Theta Basis for Generalized Cluster Algebras

Elizabeth Kelley
(joint work with Man-Wai Cheung and Gregg Musiker)

December 9, 2020
A general roadmap

generalized cluster algebras

scattering diagram construction

mutation invariance, wall-crossing, and path-ordered products

building \mathcal{A} from the cluster scattering diagram

broken lines, theta functions

theta basis
Ordinary Cluster Algebras

Ordinary cluster algebras were defined by Fomin and Zelevinsky in 2001.
Ordinary cluster algebras were defined by Fomin and Zelevinsky in 2001.

A cluster algebra is a type of commutative algebra whose generators, i.e. \textit{cluster variables}, are related by standard \textit{exchange relations}. The cluster variables appear in fixed size subsets called \textit{clusters}, each of which suffices to generate the entire algebra. The clusters are related via \textit{mutation}.
Ordinary cluster algebras were defined by Fomin and Zelevinsky in 2001.

A cluster algebra is a type of commutative algebra whose generators, i.e. *cluster variables*, are related by standard *exchange relations*. The cluster variables appear in fixed size subsets called *clusters*, each of which suffices to generate the entire algebra. The clusters are related via *mutation*.

A cluster algebra is specified by a set of *seed data* $\Sigma = (x, y, B)$ where

- $x = (x_1, \ldots, x_n)$ is the *initial cluster*,
- $y = (y_1, \ldots, y_n)$ is the *initial coefficient cluster*,
- and the *exchange matrix* B is an $n \times n$ skew-symmetrizable matrix with entries in \mathbb{Z}.

Ordinary Cluster Algebras

We can picture the structure

\[
\begin{array}{c}
(x', y', B') \\
\downarrow \mu_1 \\
(x^{(n)}, y^{(n)}, B^{(n)}) \\
\downarrow \mu_n
\end{array}
\]

\[
\begin{array}{c}
(x, y, B) \\
\downarrow \mu_2 \\
(x'', y'', B'') \\
\downarrow \mu_3
\end{array}
\]

\[
\begin{array}{c}
(x''', y''', B''') \\
\downarrow \cdots
\end{array}
\]

where \(\mu_k \) stands for mutation in direction \(k \).
Algebraically, mutation in direction k is an involutive operation which maps a seed $\Sigma = (x, y, B)$ to another seed $\mu_k(\Sigma) = (x', y', B')$ via the relations:

$\begin{align*}
 b'_{ij} &= \begin{cases}
 -b_{ij} & \text{if } i = k \text{ or } j = k \\
 b_{ij} + [-b_{ik}]_+ b_{kj} + b_{ik}[b_{kj}]_+ & \text{else}
 \end{cases} \\
 y'_i &= \begin{cases}
 y_k^{-1} & \text{if } i = k; \\
 y_i y_k[b_{ki}]_+ (1 \oplus y_k)^{-b_{ki}} & \text{if } i \neq k
 \end{cases} \\
 x'_i &= \begin{cases}
 x_i & \text{if } i \neq k \\
 \frac{y_k \prod x_j^{[b_{ik}]_+} + \prod x_j^{-[b_{ik}]_-}}{x_k (1 \oplus y_k)} & \text{if } i = k
 \end{cases}
\end{align*}$

where $[a]_+ = \max(0, a)$.

Note that these exchange relations are always binomial.
Example: Let $\Sigma = \left((x_1, x_2), (y_1, y_2), \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right)$ ("Type A2")
Example: Let $\Sigma = \left((x_1, x_2), (y_1, y_2), \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right)$ ("Type $A2$")

Suppose I want to find $\mu_1(\Sigma)$. Then I compute

$$B' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$y_1' = \frac{1}{y_1}$$

$$y_2' = y_1y_2$$

$$x_1' = \frac{y_1 + x_2}{x_1}$$

$$x_2' = x_2$$
Example: Let $\Sigma = \left((x_1, x_2), (y_1, y_2), \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right)$ ("Type A2")

Suppose I want to find $\mu_1(\Sigma)$. Then I compute

$$B' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$y_1' = \frac{1}{y_1}$$
$$y_2' = y_1 y_2$$
$$x_1' = \frac{y_1 + x_2}{x_1}$$
$$x_2' = x_2$$

So $\mu_k(\Sigma) = \left((\frac{y_1 + x_2}{x_1}, x_2), (\frac{1}{y_1}, y_1 y_2), \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right)$
If we continue, alternating the direction of mutation, we find that this seed generates a cluster algebra with cluster variables

\[
\left\{ x_1, x_2, \frac{1 + x_1 y_2}{x_2}, \frac{y_1 + x_2}{x_1}, \frac{y_1 + x_2 + x_1 y_1 y_2}{x_1 x_2} \right\}
\]

Notice: Each cluster variable is a Laurent polynomial in \(x_1, \ldots, x_n\). In fact, the cluster variables can be written as Laurent polynomials in terms of any choice of initial cluster. ("Laurent phenomenon") Moreover, the coefficients of these Laurent polynomials are all positive integers. ("positivity") These observations lead to a natural question: how can we define a "good" basis for a cluster algebra?
If we continue, alternating the direction of mutation, we find that this seed generates a cluster algebra with cluster variables

\[\{ x_1, x_2, \frac{1 + x_1 y_2}{x_2}, \frac{y_1 + x_2}{x_1}, \frac{y_1 + x_2 + x_1 y_1 y_2}{x_1 x_2} \} \]

Notice:
If we continue, alternating the direction of mutation, we find that this seed generates a cluster algebra with cluster variables

\[
\left\{ x_1, x_2, \frac{1 + x_1 y_2}{x_2}, \frac{y_1 + x_2}{x_1}, \frac{y_1 + x_2 + x_1 y_1 y_2}{x_1 x_2} \right\}
\]

Notice:

- Each cluster variable is a \textit{Laurent polynomial} in x_1, \ldots, x_n. In fact, the cluster variables can be written as Laurent polynomials in terms of any choice of initial cluster. ("Laurent phenomenon")
If we continue, alternating the direction of mutation, we find that this seed generates a cluster algebra with cluster variables

\[\left\{ x_1, x_2, \frac{1 + x_1 y_2}{x_2}, \frac{y_1 + x_2}{x_1}, \frac{y_1 + x_2 + x_1 y_1 y_2}{x_1 x_2} \right\} \]

Notice:

- Each cluster variable is a \textit{Laurent polynomial} in \(x_1, \ldots, x_n \).
 In fact, the cluster variables can be written as Laurent polynomials in terms of any choice of initial cluster. ("Laurent phenomenon")

- Moreover, the coefficients of these Laurent polynomials are all positive integers. ("positivity")
If we continue, alternating the direction of mutation, we find that this seed generates a cluster algebra with cluster variables

\[
\{ x_1, x_2, \frac{1 + x_1 y_2}{x_2}, \frac{y_1 + x_2}{x_1}, \frac{y_1 + x_2 + x_1 y_1 y_2}{x_1 x_2} \}
\]

Notice:

- Each cluster variable is a *Laurent polynomial* in \(x_1, \ldots, x_n \).
 In fact, the cluster variables can be written as Laurent polynomials in terms of any choice of initial cluster. ("Laurent phenomenon")
- Moreover, the coefficients of these Laurent polynomials are all positive integers. ("positivity")

These observations lead to a natural question: how can we define a “good” basis for a cluster algebra?
Ordinary Cluster Algebras

There are many known bases for various subclasses:

- Monomial basis for Dynkin-type cluster algebras (Caldero-Keller)
- Atomic basis for types A and \tilde{A} (Sherman-Zelevinsky, Irelli, Dupont-Thomas)
- Bracelet basis for surface type (Musiker-Schiffler-Williams)
- Bangle basis for surface type (Musiker-Schiffler-Williams)
- Band basis for surface type (Thurston)
- Standard monomial basis for quantum acyclic algebras (Berenstein-Fomin-Zelevinsky)
- Triangular basis for quantum acyclic algebras (Berenstein-Zelevinsky)
- Dual canonical basis for quantum acyclic algebras (Nakajima, Kimura-Qin)
- Generic basis for quantum acyclic algebras (Dupont, Plamondon)
- Greedy basis for quantum rank 2 cluster algebras (Lee-Li-Rupel-Zelevinsky)
- Theta basis for acyclic cluster algebras (Gross-Hacking-Keel-Kontsevich)
There are many known bases for various subclasses:

- Monomial basis for Dynkin-type cluster algebras (Caldero-Keller)
- Atomic basis for types A and \tilde{A} (Sherman-Zelevinsky, Irelli, Dupont-Thomas)
- Bracelet basis for surface type (Musiker-Schiffler-Williams)
- Bangle basis for surface type (Musiker-Schiffler-Williams)
- Band basis for surface type (Thurston)
- Standard monomial basis for quantum acyclic algebras (Berenstein-Fomin-Zelevinsky)
- Triangular basis for quantum acyclic algebras (Berenstein-Zelevinsky)
- Dual canonical basis for quantum acyclic algebras (Nakajima, Kimura-Qin)
- Generic basis for quantum acyclic algebras (Dupont, Plamondon)
- Greedy basis for quantum rank 2 cluster algebras (Lee-Li-Rupel-Zelevinsky)
- The theta basis for acyclic cluster algebras (Gross-Hacking-Keel-Kontsevich)
Generalized Cluster Algebras

One natural way to generalize an ordinary cluster algebra, introduced by Chekhov and Shapiro in 2011, is to allow the exchange relations to be polynomials with arbitrarily many terms.
Generalized Cluster Algebras

One natural way to generalize an ordinary cluster algebra, introduced by Chekhov and Shapiro in 2011, is to allow the exchange relations to be polynomials with arbitrarily many terms.

A *generalized cluster algebra* has seeds of the form $\Sigma = (x, y, B, r, a)$ where
Generalized Cluster Algebras

One natural way to generalize an ordinary cluster algebra, introduced by Chekhov and Shapiro in 2011, is to allow the exchange relations to be polynomials with arbitrarily many terms.

A generalized cluster algebra has seeds of the form $\Sigma = (x, y, B, r, a)$ where

- x is the initial cluster,
Generalized Cluster Algebras

One natural way to generalize an ordinary cluster algebra, introduced by Chekhov and Shapiro in 2011, is to allow the exchange relations to be polynomials with arbitrarily many terms.

A *generalized cluster algebra* has seeds of the form $\Sigma = (x, y, B, r, a)$ where

- x is the *initial cluster*,
- y is the *initial coefficient cluster*,

Elizabeth Kelley (joint work with Man-Wai
Generalized Cluster Algebras

One natural way to generalize an ordinary cluster algebra, introduced by Chekhov and Shapiro in 2011, is to allow the exchange relations to be polynomials with arbitrarily many terms.

