Mathematics of Image and Data Analysis Math 5467

Lecture 9: Discrete Fourier Transform

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

Last time

- PageRank

Today

- Discrete Fourier Transform (DFT)

Audio compression basis

Figure 1: The first 4 principal components computed during PCA-based audio compression. Two of the basis functions strongly resemble the trigonometric functions sin and cos.

A role for a hand-crafted change of basis

- PCA finds the best change of basis that represents your data with as few basis vectors as possible.
- In some setting PCA is too expensive (embedded environments, cell phones, digital cameras, video surveillance, etc.).
- A hand-crafted change of basis can be computed very efficiently and studied much more deeply mathematically.

Complex numbers

We recall that a complex number has the form $z=a+i b$ where $a, b \in \mathbb{R}$ and $i=\sqrt{-1}$. The set of all complex numbers is denoted \mathbb{C}. For a complex number $z=a+i b$, the complex conjugate, denoted \bar{z}, is given by

$$
\bar{z}=a-i b .
$$

The modulus of z, denoted $|z|$, is given by

$$
\begin{aligned}
|z|=\sqrt{a^{2}+b^{2}} & =\sqrt{\frac{\sqrt{z \bar{z}}}{\frac{1}{U}}} \quad i^{2}=-1 \\
(a+i b)(a-i b) & =a^{2}+b^{2} \\
z & \frac{\bar{z}}{}
\end{aligned}
$$

Complex exponential and Euler's formula
The complex exponential of $z \in \mathbb{C}$ is defined by the Taylor series expansion

$$
e^{z}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!}
$$

The Taylor series is absolutely convergent in the whole complex plane $e^{i \pi}=-$ important identity involving the complex exponential is Euler's identity
(1) \qquad formula
for all real numbers $t \in \mathbb{R}$.
Short poos: $f(t)=\cos t+i \sin t$

$$
\begin{aligned}
f^{\prime}(t) & =-\sin t+i \cos t \\
& =i(i \sin t+\cos t)
\end{aligned}
$$

Proof of Euler's formula

$$
\begin{aligned}
\text { So } f^{\prime}(t) & =i f(t) \\
\frac{d}{d t}\left(\frac{e^{i t}}{f(t)}\right) & =\frac{f(t) i e^{i t}-e^{i t} f^{\prime}(t)}{f(t)^{2}} \\
f^{\prime}=i f & =\frac{f(t) i e^{i t}-e^{i t} i f(t)}{f(t)^{2}} \\
& =0
\end{aligned}
$$

S. $\frac{e^{i t}}{f(t)}=C \quad$ constant.

Set $t=0, e^{0}=1$

$$
\begin{align*}
& f(0)=\cos (0)+i \sin \theta \\
&=1 \\
& \Rightarrow \quad c=1 \tag{VIII}
\end{align*}
$$

The Discrete Fourier Transform (DFT)

Let $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ be the cyclic group $\mathbb{Z}_{n}=\mathbb{Z} / n$ (i.e., integers $p, q \in \mathbb{Z}_{n}$ are added, subtracted, or multiplied, the result is interpreted modulo n).

Example 1. In \mathbb{Z}_{4} we have $2+2=4=0 \bmod 4$.

Let $L^{2}\left(\mathbb{Z}_{n}\right)$ denote the vector space of functions $f: \mathbb{Z}_{n} \rightarrow \mathbb{C}$. We define the inner product on $L^{2}\left(\mathbb{Z}_{n}\right)$ by

$$
\langle f, g\rangle=\sum_{k=0}^{n-1} f(k) \overline{g(k)}
$$

The norm of $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ is defined by $\|f\|=\sqrt{\langle f, f\rangle}$.

The Discrete Fourier Transform (DFT)
The DFT is an orthogonal change of basis in $L^{2}\left(\mathbb{Z}_{n}\right)$ that expresses a function $f: \in L^{2}\left(\mathbb{Z}_{n}\right) \rightarrow \mathbb{C}$ in terms sinusoidal basis functions of different frequencies
(2)

Which frequencies?

$$
\begin{aligned}
& k \mapsto e^{2 \pi i \sigma k}=\cos (2 \pi \sigma k)+i \sin (2 \pi \sigma k) . \\
& \sigma=\text { frequency (\#cycles(anit) } \\
& T=\frac{1}{\sigma}=\text { period }
\end{aligned}
$$

