The Way of Analysis

p. 13:

2.) Write the set A of all finite subsets of \mathbb{N} as the countable union of finite sets

$$A = \bigcup_{i \in \mathbb{N}} A_i,$$

where A_i is the set of all subsets of $\{1, \ldots, i\}$. (Note that A_i has 2^i elements.) Since countable unions of countable sets are countable, A is countable.

3.) Since the cartesian product of two countable sets is still countable, the set $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ is countable. The map $f : \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) \to \mathbb{Q}$ defined by $f(p, q) = \frac{p}{q}$ is obviously onto. Therefore, \mathbb{Q} is at most countable (it is not finite, so it is countable).

NOTE: You should work out on your own (and if I have time I’ll add it here) a proof of the following claim which gets used in the solution here:

CLAIM: Suppose you have a map $\phi : C \to S$ from a set which is countable onto a set S. Then the set S is either finite or it is countable.

4.) Suppose that B is uncountable and $A \subset B$ is countable and define

$$C = B \setminus A = \{x \in B \mid x \notin A\}.$$

Then $B = A \cup C$. Suppose (for contradiction) C were countable, then B would be the union of two countable sets and hence also countable. This is a contradiction. Therefore, C is not countable.

5.) Suppose that a set A has two elements, say $A = \{0, 1\}$. We will show that the countable product of A with itself, call this B, is uncountable (this easily implies the claim). There are several ways to prove this, I will do it by showing that A has the same cardinality as $2^\mathbb{N}$. To do this, define a map $f : B \to 2^\mathbb{N}$ by sending (b_1, b_2, b_3, \ldots) (where b_i is 0 or 1) to the subset of \mathbb{N}

$$\{j \in \mathbb{N} \mid b_j = 1\}.$$

I will leave it to you to write out the proof that this map is a bijection (“bijection” is the same as “one-to-one and onto”.) Hence B is uncountable.

7.) Suppose that $f : A \to 2^A$. We will show that f is not onto. Define a subset B of A (i.e., $B \in 2^A$) by

$$B = \{a \in A \mid a \notin f(a)\}.$$

By construction an element a is either in B or $f(a)$ but not in both. In particular, $B \neq f(a)$ for any a so that f is not onto. (This is the same as the proof we gave in class.)