A **generalized cluster algebra** has seeds of the form $\Sigma = (x, y, B, r, a)$ where

- x is the *initial cluster*,
- y is the *initial coefficient cluster*,
- B, the *exchange matrix*, is an $n \times n$ skew-symmetrisable matrix with integer entries,
Generalized Cluster Algebras

One natural way to generalize an ordinary cluster algebra, introduced by Chekhov and Shapiro in 2011, is to allow the exchange relations to be polynomials with arbitrarily many terms.

A *generalized cluster algebra* has seeds of the form \(\Sigma = (x, y, B, r, a) \) where

- \(x \) is the *initial cluster*,
- \(y \) is the *initial coefficient cluster*,
- \(B \), the *exchange matrix*, is an \(n \times n \) skew-symmetrizable matrix with integer entries,
- \(r = (r_1, \ldots, r_n) \) is an \(n \)-tuple of natural numbers with \(r_i \) specifying the degree of the \(i^{\text{th}} \) exchange polynomial,
Generalized Cluster Algebras

One natural way to generalize an ordinary cluster algebra, introduced by Chekhov and Shapiro in 2011, is to allow the exchange relations to be polynomials with arbitrarily many terms.

A generalized cluster algebra has seeds of the form $\Sigma = (x, y, B, r, a)$ where

- x is the initial cluster,
- y is the initial coefficient cluster,
- B, the exchange matrix, is an $n \times n$ skew-symmetrizable matrix with integer entries,
- $r = (r_1, \ldots, r_n)$ is an n-tuple of natural numbers with r_i specifying the degree of the i^{th} exchange polynomial,
- and $a = (a_{i,s})_{i \in [n], s \in [r_i-1]}$ is a collection of scalars such that the coefficients of the i^{th} exchange polynomial are determined by the tuple $(a_{i,0}, a_{i,1}, \ldots, a_{i,r_i-1}, a_{i,r_i})$.
Generalized Cluster Algebras

One natural way to generalize an ordinary cluster algebra, introduced by Chekhov and Shapiro in 2011, is to allow the exchange relations to be polynomials with arbitrarily many terms.

A *generalized cluster algebra* has seeds of the form $\Sigma = (\mathbf{x}, \mathbf{y}, B, r, a)$ where

- \mathbf{x} is the *initial cluster*,
- \mathbf{y} is the *initial coefficient cluster*,
- B, the *exchange matrix*, is an $n \times n$ skew-symmetrizable matrix with integer entries,
- $r = (r_1, \ldots, r_n)$ is an n-tuple of natural numbers with r_i specifying the degree of the i^{th} exchange polynomial,
- and $a = (a_{i,s})_{i \in [n], s \in [r_i-1]}$ is a collection of scalars such that the coefficients of the i^{th} exchange polynomial are determined by the tuple $(a_{i,0}, a_{i,1}, \ldots, a_{i,r_i-1}, a_{i,r_i})$.

We focus on a subtype of generalized cluster algebras called \textit{reciprocal generalized cluster algebras}.
We focus on a subtype of generalized cluster algebras called *reciprocal generalized cluster algebras*.

In these algebras, we require that:

- \(a_{i,1} = a_{i,r_i} = 1 \).
- and \(a_{i,k} = a_{i,r_i-k} \) for all \(2 \leq k \leq r_i - 1 \).
We focus on a subtype of generalized cluster algebras called *reciprocal generalized cluster algebras*. In these algebras, we require that:

- $a_{i,1} = a_{i,r_i} = 1$.
- and $a_{i,k} = a_{i,r_i-k}$ for all $2 \leq k \leq r_i - 1$.

The data r_i and $(a_{i,s})$ specify an exchange polynomial of the form $1 + a_{i,1}u + \cdots + a_{i,r_i-1}u^{r_i-1} + u^{r_i}$. The reciprocal condition gives us the identity

$$1 + a_{i,1}u + \cdots + a_{i,r_i-1}u^{r_i-1} + u^{r_i} = 1 + a_{i,r_i-1}u + \cdots + a_{i,1}u^{r_i-1} + u^{r_i}$$
Here, mutation in direction k is defined by the exchange relations:

\[
\begin{align*}
 b'_{ij} &= \begin{cases}
 -b_{ij} & i = k \text{ or } j = k \\
 b_{ij} + r_k \left([-b_{ik} + b_{kj} + b_{ik}b_{kj}]_+ \right) & i, j \neq k
 \end{cases} \\
 y'_i &= \begin{cases}
 y_{ki}^{-1} & i = k \\
 y_i \left(y_k^{[b_{ki}]} \right)^{r_k} \left(1 \oplus a_{k,1}y_k \oplus \cdots \oplus a_{k,r_k-1}y_k^{r_k-1} \oplus y_k^{r_k} \right)^{-b_{ki}} & i \neq k
 \end{cases} \\
 x'_i &= \begin{cases}
 x_{ki}^{-1} \left(\prod_{j=1}^n x_j^{[-b_{jk}]} \right)^{r_k} \frac{1 + a_{k,1}y_k + \cdots + y_k^{r_k}}{1 \oplus a_{k,1}y_k + \cdots \oplus a_{k,r_k-1}y_k^{r_k-1} \oplus y_k^{r_k}} & i = k \\
 x_i & i \neq k
 \end{cases} \\
 a'_{k,i} &= a_{k,r_k-i}
\end{align*}
\]

where $\hat{y}_k = y_k x_1^{b_{1k}} \cdots x_n^{b_{nk}}$.
Note that when all \(r_i = 1 \), we recover the ordinary exchange relations:

\[
\begin{align*}
 b'_{ij} &= \begin{cases}
 -b_{ij} & \text{if } i = k \text{ or } j = k \\
 b_{ij} + 1 \left([-b_{ik}]_+ + b_{kj} + b_{ik}b_{kj} \right) & \text{if } i, j \neq k
 \end{cases} \\
 y'_i &= \begin{cases}
 y_k^{-1} & \text{if } i = k \\
 y_i \left([y_k^{-1}]_+ \right) \left(1 \oplus y_k \right)^{-1} b_{ki} & \text{if } i \neq k
 \end{cases} \\
 x'_i &= \begin{cases}
 x_k^{-1} \left(\prod_{j=1}^n x_j \right) \left(1 \oplus y_k \right)^{-1} \frac{1 + y_k}{1 + y_k} & \text{if } i = k \\
 x_i & \text{if } i \neq k
 \end{cases}
\end{align*}
\]
Example: Let $\mathcal{A} = \left(x, y, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, (3, 1), ((1, a, a, 1), (1, 1)) \right)$
Example: Let \(\mathcal{A} = \left(x, y, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, (3, 1), ((1, a, a, 1), (1, 1)) \right) \)

Then mutating at \(k = 1 \) gives

\[
x_1' = \frac{x_2^3(1 + ay_1x_2^{-1} + ay_1x_2^{-2} + x_2^{-3})}{x_1}
\]

\[
= \frac{x_2^3 + ay_1x_2^2 + ay_1x_2 + 1}{x_1}
\]
Example: Let $\mathcal{A} = \left(x, y, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, (3, 1), ((1, a, a, 1), (1, 1)) \right)$

Then mutating at $k = 1$ gives

$$x_1' = \frac{x_2^3(1 + ay_1x_2^{-1} + ay_1x_2^{-2} + x_2^{-3})}{x_1}$$

$$= \frac{x_2^3 + ay_1x_2^2 + ay_1x_2 + 1}{x_1}$$

As before, we could compute all cluster variables using a sequence of mutations which alternates between $k = 1$ and $k = 2$.
Doing so, we find

\[
\begin{align*}
\theta_1, \theta_2, & \quad \frac{1+2x_1+ax_2+x_1^2+ax_1x_2+ax_2^2+x_2^3}{x_1x_2^2}, \quad \frac{1+ax_2+ax_2^2+x_2^3}{x_1}, \quad \frac{1+x_1+ax_2+ax_2^2+x_2^3}{x_1x_2}, \\
\frac{1+x_1}{x_2}, & \quad \frac{1+3x_1+ax_2+3x_1^2+2ax_1x_2+ax_2^2+x_2^3+x_1^2}{x_1x_2^3}, \\
x_1^2x_2 & \quad \left(1 + 3x_1 + 2ax_2 + 3x_1^2 + 4ax_1x_2 + 2ax_2^2 + 2x_2^3 + x_1^3 + a^2x_2^2 + 2ax_1^2x_2 + 3ax_1x_2^2 + 3x_1x_2^3 + a^2x_1x_2^3 + 2ax_2^4 + ax_1^2x_2^2 + a^2x_1x_2^3 + ax_1x_2^4 + a^2x_2^4 + 2ax_2^5 + x_2^6\right)
\end{align*}
\]
Generalized cluster algebras exhibit many of the structural properties of ordinary cluster algebras, including the Laurent Phenomenon.
Generalized cluster algebras exhibit many of the structural properties of ordinary cluster algebras, including the Laurent Phenomenon.

Although Chekhov and Shapiro conjectured that positivity should hold for arbitrary generalized cluster algebras, their conjecture has only been verified for certain subclasses.
Generalized Cluster Algebras

Generalized cluster algebras exhibit many of the structural properties of ordinary cluster algebras, including the Laurent Phenomenon.

Although Chekhov and Shapiro conjectured that positivity should hold for arbitrary generalized cluster algebras, their conjecture has only been verified for certain subclasses.

Likewise, bases are only known for particular subclasses.
Known bases:

- Greedy basis for rank 2 generalized cluster algebras (Rupel)
- Monomial basis for acyclic generalized cluster algebras (Bai-Chen-Ding-Xu)
- Bracelet basis for orbifold type (Felixson-Tumarkin)
- Bangle basis for orbifold type (Felixson-Tumarkin)
- Band basis for orbifold type (Felixson-Tumarkin)
Known bases:

- Greedy basis for rank 2 generalized cluster algebras (Rupel)
- Monomial basis for acyclic generalized cluster algebras (Bai-Chen-Ding-Xu)
- Bracelet basis for orbifold type (Felixson-Tumarkin)
- Bangle basis for orbifold type (Felixson-Tumarkin)
- Band basis for orbifold type (Felixson-Tumarkin)

Objective: A theta basis for generalized cluster algebras.
From a geometric point of view, we study cluster algebras by studying *cluster varieties*.
From a geometric point of view, we study cluster algebras by studying *cluster varieties*. Cluster varieties appear in pairs \((\mathcal{A}, \mathcal{X})\) called *cluster ensembles*. The \(\mathcal{A}\)-variety encodes information about the cluster variables \((x_i)\). The \(\mathcal{X}\)-variety encodes information about the coefficients \((y_i)\).
From a geometric point of view, we study cluster algebras by studying *cluster varieties*. Cluster varieties appear in pairs \((A, X)\) called *cluster ensembles*.

- The \(A\)-variety encodes information about the cluster variables \((x_i)\).
- The \(X\)-variety encodes information about the coefficients \((y_i)\).

For the special case of cluster algebras with principal coefficients, we can consider the \(A\) *cluster variety with principal coefficients*, denoted \(A_{\text{prin}}\).
Scattering Diagrams

Scattering diagrams are a powerful tool from algebraic geometry which can be used to study the structure of cluster algebras.