Period should divide evenly in ts n so the $e^{2 \pi i \sigma k}$ is n-periodic

$$
n=T \cdot l, l=0, \ldots, n-1
$$

$$
n=\frac{l}{\sigma} \text { or } \sigma=\frac{l}{n}
$$

Note if $l=n$ then

$$
\begin{gathered}
e^{2 \pi i k}=\cos (2 \pi k)+i \sin (2 \pi k) \\
=1=0
\end{gathered}
$$

same as $l=0$

DFT basis functions

We define

$$
\begin{equation*}
u_{\ell}(k):=e^{2 \pi i k \ell / n}, \quad \ell=0,1, \ldots, n-1 \tag{3}
\end{equation*}
$$

It is often useful to note that we can set $\omega=e^{2 \pi i / n}$ and write

$$
u_{\ell}(k)=\omega^{k \ell} .
$$

The complex number ω is an $n^{\text {th }}$ root of unity, meaning that

$$
\omega^{n}=e^{2 \pi i}=1
$$

We also have $\bar{\omega}=e^{-2 \pi i / n}=\omega^{-1}$.

$$
\begin{aligned}
e^{i t} & =\cos t-i \sin t \\
& =\cos (-t)+i \sin (-t)=e^{-i t}
\end{aligned}
$$

$\cos (2 \pi k l / n)$

(a) $u_{0} \quad \ell=0$

(d) u_{3}

(g) u_{6}

(b) $u_{1} \ell=1$

(e) u_{4}

(h) u_{7}

(c) $u_{2} \ell=2$

(f) u_{5}

(i) u_{8}

$$
\begin{aligned}
\begin{aligned}
& \text { Aliasing } \\
& u_{n-l}(k)=e^{2 \pi i(n-l) k / n} \\
&=\omega^{(n-l) k} \quad \omega=e^{2 \pi i / n} \\
&=\underbrace{\omega^{n k}} \omega^{-l k} \\
&=\underbrace{\omega^{-l k}}=\overline{\omega^{l k}}=\overline{u_{l}(k)}
\end{aligned}
\end{aligned}
$$

since $u_{l}(k)=\omega^{l k} \rightarrow u_{-l}(k)$
negative frequencies.

Orthogonality
Lemma 1. The functions $u_{0}, u_{1}, \ldots, u_{n-1}$ are orthogonal. In particular
(4)

$$
\left\langle u_{\ell}, u_{m}\right\rangle= \begin{cases}n, & \text { if } \ell=m \\ 0, & \text { otherwise }\end{cases}
$$

Prot: $\left\langle u_{l}, u_{m}\right\rangle=\sum_{k=0}^{n-1} u_{l}(k) \overline{u_{m}(k)}$

$$
\begin{array}{ll}
\omega=e^{2 \pi i / n} & =\sum_{k=0}^{n-1} \omega^{l k} \overline{\omega^{m k}} \\
\bar{\omega}=\omega^{-1} & =\sum_{k=0}^{n-1} \omega^{l k} w^{-m k}
\end{array}
$$

Hence $\left\langle u_{l}, u_{m}\right\rangle=\sum_{k=0}^{n-1} w^{(l-m) k}$
If $l=m$ then $\left\langle u_{l}, u_{l}\right\rangle=\sum_{k=0}^{n-1} 1=n$
If $l \neq m$, write $r=\omega^{l-m}$.
Then $\left\langle u_{l}, u_{m}\right\rangle=\sum_{k=0}^{n-1} r^{k}=\frac{r^{n}-1}{r-1}=0$
Note $r^{n}=\left(\omega^{l-m}\right)^{n}=\left(\omega^{n}\right)^{l-m}=1$ since $\omega^{n}=1$. So $\left\langle u_{l}, u_{m}\right\rangle=0$, m

Aside: Geometric series

$$
\begin{aligned}
& S_{n}=\sum_{k=0}^{n-1} r^{k}=1+r+\cdots+r^{n-1} \\
& r S_{n}=\sum_{k=0}^{n-1} r^{k+1}=r+r^{2}+\cdots+r^{n} \\
& r S_{n}-s_{n}=r^{n}-1 \\
& \Rightarrow s_{n}=\frac{r^{n}-1}{r-1}
\end{aligned}
$$

The Discrete Fourier Transform writes

$$
f(k)=\sum_{l=0}^{n-1} c_{l} u_{l}(k)
$$

Note

$$
\begin{aligned}
& \text { Note }\left\langle f, u_{m}\right\rangle=\sum_{l=0}^{n-1} c_{l}\left\langle u_{l}, u_{m}\right\rangle=n c_{m} \\
& \text { So }_{m}=\frac{1}{n}\left\langle f, u_{m}\right\rangle \text { and } \\
& \quad f(k)=\frac{1}{n} \sum_{l=0}^{n-1}\left\langle f, u_{l}\right\rangle u_{l}(k)
\end{aligned}
$$

