{1} & =\left\|\alpha\left(P x_{x_{k-1}}-P_{x}\right)\right\|_{1} \\
& =\alpha\left\|P\left(x_{k-1}-x\right)\right\|_{1} \\
& \leq \alpha\left\|x_{k-1}-x\right\|_{1}
\end{aligned}
$$

By induction...

$$
\leq \alpha^{k}\left\|x_{0}-x\right\|_{1}
$$

Since $\alpha<1, \quad \alpha^{k} \rightarrow 0$ as $k \rightarrow \infty$

Power iteration

Remark 7. In the eigenvector formulation discussed above, the PageRank iteration $x_{k+1}=P_{\alpha} x_{k}$ is basically the power iteration to find the largest eigenvector of P_{α} The normalization step is not needed since $\left\|x_{k}\right\|_{1}=1$ for all k.

Personalized PageRank for image retrieval (.ipynb)