Gross, Hacking, Keel, and Konstevich used cluster scattering diagrams to:

- Define theta functions and prove that they give a canonical positive basis for cluster algebras.
- Give a proof of positivity for arbitrary cluster algebras.

A scattering diagram is a collection of walls d and automorphisms f_d. Each wall is a codimension-1 cone (in rank 2, these are simply lines) and the automorphisms are formal power series in z.

Elizabeth Kelley (joint work with Man-Wai) Theta Basis for Generalized Cluster Algebras

December 9, 2020 18 / 63
Scattering diagrams are a powerful tool from algebraic geometry which can be used to study the structure of cluster algebras.

Notably, Gross, Hacking, Keel, and Konstevich used cluster scattering diagrams to:
- Define theta functions and prove that they give a canonical positive basis for cluster algebras.
- Give a proof of positivity for arbitrary cluster algebras.
Scattering diagrams are a powerful tool from algebraic geometry which can be used to study the structure of cluster algebras.

Notably, Gross, Hacking, Keel, and Konstevich used cluster scattering diagrams to:

- Define theta functions and prove that they give a canonical positive basis for cluster algebras.
- Give a proof of positivity for arbitrary cluster algebras.

A scattering diagram is a collection of \(\vartheta \) and automorphisms \(f_\vartheta \).

Each wall is a codimension-1 cone (in rank 2, these are simply lines) and the automorphisms are formal power series in \(z \).
Scattering Diagrams for Generalized Cluster Algebras

To adapt the cluster scattering diagram construction of Gross, Hacking, Keel, and Kontsevich for the generalized setting, we begin by defining the *generalized fixed data* Γ:

- The cocharacter lattice N with skew-symmetric bilinear form $\{\cdot, \cdot\} : N \times N \to \mathbb{Q}$.
- A saturated sublattice $N_{uf} \subseteq N$ called the *unfrozen sublattice*.
- An index set I with $|I| = \text{rank}(N)$ and subset $I_{uf} \subseteq I$ such that $|I_{unf}| = \text{rank}(N_{uf})$.
- A set of positive integers $\{d_i\}_{i \in I}$ such that $\gcd(d_i) = 1$.
- A sublattice $N^\circ \subseteq N$ of finite index such that $\{N_{uf}, N^\circ\} \subseteq \mathbb{Z}$ and $\{N, N_{uf} \cap N^\circ\} \subseteq \mathbb{Z}$.

A lattice $M = \text{Hom}(N, \mathbb{Z})$ called the *character lattice* and sublattice $M^\circ = \text{Hom}(N^\circ, \mathbb{Z})$.

A set of positive integers $\{r_i\}_{i \in I}$.

Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker)
Scattering Diagrams for Generalized Cluster Algebras

To adapt the cluster scattering diagram construction of Gross, Hacking, Keel, and Kontsevich for the generalized setting, we begin by defining the generalized fixed data Γ:

- The cocharacter lattice N with skew-symmetric bilinear form $\{\cdot, \cdot\} : N \times N \to \mathbb{Q}$.
To adapt the cluster scattering diagram construction of Gross, Hacking, Keel, and Kontsevich for the generalized setting, we begin by defining the *generalized fixed data* Γ:

- The *cocharacter lattice* \mathcal{N} with skew-symmetric bilinear form $\{ \cdot, \cdot \} : \mathcal{N} \times \mathcal{N} \rightarrow \mathbb{Q}$.
- A saturated sublattice $\mathcal{N}_{uf} \subseteq \mathcal{N}$ called the *unfrozen sublattice*.

Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker)
To adapt the cluster scattering diagram construction of Gross, Hacking, Keel, and Kontsevich for the generalized setting, we begin by defining the generalized fixed data Γ:

- The cocharacter lattice N with skew-symmetric bilinear form $\{\cdot, \cdot\} : N \times N \to \mathbb{Q}$.
- A saturated sublattice $N_{uf} \subseteq N$ called the unfrozen sublattice.
- An index set I with $|I| = \text{rank}(N)$ and subset $I_{uf} \subseteq I$ such that $|I_{unf}| = \text{rank}(N_{uf})$.
To adapt the cluster scattering diagram construction of Gross, Hacking, Keel, and Kontsevich for the generalized setting, we begin by defining the *generalized fixed data* Γ:

- The *cocharacter lattice* N with skew-symmetric bilinear form $\{\cdot, \cdot\}: N \times N \to \mathbb{Q}$.
- A saturated sublattice $N_{uf} \subseteq N$ called the *unfrozen sublattice*.
- An index set I with $|I| = \text{rank}(N)$ and subset $I_{uf} \subseteq I$ such that $|I_{unf}| = \text{rank}(N_{uf})$.
- A set of positive integers $\{d_i\}_{i \in I}$ such that $\gcd(d_i) = 1$.
To adapt the cluster scattering diagram construction of Gross, Hacking, Keel, and Kontsevich for the generalized setting, we begin by defining the \textit{generalized fixed data} Γ:

- The \textit{cocharacter lattice} N with skew-symmetric bilinear form $\{\cdot, \cdot\} : N \times N \to \mathbb{Q}$.
- A saturated sublattice $N_{uf} \subseteq N$ called the \textit{unfrozen sublattice}.
- An index set I with $|I| = \text{rank}(N)$ and subset $I_{uf} \subseteq I$ such that $|I_{uf}| = \text{rank}(N_{uf})$.
- A set of positive integers $\{d_i\}_{i \in I}$ such that $\gcd(d_i) = 1$.
- A sublattice $N^\circ \subseteq N$ of finite index such that $\{N_{uf}, N^\circ\} \subseteq \mathbb{Z}$ and $\{N, N_{uf} \cap N^\circ\} \subseteq \mathbb{Z}$.
Scattering Diagrams for Generalized Cluster Algebras

To adapt the cluster scattering diagram construction of Gross, Hacking, Keel, and Kontsevich for the generalized setting, we begin by defining the *generalized fixed data* Γ:

- The *cocharacter lattice* N with skew-symmetric bilinear form
 \[\{ \cdot, \cdot \} : N \times N \to \mathbb{Q} \].

- A saturated sublattice $N_{uf} \subseteq N$ called the *unfrozen sublattice*.

- An index set I with $|I| = \text{rank}(N)$ and subset $I_{uf} \subseteq I$ such that
 \[|I_{unf}| = \text{rank}(N_{uf}) \]

- A set of positive integers $\{d_i\}_{i \in I}$ such that $\gcd(d_i) = 1$.

- A sublattice $N^o \subseteq N$ of finite index such that $\{N_{uf}, N^o\} \subseteq \mathbb{Z}$ and
 $\{N, N_{uf} \cap N^o\} \subseteq \mathbb{Z}$.

- A lattice $M = \text{Hom}(N, \mathbb{Z})$ called the *character lattice* and sublattice
 $M^o = \text{Hom}(N^o, \mathbb{Z})$.
Scattering Diagrams for Generalized Cluster Algebras

To adapt the cluster scattering diagram construction of Gross, Hacking, Keel, and Kontsevich for the generalized setting, we begin by defining the
generalized fixed data \(\Gamma \):

- The cocharacter lattice \(N \) with skew-symmetric bilinear form
 \(\{ \cdot, \cdot \} : N \times N \to \mathbb{Q} \).
- A saturated sublattice \(N_{uf} \subseteq N \) called the \textit{unfrozen sublattice}.
- An index set \(I \) with \(|I| = \text{rank}(N) \) and subset \(I_{uf} \subseteq I \) such that
 \(|I_{unf}| = \text{rank}(N_{uf}) \).
- A set of positive integers \(\{ d_i \}_{i \in I} \) such that \(\gcd(d_i) = 1 \).
- A sublattice \(N^\circ \subseteq N \) of finite index such that \(\{ N_{uf}, N^\circ \} \subseteq \mathbb{Z} \) and
 \(\{ N, N_{uf} \cap N^\circ \} \subseteq \mathbb{Z} \).
- A lattice \(M = \text{Hom}(N, \mathbb{Z}) \) called the \textit{character lattice} and sublattice
 \(M^\circ = \text{Hom}(N^\circ, \mathbb{Z}) \).
- A set of positive integers \(\{ r_i \}_{i \in I} \).
To adapt the cluster scattering diagram construction of Gross, Hacking, Keel, and Kontsevich for the generalized setting, we begin by defining the \textit{generalized fixed data} Γ as:

- The \textit{cocharacter lattice} N with skew-symmetric bilinear form $\{\cdot, \cdot\} : N \times N \to \mathbb{Q}$.
- A saturated sublattice $N_{uf} \subseteq N$ called the \textit{unfrozen sublattice}.
- An index set I with $|I| = \text{rank}(N)$ and subset $I_{uf} \subseteq I$ such that $|I_{unf}| = \text{rank}(N_{uf})$.
- A set of positive integers $\{d_i\}_{i \in I}$ such that $\gcd(d_i) = 1$.
- A sublattice $N^\circ \subseteq N$ of finite index such that $\{N_{uf}, N^\circ\} \subseteq \mathbb{Z}$ and $\{N, N_{uf} \cap N^\circ\} \subseteq \mathbb{Z}$.
- A lattice $M = \text{Hom}(N, \mathbb{Z})$ called the \textit{character lattice} and sublattice $M^\circ = \text{Hom}(N^\circ, \mathbb{Z})$.
- A set of positive integers $\{r_i\}_{i \in I}$.
To construct cluster scattering diagrams, we must assume that the map

\[p_1^* : N_{uf} \rightarrow M^o \]

\[n \mapsto \{ n, \cdot \} \]

is injective.
To construct cluster scattering diagrams, we must assume that the map

\[p_1^* : N_{uf} \to M^\circ \]

\[n \mapsto \{n, \cdot\} \]

is injective.

This is known as the **injectivity assumption**.
To construct cluster scattering diagrams, we must assume that the map

$$p_1^* : N_{uf} \rightarrow M^\circ$$

$$n \mapsto \{n, \cdot\}$$

is injective.

This is known as the **injectivity assumption**.

Note: This is not true for all choices of fixed data, but is true in the principal coefficient case.
Example: (In some sense, “generalized $G2$”)

Consider $\mathcal{A} = \left(x, y, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, (3, 1), ((1, a, a, 1), (1, 1)) \right)$.
Example: (In some sense, “generalized G2”)

Consider $\mathcal{A} = (x, y, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, (3, 1), ((1, a, a, 1), (1, 1)))$.

This generalized cluster algebra has fixed data:

- Skew-symmetric bilinear form given by the matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
- Index sets $I = I_{uf} = \{1, 2\}$
- $d_1 = d_2 = 1$
- $r_1 = 3$ and $r_2 = 1$
Example: (In some sense, “generalized G2”)

Consider $\mathcal{A} = \left(x, y, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, (3, 1), ((1, a, a, 1), (1, 1)) \right)$.