Definition
Definition 2. The Discrete Fourier Transform (DFT) is the mapping $\mathcal{D}: L^{2}\left(\mathbb{Z}_{n}\right) \rightarrow$
$L^{2}\left(\mathbb{Z}_{n}\right)$ defined by

$$
\mathcal{D} f(\ell)=\sum_{\sum_{k=0}^{n-1} f(k) \omega^{-k \ell}}^{\langle\text {, Ul }\rangle}=\sum_{k=0}^{n-1} f(k) e^{-2 \pi i k \ell / n}
$$

Whole: $\left\langle f, u_{l}\right\rangle=\sum_{k=0}^{n-1} f(k) \overline{u_{l}(k)}=\sum_{k=0}^{n-1} f(k) \omega^{-k l}$
Proposition 3. If $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ is real-valued (ie., $f(k) \in \mathbb{R}$ for all k), then $\mathcal{D} f(\ell)=\overline{\mathcal{D} f(n-\ell)}$.
Prat : Recall $u_{l}(k)=\overline{U_{n-l}^{(k)}}$

$$
\begin{aligned}
& D f(l)=\langle f, u l\rangle=\left\langle f, \overline{u_{n-l}}\right\rangle \\
&\text { since } \left.\rightarrow \overline{\left\langle f, u_{n-l}\right.}\right\rangle \\
& f \in \mathbb{R}=\overline{D f(n-l)}
\end{aligned}
$$

Inverse Fourier Transform

Theorem 4 (Fourier Inversion Theorem). For any $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ we have

$$
\begin{equation*}
f(k)=\frac{1}{n} \sum_{\ell=0}^{n-1} \mathcal{D} f(\ell) \omega^{k \ell}=\frac{1}{n} \sum_{\ell=0}^{n-1} \mathcal{D} f(\ell) e^{2 \pi i k \ell / n} \tag{5}
\end{equation*}
$$

Definition 5 (Inverse Discrete Fourier Transform). The Inverse Discrete Fourier Transform (IDFT) is the mapping $\mathcal{D}^{-1}: L^{2}\left(\mathbb{Z}_{n}\right) \rightarrow L^{2}\left(\mathbb{Z}_{n}\right)$ defined by

$$
\mathcal{D}^{-1} f(\ell)=\frac{1}{n} \sum_{k=0}^{n-1} f(k) \omega^{k \ell}=\frac{1}{n} \sum_{k=0}^{n-1} f(k) e^{2 \pi i k \ell / n} .
$$

Proat of Thm 4:

$$
\begin{aligned}
& \frac{1 \times a a t \text { at } 1 h m}{\sum_{l=0}^{n-1} D f(l) w^{k l}}=\frac{1}{n} \sum_{l=0}^{n-1}(\underbrace{\left(\sum_{j=0}^{n-1} f(j) w^{-j l}\right.}_{D f(l)}) w^{k l} \\
& C=\frac{1}{n} \sum_{j=0}^{n-1} f(j) \sum_{l=0}^{n-1} w^{k l} \omega^{-j l} \\
& =\frac{1}{n} \sum_{j=0}^{n-1} f(j)\left\langle u_{k}, u_{j}\right\rangle=f(k) \\
& u_{j}(l)
\end{aligned}
$$

Matrix version

Remark 6. Define the $n \times n$ complex-valued matrix with entries $W(k, \ell)=\omega^{k \ell}$, that is

$$
W=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \tag{6}\\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{array}\right]
$$

$$
\omega=e^{2 \pi i / n}
$$

Then the DFT can be expressed via matrix multiplication as $\mathcal{D} f=\bar{W} f$. The inverse DFT can be expressed as $\mathcal{D}^{-1} f=\frac{1}{n} W f$. In both cases we treat f as a vector $f \in \mathbb{C}^{n}$. Theorem 4 (Fourier Inversion) can be restated as saying that $W \bar{W}=n I$.

Basic properties

Exercise 7. Show that the DFT enjoys the following basic shift properties.

1. Recall that $u_{\ell}(k):=\frac{e^{-2 \pi j e t n}}{e^{2 \pi i k \ell / n}}=\omega^{\omega k \ell}$. Show that
2. Let $T_{\ell}: L^{2}\left(\mathbb{Z}_{n}\right) \rightarrow L^{2}\left(\mathbb{Z}_{n}\right)$ be the translation operator $T_{\ell} f(k)=f(k-\ell)$. Show that

$$
\mathcal{D}\left(T_{\ell} f\right)(k)=e^{-2 \pi i k \ell / n} \mathcal{D} f(k) .
$$

[Hint: You can equivalently show that $\mathcal{D}^{-1}\left(f \cdot u_{\ell}\right)(k)=\mathcal{D}^{-1} f(k-\ell)$, using an argument similar to part 1.]

Intro to DFT (.ipynb)

