Image Diffusion and Sharpening Via High-Order Sobolev Gradient Flows

Jeff Calder* Abdol-Reza Mansouri† Anthony Yezzi‡

*Department of Mathematics and Statistics, Queen’s University, †School of Electrical and Computer Engineering, Georgia Institute of Technology

Motivation

Many common image processing PDE can be equivalently interpreted as the L^2 gradient descent equations on appropriately chosen energy functionals.

Heat Equation

$$\frac{\partial u}{\partial t} = \Delta u \iff u \mapsto \int \|\nabla u\|^2$$ \hspace{1cm} (1)

Perona-Malik Equation

$$\frac{\partial u}{\partial t} = \text{div}(g(\|\nabla u\|^2)\nabla u) \iff u \mapsto \int g(\|\nabla u\|^2)$$ \hspace{1cm} (2)

Youx-Kaveh Equation

$$\frac{\partial u}{\partial t} = \Delta g(\|\nabla u\|^2) \iff u \mapsto \int g(\|\nabla u\|^2)$$ \hspace{1cm} (3)

Motivated by recent work in active contour applications we ask the following questions:

- How do these PDE change when we modify the metric from L^2 to a Sobolev metric?
- Are the resulting PDE well-posed and what properties do they have?
- How can we numerically compute solutions?
- Do these PDE have any useful properties for image processing?

This work answers these questions for the heat equation.

Sobolev Gradient Descent

We define the following inner product on $H^k_0(\Omega)$

$$\langle u, v \rangle_{H^k_0(\Omega)} = \sum_{|\alpha| \leq k} \int \nabla^\alpha u \cdot \nabla^\alpha v$$ \hspace{1cm} (4)

where the positive integers $c_\alpha \geq 1$ are chosen so that upon integrating by parts we have

$$\langle u, v \rangle_{H^k_0(\Omega)} = (\|\Delta^k u\|, v)$$ \hspace{1cm} (5)

The norm induced by this inner product is clearly equivalent to the standard L^2 norm. We now recall how the heat equation can be interpreted as the L^2 gradient descent equation on H^k_0.

$$\frac{d}{dt} E[u](t) = \int \nabla u \cdot \nabla v$$ \hspace{1cm} (6)

where $E[u](t) = \int \|\nabla u\|^2$.

Sobolev Kernels S_{λ}

In order to compute a Sobolev gradient, we need to solve the partial differential equation

$$(\|\Delta^{k} u\|, v) = f,$$ \hspace{1cm} (11)

where $f \in L^2(\mathbb{R}^n)$, $\lambda > 0$ and $k \geq 1$. The Green’s function for (11) is the Bessel function

$$S_{\lambda}(x) = \frac{1}{2\pi} e^{-t\frac{\sigma^2}{2\lambda}}$$ \hspace{1cm} (12)

Hence, we can compute $u = (\|\Delta^{k} u\|, v) f$ via the convolution $u = S_{\lambda} * f$. If we set $\lambda = \frac{\sigma^2}{2\lambda}$ for some $\sigma > 0$ and take $k \to \infty$ we obtain

$$\lim_{k \to \infty} S_{\lambda}(x) = G_{\sigma}(x) = \frac{1}{2\lambda} e^{-x^2/2\lambda}.$$ \hspace{1cm} (13)

Hence as $k \to \infty$, the Sobolev gradients tend towards Gaussian smoothed L^2 gradients.

Theorem (Existence and Uniqueness)

Let $m \geq 0$. Then for every $u_0 \in H^0_0(\Omega)$, there exists a unique $u \in C^1([0, \infty[; H^m_0(\Omega))$ solving (10)

$$\frac{du}{dt} = c(\|\Delta^{k} u\|)^{-\cdot} \Delta u, \quad \text{in} \quad \Omega \times [0, \infty[,$$ \hspace{1cm} (10)

for $t = 0$ where $c \in \mathbb{R}$ is a constant which controls the direction of diffusion. For $m = 0$ we identify $H_0^k(\Omega)$ with $L^2(\Omega)$.

Remark

Since (10) is well-posed for $c < 0$ we can consider reversing the Sobolev diffusion equations for image sharpening and deblurring.

Theorem (Higher Regularity)

If $u_0 \in C^k_0(\Omega)$ and u solves (10) then $u(t) \in C^k(\Omega)$ for all $t \in [0, T]$.

Remark

The same result holds if we replace $C^k(\Omega)$ by $L^2(\Omega)$ for any $1 \leq \beta \leq \infty$.

Figure

Various Sobolev reverse diffusions ($c = -1$, $\lambda = 1$) shown when $u \mapsto \int \|\nabla u\|^2$ is reduced to 25%.

Well-Posed Reverse Diffusion Under Increasing Sobolev Orders

(a) H^d diffusion (b) H^d diffusion (c) H^d diffusion

(a) H^d diffusion (b) H^d diffusion (c) H^d diffusion

(a) H^d diffusion (b) H^d diffusion (c) H^d diffusion

(a) H^d diffusion (b) H^d diffusion (c) H^d diffusion

Figure: Various Sobolev reverse diffusions ($c = -1$, $\lambda = 1$) shown when $u \mapsto \int \|\nabla u\|^2$ has doubled.