This generalized cluster algebra has fixed data:

- Skew-symmetric bilinear form given by the matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
- Index sets $I = I_{uf} = \{1, 2\}$
- $d_1 = d_2 = 1$
- $r_1 = 3$ and $r_2 = 1$

To explicitly describe the lattices $N, N^\circ, M,$ and M°, we will need some choice of generalized torus seed.
A *generalized torus seed* is a collection \(s = \{(e_i, a_i)\}_{i \in I, s \in [r_i]} \) such that:

- \(\{e_i\}_{i \in I} \) is a basis for \(N \),
- \(\{d_i e_i\}_{i \in I} \) is a basis for \(N^\perp \),
- \(\{e^* i\}_{i \in I} \) is a basis for the dual lattice \(M \),
- \(\{f_i = d_i - 1\}_{i \in I} \) is a basis for \(M^\perp \),
- and each \(a_i = (a_{i_1}, s) \) is a tuple of scalars where \(a_{i_1}, s = 1 \).

The generalized torus seed data defines a new bilinear form \([\cdot, \cdot]_s: N \times N \rightarrow \mathbb{Q}\) given by \([e_i, e_j]_s = \epsilon_{ij} = \{e_i, e_j\} d_j\).

Note: Placing the exchange polynomial coefficients \((a_i, s) \) in the seed data rather than fixed data leaves open the possibility of using this construction for non-reciprocal generalized cluster algebras.
A generalized torus seed is a collection \(\mathbf{s} = \{(e_i, a_i)\}_{i \in I, s \in [r_i]} \) such that:

- \(\{e_i\}_{i \in I} \) is a basis for \(N \),

- \(\{e_i\}_{i \in I} \) is a basis for \(N \),
A *generalized torus seed* is a collection $s = \{(e_i, a_i)\}_{i \in I, s \in [r_i]}$ such that:

- $\{e_i\}_{i \in I}$ is a basis for N,
- $\{e_i\}_{i \in I_{uf}}$ is a basis for N_{uf},

Each $a_i = (a_{i1}, s)$ is a tuple of scalars where $a_{i1}, r_i = 1$. The generalized torus seed data defines a new bilinear form $[\cdot, \cdot]_s : N \times N \to \mathbb{Q}$ given by $[e_i, e_j]_s = \epsilon_{ij} = \{e_i, e_j\} d_j$.
A generalized torus seed is a collection $s = \{(e_i, a_i)\}_{i \in I, s \in [r_i]}$ such that:

- $\{e_i\}_{i \in I}$ is a basis for N,
- $\{e_i\}_{i \in I_{uf}}$ is a basis for N_{uf},
- $\{d_i e_i\}_{i \in I}$ is a basis for N°,
A **generalized torus seed** is a collection $s = \{(e_i, a_i)\}_{i \in I, s \in [r_i]}$ such that:

- $\{e_i\}_{i \in I}$ is a basis for N,
- $\{e_i\}_{i \in I_{uf}}$ is a basis for N_{uf},
- $\{d_i e_i\}_{i \in I}$ is a basis for N°,
- $\{e_i^*\}_{i \in I}$ is a basis for the dual lattice M,
A \textit{generalized torus seed} is a collection \(s = \{(e_i, a_i)\}_{i \in I, s \in [r_i]} \) such that:

- \(\{e_i\}_{i \in I} \) is a basis for \(N \),
- \(\{e_i\}_{i \in I_{uf}} \) is a basis for \(N_{uf} \),
- \(\{d_i e_i\}_{i \in I} \) is a basis for \(N^\circ \),
- \(\{e_i^*\}_{i \in I} \) is a basis for the dual lattice \(M \),
- \(\{f_i = d_i^{-1} e_i^*\}_{i \in I} \) is a basis for \(M^\circ \),

Note: Placing the exchange polynomial coefficients \((a_i, s) \) in the seed data rather than fixed data leaves open the possibility of using this construction for non-reciprocal generalized cluster algebras.
A *generalized torus seed* is a collection \(s = \{(e_i, a_i)\}_{i \in I, s \in [r_i]} \) such that:

- \(\{e_i\}_{i \in I} \) is a basis for \(N \),
- \(\{e_i\}_{i \in I_{uf}} \) is a basis for \(N_{uf} \),
- \(\{d_i e_i\}_{i \in I} \) is a basis for \(N^\circ \),
- \(\{e_i^*\}_{i \in I} \) is a basis for the dual lattice \(M \),
- \(\{f_i = d_i^{-1} e_i^*\}_{i \in I} \) is a basis for \(M^\circ \),
- and each \(a_i = (a_{i,1}, a_{i,r_i}) \) is a tuple of scalars where \(a_{i,1} = a_{i,r_i} = 1 \).
A generalized torus seed is a collection $s = \{(e_i, a_i)\}_{i \in I, s \in [r_i]}$ such that:

- $\{e_i\}_{i \in I}$ is a basis for N,
- $\{e_i\}_{i \in I_{uf}}$ is a basis for N_{uf},
- $\{d_i e_i\}_{i \in I}$ is a basis for N°,
- $\{e_i^*\}_{i \in I}$ is a basis for the dual lattice M,
- $\{f_i = d_i^{-1} e_i^*\}_{i \in I}$ is a basis for M°,
- and each $a_i = (a_i, s)$ is a tuple of scalars where $a_{i,1} = a_{i,r_i} = 1$.

The generalized torus seed data defines a new bilinear form $[\cdot, \cdot]_s : N \times N \to \mathbb{Q}$ given by $[e_i, e_j]_s = \epsilon_{ij} = \{e_i, e_j\} d_j$.

Note: Placing the exchange polynomial coefficients (a_i, s) in the seed data rather than fixed data leaves open the possibility of using this construction for non-reciprocal generalized cluster algebras.
A generalized torus seed is a collection $s = \{(e_i, a_i)\}_{i \in I, s \in [r_i]}$ such that:

1. $\{e_i\}_{i \in I}$ is a basis for N,
2. $\{e_i\}_{i \in I_{uf}}$ is a basis for N_{uf},
3. $\{d_i e_i\}_{i \in I}$ is a basis for N°,
4. $\{e^*_i\}_{i \in I}$ is a basis for the dual lattice M,
5. $\{f_i = d_i^{-1} e^*_i\}_{i \in I}$ is a basis for M°,
6. and each $a_i = (a_i, s)$ is a tuple of scalars where $a_{i, 1} = a_{i, r_i} = 1$.

The generalized torus seed data defines a new bilinear form $[\cdot, \cdot]_s : N \times N \to \mathbb{Q}$ given by $[e_i, e_j]_s = \epsilon_{ij} = \{e_i, e_j\} d_j$.

Note: Placing the exchange polynomial coefficients (a_i, s) in the seed data rather than fixed data leaves open the possibility of using this construction for non-reciprocal generalized cluster algebras.
Example: (In some sense, “generalized G2”)

\[
\begin{align*}
 f_{01} &= 1 + z^{(-1,0)} \\
 f_{02} &= 1 + az^{(0,1)} + az^{(0,2)} + z^{(0,3)} \\
 f_{03} &= 1 + z^{(-1,3)} \\
 f_{04} &= 1 + az^{(-1,2)} + az^{(-2,4)} + z^{(-3,6)} \\
 f_{05} &= 1 + z^{(-2,3)} \\
 f_{06} &= 1 + az^{(-1,1)} + az^{(-2,2)} + z^{(-3,3)}
\end{align*}
\]
Example: (In some sense, “generalized G2”)

\[C^+ = \bigoplus_i \mathbb{R}_{\geq 0} e_i \]

\[f_{01} = 1 + z^{(-1,0)} \]
\[f_{02} = 1 + az^{(0,1)} + az^{(0,2)} + z^{(0,3)} \]
\[f_{03} = 1 + z^{(-1,3)} \]
\[f_{04} = 1 + az^{(-1,2)} + az^{(-2,4)} + z^{(-3,6)} \]
\[f_{05} = 1 + z^{(-2,3)} \]
\[f_{06} = 1 + az^{(-1,1)} + az^{(-2,2)} + z^{(-3,3)} \]

Here, we choose the seed \(s = \{((1, 0), (1, a, a, 1)), ((0, 1), (1, 1))\} \)
In the language of cluster algebras:

The exchange matrix B encodes the ϵ_{ij} (i.e., the skew-symmetric form and choice of $\{d_i\}_{i \in I}$).

The cluster variables are given by $x_i = z e_i$ (the A-variety).

The coefficients are given by $y_i = z f_i$ (the X-variety).

The index sets I and I_{uf} allow us to differentiate between frozen and unfrozen variables.

The classic mutation relations can be derived from the mutation of the e_i, f_i, and ϵ_{ij} via simple algebra.
In the language of cluster algebras:

- The exchange matrix B encodes the ϵ_{ij} (i.e., the skew-symmetric form and choice of $\{d_i\}_{i \in I}$).
In the language of cluster algebras:

- The exchange matrix B encodes the ϵ_{ij} (i.e., the skew-symmetric form and choice of $\{d_i\}_{i \in I}$)
- The cluster variables are given by $x_i = z^{e_i}$ (the \mathcal{A}-variety)
In the language of cluster algebras:

- The exchange matrix B encodes the ϵ_{ij} (i.e., the skew-symmetric form and choice of $\{d_i\}_{i \in I}$)
- The cluster variables are given by $x_i = z^{e_i}$ (the A-variety)
- The coefficients are given by $y_i = z^{f_i}$ (the \mathcal{X}-variety)
In the language of cluster algebras:

- The exchange matrix B encodes the ϵ_{ij} (i.e., the skew-symmetric form and choice of $\{d_i\}_{i \in I}$)
- The cluster variables are given by $x_i = z^{e_i}$ (the A-variety)
- The coefficients are given by $y_i = z^{f_i}$ (the X-variety)
- The index sets I and I_{uf} allow us to differentiate between frozen and unfrozen variables
In the language of cluster algebras:

- The exchange matrix B encodes the ϵ_{ij} (i.e., the skew-symmetric form and choice of $\{d_i\}_{i \in I}$).
- The cluster variables are given by $x_i = z^{e_i}$ (the A-variety).
- The coefficients are given by $y_i = z^{f_i}$ (the X-variety).
- The index sets I and I_{uf} allow us to differentiate between frozen and unfrozen variables.

The classic mutation relations can be derived from the mutation of the $e_i, f_i,$ and ϵ_{ij} via simple algebra.
The generalized mutation relations for basis vectors e_i, f_i and the $\epsilon_{i,j}$ are:

\[e'_i := \begin{cases} e_i + r_k [\epsilon_{ik}] + e_k & i \neq k \\ -e_k & i = k \end{cases} \]

\[f'_i := \begin{cases} -f_k + r_k \sum_{j \in I_{uf}} [-\epsilon_{kj}] + f_j & i = k \\ f_i & i \neq k \end{cases} \]

\[\epsilon'_{ij} = \begin{cases} -\epsilon_{ij} & k = i \text{ or } k = j \\ \epsilon_{ij} & k \neq i, j \text{ and } \epsilon_{ik}\epsilon_{kj} \leq 0 \\ \epsilon_{ij} + r_k |\epsilon_{ik}|\epsilon_{kj} & k \neq i, j \text{ and } \epsilon_{ik}\epsilon_{kj} \geq 0 \end{cases} \]

And we add the relation $a'_{k,s} = a_{k,r_k-s}$.

