Part A

1. Let $\left\langle a_{n}\right\rangle$ be a sequence. Prove that $a_{n} \longrightarrow 0$ if, and only if $\left|a_{n}\right| \longrightarrow 0$.
2. Let $a_{n}=\frac{\cos (n \pi)}{1+n^{3 / 2}}$. (Note: In the phrase "Let $a_{n}=\ldots$ " it is implied that the assignment holds for each $n \in \mathbb{N}$).
(a) Find an equation for a_{n} which does not involve cosines.
(b) What is $\lim _{n \rightarrow \infty} a_{n}$? Give reasons for your answer.
3. Let $a_{n}=\sin \left(\frac{\pi n-1}{1-2 n} \ln \left(\frac{e n^{2}-e}{(n+1)^{2}}\right)\right)$. Does $\left\langle a_{n}\right\rangle$ converge? If so, find $L=\lim _{n \rightarrow \infty} a_{n}$. Give reasons for your answer.
4. Let $a_{n}=\frac{3^{n}}{n!}$
(a) Show that for all $n, a_{n} \leq \frac{9}{2} \frac{3}{n}$.
(b) Does $\left\langle a_{n}\right\rangle$ converge? If so, find $L=\lim _{n \rightarrow \infty} a_{n}$.

Part B

5. Let $a_{n}=\frac{n^{2}-1}{2 n^{2}+1}$.
(a) Show that $\left\langle a_{n}\right\rangle$ converges. What is $L=\lim _{n \rightarrow \infty} a_{n}$?
(b) Find a value n_{0} such that $\left|a_{n_{0}}-L\right|<\frac{1}{10^{2}}$. Show your work.
6. Determine if the following are true or false. If true, prove it. If false, give a counterexample.
(a) If $\left\langle a_{n}+b_{n}\right\rangle$ is divergent, then either $\left\langle a_{n}\right\rangle$ is divergent or $\left\langle b_{n}\right\rangle$ is divergent.
(b) If $\left\langle a_{n}\right\rangle$ and $\left\langle a_{n}+b_{n}\right\rangle$ are convergent, then $\left\langle b_{n}\right\rangle$ is convergent.
(c) If $\left\langle a_{n}\right\rangle$ and $\left\langle a_{n} b_{n}\right\rangle$ are convergent, then $\left\langle b_{n}\right\rangle$ is convergent.
7. Let $s_{n}=\sum_{i=0}^{n} \frac{1}{2^{i}}=1+\frac{1}{2}+\ldots+\frac{1}{2^{n}}$. Prove that $\left\langle s_{n}\right\rangle$ converges. What is $S=\lim _{n \rightarrow \infty} s_{n}$?