Note: Seed mutation is only an involution up to isomorphism.
Example: (In some sense, “generalized G2”)
Example: (In some sense, “generalized G_2”) Recall that our running example has $d_1 = d_2 = 1$, $r_1 = 3$, and $r_2 = 1$. Let us choose the seed $s = \{(1, 0), (1, a, a, 1)\}, \{(0, 1), (1, 1)\}$. Then because $e_1 = e^*_1 = f_1 = (1, 0)$ and $e_2 = e^*_2 = f_2 = (0, 1)$, we have $N = N^\circ = M = M^\circ = \langle (1, 0), (0, 1) \rangle$.

Remark: Those familiar with cluster scattering diagrams might notice that these are not the same lattices as for an ordinary cluster algebra of type G_2 (for which $d_1 = 3$ and $d_2 = 1$) when choosing the ordinary torus seed $s = \{(1, 0), (0, 1)\}$. In that case, $N = M = \langle (1, 0), (0, 1) \rangle$, $N^\circ = \langle (3, 0), (0, 1) \rangle$, $M^\circ = \langle (1, 3), (0, 1) \rangle$. Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker) Theta Basis for Generalized Cluster Algebras December 9, 2020 28 / 63
Example: (In some sense, “generalized $G2$”)

Recall that our running example has $d_1 = d_2 = 1$, $r_1 = 3$, and $r_2 = 1$. Let us choose the seed $s = \{(1, 0), (1, a, a, 1), (0, 1), (1, 1)\}$. Then because $e_1 = e_1^* = f_1 = (1, 0)$ and $e_2 = e_2^* = f_2 = (0, 1)$, we have

$$N = N^\circ = M = M^\circ = \langle (1, 0), (0, 1) \rangle,$$
Example: (In some sense, “generalized $G2$”)

Recall that our running example has $d_1 = d_2 = 1$, $r_1 = 3$, and $r_2 = 1$.

Let us choose the seed $s = \{((1, 0), (1, a, a, 1)), ((0, 1), (1, 1))\}$. Then because $e_1 = e_1^* = f_1 = (1, 0)$ and $e_2 = e_2^* = f_2 = (0, 1)$, we have

$$N = N^\circ = M = M^\circ = \langle (1, 0), (0, 1) \rangle,$$

Remark: Those familiar with cluster scattering diagrams might notice that these are not the same lattices as for an ordinary cluster algebra of type $G2$ (for which $d_1 = 3$ and $d_2 = 1$) when choosing the ordinary torus seed $s = \{(1, 0), (0, 1)\}$. In that case,

$$N = M = \langle (1, 0), (0, 1) \rangle$$

$$N^\circ = \langle (3, 0), (0, 1) \rangle$$

$$M^\circ = \langle \left(\frac{1}{3}, 0\right), (0, 1) \rangle$$
Recall that we have $d_1 = d_2 = 1$, $r_1 = 3$, $r_2 = 1$, $e_1 = f_1 = (1, 0)$, and $e_2 = f_2 = (0, 1)$ with skew-symmetric form given by the matrix \[
\begin{bmatrix}
1 & 0 \\
-1 & 0
\end{bmatrix}.
\]

So $\epsilon = [\epsilon_{ij}] = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

And therefore

\[\mu_2(s) = \{(1, 1), (0, -1)\}.\]
Recall that we have $d_1 = d_2 = 1$, $r_1 = 3$, $r_2 = 1$, $e_1 = f_1 = (1, 0)$, and $e_2 = f_2 = (0, 1)$ with skew-symmetric form given by the matrix $\begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$.

So $\epsilon = [\epsilon_{ij}] = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

Mutating in direction $k = 2$, we obtain:
Recall that we have $d_1 = d_2 = 1$, $r_1 = 3$, $r_2 = 1$, $e_1 = f_1 = (1, 0)$, and $e_2 = f_2 = (0, 1)$ with skew-symmetric form given by the matrix $\begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$.

So $\epsilon = [\epsilon_{ij}] = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

Mutating in direction $k = 2$, we obtain:

- $e'_1 = (1, 0) + 1[1]_+(0, 1) = (1, 1)$
- $e'_2 = (0, -1)$
- $f'_1 = (1, 0)$
- $f'_2 = -(0, 1) + 1 ([1]_+(1, 0) + [0]_+(0, 1)) = (1, -1)$
- $\epsilon_{12} = -1$
- $\epsilon_{21} = 1$
Recall that we have $d_1 = d_2 = 1$, $r_1 = 3$, $r_2 = 1$, $e_1 = f_1 = (1, 0)$, and $e_2 = f_2 = (0, 1)$ with skew-symmetric form given by the matrix $\begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$.

So $\epsilon = [\epsilon_{ij}] = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

Mutating in direction $k = 2$, we obtain:

\[
\begin{align*}
 e'_1 &= (1, 0) + 1[1]_+(0, 1) = (1, 1) \\
 e'_2 &= (0, -1) \\
 f'_1 &= (1, 0) \\
 f'_2 &= -(0, 1) + 1 ([1]_+(1, 0) + [0]_+(0, 1)) = (1, -1) \\
 \epsilon_{12} &= -1 \\
 \epsilon_{21} &= 1
\end{align*}
\]

And therefore $\mu_2(s) = \{((1, 1), (1, a, a, 1)), ((0, -1), (1, 1))\}$.
Generalized Cluster Varieties

Given a generalized torus seed s, we can define *generalized cluster varieties*.

Associate some s to vertex v and associate the tori $X_s = T_M = \text{Spec} k[N]_A = T_N \circ = \text{Spec} k[M \circ]$.

Elizabeth Kelley (joint work with Man-Wai Theta Basis for Generalized Cluster Algebras December 9, 2020 30 / 63
Given a generalized torus seed s, we can define \textit{generalized cluster varieties}.

Let T be an infinite $|I_{uf}|$-regular tree with structure shown below:
Given a generalized torus seed s, we can define \textit{generalized cluster varieties}.

Let \mathcal{T} be an infinite $|I_{uf}|$-regular tree with structure shown below:

Associate some s to vertex v and associate the tori

$$\mathcal{X}_s = T_M = \text{Spec } k[N]$$
$$\mathcal{A}_s = T_{N^\circ} = \text{Spec } k[M^\circ]$$
We can then define birational maps between these tori.
We can then define birational maps between these tori.

For $n \in \mathbb{N}$ and $m \in M^\circ$, we define birational maps $\mu_k : \mathcal{X}_s \to \mathcal{X}_{\mu_k(s)}$ and $\mu_k : \mathcal{A}_s \to \mathcal{A}_{\mu_k(s)}$ via the pull-back of functions

$$\mu_k^* z^n = z^n \left(1 + a_{k,1} z^{e_k} + \cdots + a_{k,r_k-1} z^{(r_k-1)e_k} + z^{r_k e_k} \right)^{-[n,e_k]}$$

$$\mu_k^* z^m = z^m \left(1 + a_{k,1} z^{v_k} + \cdots + a_{k,r_k-1} z^{(r_k-1)v_k} + z^{r_k v_k} \right)^{-\langle d_k e_k, m \rangle}$$

Note: These maps encode the exchange relations of the cluster variables and coefficients.
The generalized \mathcal{X} and \mathcal{A} cluster varieties are then defined as

$$
\mathcal{A} := \bigcup_{w \in \mathcal{I}} T_{N^o, s_w}, \quad \mathcal{X} := \bigcup_{w \in \mathcal{I}} T_{M, s_w}
$$

where the tori are glued according to the previous birational maps.
A scattering diagram is a collection of *walls* ϑ and automorphisms f_0.

Each wall is a codimension-1 cone (in rank 2, these are simply lines) and the automorphisms are formal power series in z.
A scattering diagram is a collection of walls \(\partial \) and automorphisms \(f_0 \).

Each wall is a codimension-1 cone (in rank 2, these are simply lines) and the automorphisms are formal power series in \(z \).

\[
\begin{align*}
\partial_1 & \quad \partial_2 & \quad \partial_3 & \quad \partial_4 & \quad \partial_5 & \quad \partial_6 \\
\begin{align*}
f_{\partial_1} &= 1 + z^{(-1,0)} \\
f_{\partial_2} &= 1 + az^{(0,1)} + az^{(0,2)} + z^{(0,3)} \\
f_{\partial_3} &= 1 + z^{(-1,3)} \\
f_{\partial_4} &= 1 + az^{(-1,2)} + az^{(-2,4)} + z^{(-3,6)} \\
f_{\partial_5} &= 1 + z^{(-2,3)} \\
f_{\partial_6} &= 1 + az^{(-1,1)} + az^{(-2,2)} + z^{(-3,3)}
\end{align*}
\]
Some useful observations:

\[f_{01} = 1 + z^{(-1,0)} \]
\[f_{02} = 1 + az^{(0,1)} + az^{(0,2)} + z^{(0,3)} \]
\[f_{03} = 1 + z^{(-1,3)} \]
\[f_{04} = 1 + az^{(-1,2)} + az^{(-2,4)} + z^{(-3,6)} \]
\[f_{05} = 1 + z^{(-2,3)} \]
\[f_{06} = 1 + az^{(-1,1)} + az^{(-2,2)} + z^{(-3,3)} \]
Some useful observations:

- Each g-vector of the generalized cluster algebra appears as the support of a wall.
Some useful observations:

- Each g-vector of the generalized cluster algebra appears as the support of a wall.
- Each chamber corresponds to a cluster seed.
The *initial scattering diagram* is defined as

\[\mathcal{D}_{in,s} := \{ (e_i^\perp, 1 + a_{i,1}z^{v_i} + a_{i,2}z^{2v_i} + \cdots + a_{i,r_i-1}z^{(r_i-1)v_i} + z^{r_i v_i}) : i \in I_{uf} \} \]

where \(v_i = \{ e_i, \cdot \} \) for \(i \in I_{uf} \).
Given generalized fixed data Γ, the generalized fixed data for the cluster variety with principal coefficients, Γ_{prin}, is defined by:

The double of the lattice $N, \tilde{N} = N \oplus M$, with skew-symmetric bilinear form given by

$\{ (n_1, m_1), (n_2, m_2) \} = \{ n_1, n_2 \} + \langle n_1, m_2 \rangle - \langle n_2, m_1 \rangle$.

The unfrozen sublattice $\tilde{N}_{\text{uf}} = N_{\text{uf}} \oplus 0 \sim N_{\text{uf}}$.

The sublattice $\tilde{N}^\circ = N^\circ \oplus M$.

The index set \tilde{I} is given by the disjoint union of two copies of I.

The integer collections $\tilde{d} = (d_i)$ and $\tilde{r} = (r_i)$ taken so that the d_i and r_i agree with Γ.

The unfrozen index set, \tilde{I}_{uf}, which is the original I_{uf} thought of as a subset of the first copy of I.

The character lattice $\tilde{M} = \text{Hom}(\tilde{N}, \mathbb{Z}) = M \oplus N^\circ$ with sublattice $\tilde{M}^\circ = M^\circ \oplus N^\circ$.

Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker)

Theta Basis for Generalized Cluster Algebras
Principal Coefficients

Given generalized fixed data Γ, the generalized fixed data for the cluster variety with principal coefficients, Γ_{prin}, is defined by:

- The *double* of the lattice N, $\tilde{N} := N \oplus M^\circ$, with skew-symmetric bilinear form given by

\[
\{(n_1, m_1), (n_2, m_2)\} = \{n_1, n_2\} + \langle n_1, m_2 \rangle - \langle n_2, m_1 \rangle.
\]
Principal Coefficients

Given generalized fixed data Γ, the generalized fixed data for the cluster variety with principal coefficients, Γ_{prin}, is defined by:

- The *double* of the lattice N, $\tilde{N} := N \oplus M^\circ$, with skew-symmetric bilinear form given by
 \[
 \{(n_1, m_1), (n_2, m_2)\} = \{n_1, n_2\} + \langle n_1, m_2 \rangle - \langle n_2, m_1 \rangle.
 \]

- The unfrozen sublattice $\tilde{N}_{\text{uf}} := N_{\text{uf}} \oplus 0 \cong N_{\text{uf}}$.

Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker)
Principal Coefficients

Given generalized fixed data Γ, the generalized fixed data for the cluster variety with principal coefficients, Γ_{prin}, is defined by:

- The *double* of the lattice \mathcal{N}, $\tilde{\mathcal{N}} := \mathcal{N} \oplus M^\circ$, with skew-symmetric bilinear form given by
 $$\{(n_1, m_1), (n_2, m_2)\} = \{n_1, n_2\} + \langle n_1, m_2 \rangle - \langle n_2, m_1 \rangle.$$

- The unfrozen sublattice $\tilde{\mathcal{N}}_{\text{uf}} := \mathcal{N}_{\text{uf}} \oplus 0 \cong \mathcal{N}_{\text{uf}}$.
- The sublattice $\tilde{\mathcal{N}}^\circ := \mathcal{N}^\circ \oplus M$.
Principal Coefficients

Given generalized fixed data Γ, the generalized fixed data for the cluster variety with principal coefficients, Γ_{prin}, is defined by:

- The double of the lattice N, $\tilde{N} := N \oplus M^\circ$, with skew-symmetric bilinear form given by
 \[
 \{(n_1, m_1), (n_2, m_2)\} = \{n_1, n_2\} + \langle n_1, m_2 \rangle - \langle n_2, m_1 \rangle.
 \]

- The unfrozen sublattice $\tilde{N}_{\text{uf}} := N_{\text{uf}} \oplus 0 \cong N_{\text{uf}}$.
- The sublattice $\tilde{N}^\circ := N^\circ \oplus M$.
- The index set \tilde{I} is given by the disjoint union of two copies of I.

Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker)

Theta Basis for Generalized Cluster Algebras

December 9, 2020 36 / 63
Principal Coefficients

Given generalized fixed data Γ, the generalized fixed data for the cluster variety with principal coefficients, Γ_{prin}, is defined by:

- The double of the lattice N, $\tilde{N} := N \oplus M^\circ$, with skew-symmetric bilinear form given by
 \[\{(n_1, m_1), (n_2, m_2)\} = \{n_1, n_2\} + \langle n_1, m_2 \rangle - \langle n_2, m_1 \rangle. \]

- The unfrozen sublattice $\tilde{N}_{\text{uf}} := N_{\text{uf}} \oplus 0 \cong N_{\text{uf}}$.
- The sublattice $\tilde{N}^\circ := N^\circ \oplus M$.
- The index set \tilde{I} is given by the disjoint union of two copies of I.
- The integer collections $\tilde{d} = (d_i)$ and $\tilde{r} = (r_i)$ taken so that the d_i and r_i agree with Γ.

Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker)

Theta Basis for Generalized Cluster Algebras

December 9, 2020 36 / 63
Principal Coefficients

Given generalized fixed data Γ, the generalized fixed data for the cluster variety with principal coefficients, Γ_{prin}, is defined by:

- The *double* of the lattice N, $\tilde{N} := N \oplus M^\circ$, with skew-symmetric bilinear form given by
 \[
 \{(n_1, m_1), (n_2, m_2)\} = \{n_1, n_2\} + \langle n_1, m_2 \rangle - \langle n_2, m_1 \rangle.
 \]

- The unfrozen sublattice $\tilde{N}_{uf} := N_{uf} \oplus 0 \cong N_{uf}$.
- The sublattice $\tilde{N}^\circ := N^\circ \oplus M$.
- The index set \tilde{I} is given by the disjoint union of two copies of I.
- The integer collections $\tilde{d} = (d_i)$ and $\tilde{r} = (r_i)$ taken so that the d_i and r_i agree with Γ.
- The unfrozen index set, \tilde{I}_{uf}, which is the original I_{uf} thought of as a subset of the first copy of I.

Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker)
Principal Coefficients

Given generalized fixed data Γ, the generalized fixed data for the cluster variety with principal coefficients, Γ_{prin}, is defined by:

- The *double* of the lattice N, $\tilde{N} := N \oplus M^\circ$, with skew-symmetric bilinear form given by
 $$\{(n_1, m_1), (n_2, m_2)\} = \{n_1, n_2\} + \langle n_1, m_2 \rangle - \langle n_2, m_1 \rangle.$$

- The unfrozen sublattice $\tilde{N}_{\text{uf}} := N_{\text{uf}} \oplus 0 \cong N_{\text{uf}}$.
- The sublattice $\tilde{N}^\circ := N^\circ \oplus M$.
- The index set \tilde{I} is given by the disjoint union of two copies of I.
- The integer collections $\tilde{d} = (d_i)$ and $\tilde{r} = (r_i)$ taken so that the d_i and r_i agree with Γ.
- The unfrozen index set, \tilde{I}_{uf}, which is the original I_{uf} thought of as a subset of the first copy of I.
- The character lattice $\tilde{M} = \text{Hom}(\tilde{N}, \mathbb{Z}) = M \oplus N^\circ$ with sublattice $\tilde{M}^\circ = M^\circ \oplus N$.

Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker)
Given a generalized torus seed s, the generalized torus seed with principal coefficients s_{prin} is defined as $s_{\text{prin}} := \{(e_i, 0), (0, f_i)\}_{i \in I}$.
Given a generalized torus seed s, the generalized torus seed with principal coefficients s_{prin} is defined as $s_{\text{prin}} := \{(e_i, 0), (0, f_i)\}_{i \in I}$.

Let $\tilde{\nu}_i := (\nu_i, e_i) = (p_1^*(e_i), e_i)$. Then

$$\mathcal{O}^{A_{\text{prin}}}_{\text{in}, s} = \left\{ (e_i, 0)^\perp, 1 + a_{i, 1}z^{\tilde{\nu}_1} + \cdots + a_{i, r_i - 1}z^{(r_i - 1)\tilde{\nu}_i} + z^{r_i\tilde{\nu}_i} \right\}$$
Example: In our running example, we have

\[\tilde{I} = \{1, 2\} \sqcup \{1, 2\} \]
\[\tilde{d} = (1, 1, 1, 1) \]
\[\tilde{r} = (3, 1, 3, 1) \]

and the lattices \(\tilde{N} = N \oplus M^\circ, \tilde{N}^\circ = N^\circ \oplus M, \tilde{M} = M \oplus N^\circ, \) and \(\tilde{M}^\circ = M^\circ \oplus N \) all have basis

\[\langle (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) \rangle \]

Our running choice of generalized torus seed becomes

\[s_{\text{prin}} = \{((1, 0, 0, 0)^\perp, (1, a, a, 1)), ((0, 1, 0, 0)^\perp, (1, 1))\} \]
Principal Coefficients

Example: In our running example, $\mathcal{D}_{s\text{ prin}}$ is

\[
\begin{align*}
\tilde{f}_{\tilde{d}_1} &= 1 + z^{(-1,0,0,1)} \\
\tilde{f}_{\tilde{d}_2} &= 1 + az^{(0,1,1,0)} + az^{(0,2,2,0)} + z^{(0,3,3,0)} \\
\tilde{f}_{\tilde{d}_3} &= 1 + z^{(-1,3,3,1)} \\
\tilde{f}_{\tilde{d}_4} &= 1 + az^{(-1,2,2,1)} + az^{(-2,4,4,2)} + z^{(-3,6,6,3)} \\
\tilde{f}_{\tilde{d}_5} &= 1 + z^{(-2,3,3,2)} \\
\tilde{f}_{\tilde{d}_6} &= 1 + az^{(-1,1,1,1)} + az^{(-2,2,2,2)} + z^{(-3,3,3,3)}
\end{align*}
\]
Principal Coefficients

Example: In our running example, \(\mathcal{D}_{s_{\text{prin}}} \) is

\[
\begin{align*}
\tilde{f}_{\tilde{d}_1} &= 1 + z^{(-1,0,0,1)} \\
\tilde{f}_{\tilde{d}_2} &= 1 + az^{(0,1,1,0)} + az^{(0,2,2,0)} + z^{(0,3,3,0)} \\
\tilde{f}_{\tilde{d}_3} &= 1 + z^{(-1,3,3,1)} \\
\tilde{f}_{\tilde{d}_4} &= 1 + az^{(-1,2,2,1)} + az^{(-2,4,4,2)} + z^{(-3,6,6,3)} \\
\tilde{f}_{\tilde{d}_5} &= 1 + z^{(-2,3,3,2)} \\
\tilde{f}_{\tilde{d}_6} &= 1 + az^{(-1,1,1,1)} + az^{(-2,2,2,2)} + z^{(-3,3,3,3)}
\end{align*}
\]

Note: This diagram is actually four-dimensional, but is shown here as a projection onto \(M^o \).
As before, a choice of s_{prin} defines tori

$$\mathcal{X}_{s_{\text{prin}}} := T_{\tilde{M}} = \text{Spec } \mathbb{k}[\tilde{N}],$$

$$\mathcal{A}_{s_{\text{prin}}} := T_{\tilde{N}^\circ} = \text{Spec } \mathbb{k}[\tilde{M}^\circ]$$

which are glued using the birational mutation maps to obtain the schemes $\mathcal{A}_{\text{prin}}$ and $\mathcal{X}_{\text{prin}}$.
As before, a choice of s_{prin} defines tori

\[\mathcal{X}_{s_{\text{prin}}} := T_{\tilde{M}} = \text{Spec } k[\tilde{N}], \]
\[\mathcal{A}_{s_{\text{prin}}} := T_{\tilde{N}^\circ} = \text{Spec } k[\tilde{M}^\circ] \]

which are glued using the birational mutation maps to obtain the schemes $\mathcal{A}_{\text{prin}}$ and $\mathcal{X}_{\text{prin}}$.

The schemes \mathcal{A} and \mathcal{X} are given, respectively, by the fiber \mathcal{A}_e and the quotient $\mathcal{A}_{\text{prin}}/T_{\mathcal{N}^\circ}$.
This is reflected in the fact that we can obtain the \mathcal{X} scattering diagram by taking the slice $\{m \in M^\circ : m = p_1^*(n)\}$ of the A_{prin} scattering diagram.
This is reflected in the fact that we can obtain the \mathcal{X} scattering diagram by taking the slice $\{m \in M^\circ : m = p_1^*(n)\}$ of the $\mathcal{A}_{\text{prin}}$ scattering diagram.

In our running example, this gives us:

\[
\begin{align*}
 f_{01} &= 1 + z^{(0,1)} \\
 f_{02} &= 1 + az^{(1,0)} + az^{(2,0)} + z^{(3,0)} \\
 f_{03} &= 1 + z^{(3,1)} \\
 f_{04} &= 1 + az^{(2,1)} + az^{(4,2)} + z^{(6,3)} \\
 f_{05} &= 1 + z^{(3,2)} \\
 f_{06} &= 1 + az^{(1,1)} + az^{(2,2)} + z^{(3,3)}
\end{align*}
\]
This is reflected in the fact that we can obtain the \mathcal{X} scattering diagram by taking the slice $\{m \in M^\circ : m = p_1^*(n)\}$ of the A_{prin} scattering diagram.

In our running example, this gives us:

\[
\begin{align*}
\varphi_1 &= 1 + z^{(0,1)} \\
\varphi_2 &= 1 + az^{(1,0)} + az^{(2,0)} + z^{(3,0)} \\
\varphi_3 &= 1 + z^{(3,1)} \\
\varphi_4 &= 1 + az^{(2,1)} + az^{(4,2)} + z^{(6,3)} \\
\varphi_5 &= 1 + z^{(3,2)} \\
\varphi_6 &= 1 + az^{(1,1)} + az^{(2,2)} + z^{(3,3)}
\end{align*}
\]

Note: Here, the \mathcal{X} and A scattering diagrams have the same dimension because p_1^* is injective.
So far, we’ve only defined the initial scattering diagram.
So far, we’ve only defined the initial scattering diagram.

To explain how one could actually obtain these completed scattering diagrams in our previous examples, we need a little bit of additional framework.
Wall-crossing

Crossing a wall \((\partial, f_0)\) acts on monomials as \(z^m \mapsto z^m f_0^{\langle n_0, m \rangle}\), where \(n_0\) is the primitive vector normal to \(\partial\) that opposes the direction of travel. It acts on a polynomial by acting on each individual monomial.
Wall-crossing

Crossing a wall \((\partial, f_0)\) acts on monomials as \(z^m \mapsto z^m f_0^{\langle n_0, m \rangle}\), where \(n_0\) is the primitive vector normal to \(\partial\) that opposes the direction of travel.

It acts on a polynomial by acting on each individual monomial.

\[
\begin{align*}
z^{(2,-3)} &\mapsto z^{(2,-3)} \left(1 + az^{(-1,1)} + az^{(-2,2)} + z^{(-3,3)} \right)^{(2,3),(-1,-1)} \\
&= z^{(2,-3)} \left(1 + az^{(-1,1)} + az^{(-2,2)} + z^{(-3,3)} \right)
\end{align*}
\]
Path-ordered Products

Composing multiple wall-crossings along a path γ gives us the *path-ordered product* p_γ.

Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker)
Composing multiple wall-crossings along a path γ gives us the path-ordered product p_γ.

$$z^{(2,-3)} \mapsto z^{(2,-3)} \left(1 + az^{(-1,1)} + az^{(-2,2)} + z^{(-3,3)} \right)^{(2,3),(-1,-1)}$$

$$= z^{(2,-3)} \left(1 + az^{(-1,1)} + az^{(-2,2)} + z^{(-3,3)} \right)$$

$$\mapsto z^{(2,-3)} \left(1 + z^{(-1,0)} \right)^3.$$
A scattering diagram \mathcal{D} is called \textit{consistent} if $p_\gamma = 1$ for any closed loop γ.

We build \mathcal{D} from the initial scattering diagram \mathcal{D}_{in} by adding any walls necessary to satisfy this condition.
A scattering diagram \mathcal{D} is called \textit{consistent} if $p_\gamma = 1$ for any closed loop γ.

We build \mathcal{D} from the initial scattering diagram \mathcal{D}_{in} by adding any walls necessary to satisfy this condition.

In our running example, \mathcal{D}_{in} consists of the vertical and horizontal walls and we could have used consistency to add the remaining walls.
Two scattering diagrams \mathcal{D} and \mathcal{D}' are *equivalent* if $p_{\gamma,\mathcal{D}} = p_{\gamma,\mathcal{D}'}$ for all paths γ for which both path-ordered products are defined.

The following holds in the generalized setting:

Theorem: (GHKK, 2018) Given fixed data Γ and seed s, there is a consistent scattering diagram \mathcal{D}_s which contains $\mathcal{D}_{in,s}$ such that $\mathcal{D}_s \setminus \mathcal{D}_{in,s}$ consists only of outgoing walls. The scattering diagram \mathcal{D}_s is unique up to equivalence.
Mutation Invariance:

Because mutation equivalent seeds s and s' generate the same generalized cluster algebra, we should expect \mathcal{D}_s and $\mathcal{D}_{s'}$ to be equivalent.
Mutation Invariance:

Because mutation equivalent seeds s and s' generate the same generalized cluster algebra, we should expect \mathcal{D}_s and $\mathcal{D}_{s'}$ to be equivalent.

Let

$$\mathcal{H}_{k,+} := \{ m \in M_\mathbb{R} : \langle e_k, m \rangle \geq 0 \},$$
$$\mathcal{H}_{k,-} := \{ m \in M_\mathbb{R} : \langle e_k, m \rangle \leq 0 \}.$$
Because mutation equivalent seeds \mathbf{s} and \mathbf{s}' generate the same generalized cluster algebra, we should expect $\mathcal{D}_\mathbf{s}$ and $\mathcal{D}_{\mathbf{s}'}$ to be equivalent.

Let

\[
\begin{align*}
\mathcal{H}_{k,+} & := \{ m \in \mathcal{M}_\mathbb{R} : \langle \mathbf{e}_k, m \rangle \geq 0 \}, \\
\mathcal{H}_{k,-} & := \{ m \in \mathcal{M}_\mathbb{R} : \langle \mathbf{e}_k, m \rangle \leq 0 \}.
\end{align*}
\]

The birational maps $\mu_k : \mathcal{A}_\mathbf{s} \rightarrow \mathcal{A}_{\mu_k(\mathbf{s})}$ and $\mu_k : \mathcal{X}_\mathbf{s} \rightarrow \mathcal{X}_{\mu_k(\mathbf{s})}$ tropicalize to the piecewise linear map

\[
T_k(m) := \begin{cases}
m + r_k v_k \langle d_k \mathbf{e}_k, m \rangle & m \in \mathcal{H}_{k,+} \\
m & m \in \mathcal{H}_{k,-}
\end{cases}
\]
We compute $T_k(\mathcal{D})$ by:

1. Replacing the wall $(e_k^\perp, 1 + a_{k,1}z^{v_k} + \cdots + a_{k,r_k-1}z^{(r_k-1)v_k} + z^{r_kv_k})$ with $(e_k^\perp, 1 + a_{k,1}z^{-v_k} + \cdots + a_{k,r_k-1}z^{-(r_k-1)v_k} + z^{-r_kv_k})$.

2. Applying T_k to the support and wall-crossing automorphism of each remaining wall.
Applying T_1 to our running example, we get:

\[\begin{array}{c}
\begin{array}{c}
\varnothing_2 \\
\varnothing_3 \\
\varnothing_4 \\
\varnothing_5 \\
\varnothing_6 \\
\end{array}
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
\varnothing'_{1'} \\
\varnothing'_{2'} \\
\varnothing'_{3'} \\
\varnothing'_{4'} \\
\varnothing'_{5'} \\
\varnothing'_{6'} \\
\end{array}
\end{array}\]

Note: T_1 is only an involution up to equivalence of diagrams.

Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker)

Theta Basis for Generalized Cluster Algebras

December 9, 2020 49 / 63
Applying T_1 to our running example, we get:

Note: T_k is only an involution up to equivalence of diagrams.
Mutation Invariance:

Theorem (Cheung-K.-Musiker): (c.f. Theorem 1.24 of GHKK) If the injectivity assumption holds, then $T_k(\mathcal{D}_s)$ is a consistent scattering diagram for $N^{\mu_k}_+(s)$. Moreover, the diagrams $\mathcal{D}_{\mu_k}(s)$ and $T_k(\mathcal{D}_s)$ are equivalent.

The proof of this theorem is quite lengthy, but one key point is that it relies on the reciprocity condition $a_{k,i} = a_{k,r_k-i}$.
Building \mathcal{A} from the scattering diagram

For a given scattering diagram \mathcal{D}_s, we build a scheme $\mathcal{A}_{\text{scat}}$ by associating tori to each chamber and gluing along the birational mutation maps. We need to show that $\mathcal{A}_{\text{scat}}$ is isomorphic to \mathcal{A}_s. A key step in doing so is checking the commutativity of the following diagram for mutation equivalent seeds s and s'.

\[
\begin{array}{c}
T \circ \sigma,
\end{array}
\begin{array}{c}
\tilde{\sigma}
\end{array}
\begin{array}{c}
T \circ \sigma,
\end{array}
\begin{array}{c}
\tilde{\sigma}
\end{array}
\begin{array}{c}
Tv'\sigma
\end{array}
\begin{array}{c}
p\sigma,\tilde{\sigma}
\end{array}
\begin{array}{c}
p\sigma',\tilde{\sigma}'
\end{array}
\begin{array}{c}
Tv'\tilde{\sigma}
\end{array}
\]

where σ and $\tilde{\sigma}$ are chambers in some \mathcal{D}_s and σ' and $\tilde{\sigma}'$ are the corresponding chambers in \mathcal{D}_s'. This again requires the reciprocity condition.
Building \mathcal{A} from the scattering diagram

For a given scattering diagram \mathcal{D}_s, we build a scheme $\mathcal{A}_{\text{scat}}$ by associating tori to each chamber and gluing along the birational mutation maps.

We need show that $\mathcal{A}_{\text{scat}}$ is isomorphic to \mathcal{A}.
Building \mathcal{A} from the scattering diagram

For a given scattering diagram \mathcal{D}_s, we build a scheme $\mathcal{A}_{\text{scat}}$ by associating tori to each chamber and gluing along the birational mutation maps.

We need show that $\mathcal{A}_{\text{scat}}$ is isomorphic to \mathcal{A}.

A key step in doing so is checking the commutativity of the following diagram for mutation equivalent seeds s and s'.

$$
\begin{array}{ccc}
TN^\circ,\sigma & \xrightarrow{T_{v'},\sigma} & TN^\circ,\sigma' \\
\downarrow p_{\sigma,\bar{\sigma}} & & \downarrow p_{\sigma',\bar{\sigma}'} \\
TN^\circ,\tilde{\sigma} & \xrightarrow{T_{v'},\tilde{\sigma}} & TN^\circ,\tilde{\sigma}'
\end{array}
$$

where σ and $\tilde{\sigma}$ are chambers in some \mathcal{D}_s and σ' and $\tilde{\sigma}'$ are the corresponding chambers in $\mathcal{D}_{s'}$.

This again requires the reciprocity condition.

Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker)
Theta Basis for Generalized Cluster Algebras
December 9, 2020 51 / 63
Building \mathcal{A} from the scattering diagram

For a given scattering diagram \mathcal{D}_s, we build a scheme $\mathcal{A}_{\text{scat}}$ by associating tori to each chamber and gluing along the birational mutation maps.

We need show that $\mathcal{A}_{\text{scat}}$ is isomorphic to \mathcal{A}.

A key step in doing so is checking the commutativity of the following diagram for mutation equivalent seeds s and s'.

\[
\begin{array}{ccc}
T_{N^\circ,\sigma} & \xrightarrow{T_{v',\sigma}} & T_{N^\circ,\sigma'} \\
\downarrow{p_{\sigma,\tilde{\sigma}}} & & \downarrow{p_{\sigma',\tilde{\sigma}'}} \\
T_{N^\circ,\tilde{\sigma}} & \xrightarrow{T_{v',\tilde{\sigma}}} & T_{N^\circ,\tilde{\sigma}'}
\end{array}
\]

where σ and $\tilde{\sigma}$ are chambers in some \mathcal{D}_s and σ' and $\tilde{\sigma}'$ are the corresponding chambers in $\mathcal{D}_{s'}$.

This again requires the reciprocity condition.
Theorem (Cheung-K.-Musiker): (c.f. Theorem 4.4 of GHKK) Let s be a generalized torus seed, v be the root of \mathcal{Z}_s and v' be any other vertex. Let $\psi^*: M^\circ_{v'} \to M^\circ_v$ be the linear map $\mu_{v,v'}^{T_{v,v'}}|_{C^+_v \in s}$ and $\psi_{v,v'}: T_{N^\circ, v'} \to T_{N^\circ, v'}$ be the map between the associated tori. Then the collection $\{\psi_{v,v'}\}_{v'}$ glue to give an isomorphism

$$A_s := \bigcup_{v'} T_{N^\circ} \to A_{\text{scat}, s} := \bigcup_{v'} T_{N^\circ, v'}$$

and the diagram

$$\begin{array}{ccc}
A_s & \longrightarrow & A_{\text{scat}, s} \\
\downarrow & & \downarrow \\
A_{s_{v'}} & \longrightarrow & A_{\text{scat}, s_{v'}}
\end{array}$$

commutes.
Building \mathcal{A} from the scattering diagram

The upshot:
We can identify the rings of regular functions on $\mathcal{A}_{\text{scat,} s}$ and \mathcal{A}_s.
Building A from the scattering diagram

The upshot:
We can identify the rings of regular functions on A_{scat}, s and A_s.

This is a key component of showing that the theta functions form a basis.
Theta functions can be defined in terms of path-ordered products as

\[\vartheta_m = p_\gamma(z^m) \]

where \(\gamma \) is a path to the positive chamber.
Theta functions can be defined in terms of path-ordered products as

\[\vartheta_m = p_\gamma(z^m) \]

where \(\gamma \) is a path to the positive chamber.

These path-ordered products are easy to compute in areas where the walls aren’t dense. In many scattering diagrams, though, there are dense regions:

When \(bc \geq 5 \), every wall with rational slope appears inside the shaded cone.

(“The badlands”)
This motivates *broken lines*, which give another way to define ϑ_m.

Roughly, a broken line is a collection of all piecewise linear paths which begin with slope m_0, "scatter" off the walls in particular ways dictated by the wall-crossing automorphisms, and end at a particular point Q.

Let $m_0 = (0, -1)$ and Q be below the diagonal:

$z((-1, 2), z((-1, -1), z(0, -1), az((-1, 1), z((-1, -1), z(0, -1), z((-1, -1), z(0, -1)$.

Elizabeth Kelley (joint work with Man-Wai Chan) Theta Basis for Generalized Cluster Algebras December 9, 2020 55 / 63
This motivates *broken lines*, which give another way to define ϑ_m.

Roughly, a broken line is a collection of all piecewise linear paths which begin with slope $-m_0$, “scatter” off the walls in particular ways dictated by the wall-crossing automorphisms, and end at a particular point Q.

Let

\[
\begin{align*}
&z(-1,2) \quad z(-1,-1) \\
&z(0,-1) \quad z(-1,0) \quad z(-1,-1) \quad z(0,0) \quad z(0,-1)
\end{align*}
\]
This motivates *broken lines*, which give another way to define ϑ_m.

Roughly, a broken line is a collection of all piecewise linear paths which begin with slope $-m_0$, “scatter” off the walls in particular ways dictated by the wall-crossing automorphisms, and end at a particular point Q.

Let $m_0 = (0, -1)$ and Q be below the diagonal:
In terms of broken lines, the *theta basis* is defined as

$$\vartheta_{Q,m_0} := \sum_{\gamma} \text{Mono}(\gamma)$$

where the summation ranges over all broken lines γ with initial slope $-m_0$ and endpoint Q and $\text{Mono}(\gamma)$ denotes the monomial attached to the final domain of linearity.
\[Q, (0, -1) = z^{(0, -1)} + z^{-1, -1} + az^{-1, 0} + az^{-1, 1} + z^{-1, 2} \]
\[\psi_{Q,(0,-1)} = z^{(0,-1)} + z^{(-1,-1)} + az^{(-1,0)} + az^{(-1,1)} + z^{(-1,2)} \]

\[= \frac{1 + x_1 + ax_2 + ax_2^2 + x_2^3}{x_1 x_2} \]
Now that we have defined theta functions, we can establish some necessary intermediate results for proving that the theta functions form a basis.
Now that we have defined theta functions, we can establish some necessary intermediate results for proving that the theta functions form a basis.

Proposition (Cheung-K.-Musiker): (c.f. Proposition 3.6 of GHKK) The transformation T_k gives a bijection between broken lines with endpoint Q and initial slope m_0 in D_s and broken lines with endpoint $T_k(Q)$ and initial slope $T_k(m_0)$ in $D_{\mu_k}(s)$. In particular,

$$\vartheta^{\mu_k(s)}_{T_k(Q), T_k(m_0)} = T_{k, \pm} \left(\vartheta^{s}_{Q, m_0} \right)$$

for $Q \in \mathcal{H}_{k, \pm}$ where $T_{k, \pm}$ acts linearly on the exponents in ϑ^{s}_{Q, m_0}.
Now that we have defined theta functions, we can establish some necessary intermediate results for proving that the theta functions form a basis.

Proposition (Cheung-K.-Musiker): (c.f. Proposition 3.6 of GHKK)
The transformation T_k gives a bijection between broken lines with endpoint Q and initial slope m_0 in D_s and broken lines with endpoint $T_k(Q)$ and initial slope $T_k(m_0)$ in $D_{\mu_k}(s)$. In particular,

$$\vartheta^{\mu_k}_k(s)_{T_k(Q), T_k(m_0)} = T_k,\pm \left(\vartheta^s_{Q,m_0} \right)$$

for $Q \in \mathcal{H}_{k,\pm}$ where T_k,\pm acts linearly on the exponents in ϑ^s_{Q,m_0}.

Note: The proof of this proposition also requires the reciprocity condition.
Theta basis

Theorem (Cheung-K.-Musiker): (c.f. Theorem 4.9 of GHKK) The cluster monomials can be expressed in terms of theta functions.
Theta basis

Theorem (Cheung-K.-Musiker): (c.f. Theorem 4.9 of GHKK) The cluster monomials can be expressed in terms of theta functions. In fact, each lattice point of \mathcal{M}° corresponds to a cluster monomial. We can express a cluster monomial in terms of the initial cluster by computing p_γ for a path γ from that point to the positive chamber, C_+. Similarly, we can compute a cluster variable in terms of the initial cluster using a path from its g-vector, which appears as a lattice point, to the positive chamber.
Theta basis

Theorem (Cheung-K.-Musiker): (c.f. Theorem 4.9 of GHKK) The cluster monomials can be expressed in terms of theta functions.

In fact, each lattice point of M° corresponds to a cluster monomial.

We can express a cluster monomial in terms of the initial cluster by computing p_γ for a path γ from that point to the positive chamber, C_+. Similarly, we can compute a cluster variable in terms of the initial cluster using a path from its g-vector, which appears as a lattice point, to the positive chamber.
Lemma (Cheung-K.-Musiker): (c.f. Definition-Lemma 6.2 and Proposition 6.3 of GHKK)

Let p_1, p_2, and q be points in \tilde{M}_s° and z be a generic point in $\tilde{M}_{\mathbb{R},s}^\circ$. There are at most finitely many pairs of broken lines γ_1, γ_2 such that γ_i has initial slope p_i, both broken lines have endpoint z, and $F(\gamma_1) + F(\gamma_2) = q$. Let $a_z(p_1, p_2, q) := \sum_{(\gamma_1, \gamma_2)} c(\gamma_1)c(\gamma_2)$ for pairs γ_1, γ_2 such that $I(\gamma_i) = p_i, b(\gamma_i) = z$, and $F(\gamma_1) + F(\gamma_2) = q$. Then

$$\vartheta_{p_1} \cdot \vartheta_{p_2} = \sum_{q \in \tilde{M}_s^\circ} \alpha_z(q)(p_1, p_2, q)\vartheta_q$$

for $z(q)$ sufficiently close to q. When z is sufficiently close to q, $a_z(p_1, p_2, q)$ is independent of the choice of z and we can simply write $\alpha(p_1, p_2, q) := a_z(p_1, p_2, q)$.

Elizabeth Kelley (joint work with Man-Wai Cheung and Gregg Musiker)

Theta Basis for Generalized Cluster Algebras

December 9, 2020 61 / 63
All of which come together to allow us to prove:

Theorem (Cheung-K.-Musiker): Given a set of generalized fixed data Γ, the collection $\{\vartheta_{Q,m}\}_{m \in \tilde{M}^\circ}$ forms a basis for the associated reciprocal generalized cluster algebra.
References

