Part A

For problems 1 and 2 determine if the sequences converge. If they do, find their limit. If they diverge, give reasons why they diverge.

1. (a) $a_n = \frac{\ln(n)}{n^{1/3}}, n \ge 1$ (b) $b_n = n \tan(\frac{1}{n}), n \ge 1$

2. (a)
$$c_n = \frac{\sqrt{n+1}}{\sqrt[3]{n+2}}$$

(b) $d_n = \frac{(\sin(n))^n}{n}$

- 3. Consider the recursive sequence $s_1 = \sqrt{6}$, $s_2 = \sqrt{6 + \sqrt{6}}$, and in general $s_{n+1} = \sqrt{6 + s_n}$. You can assume that s_n is increasing.
 - (a) Prove that $\langle s_n \rangle$ is bounded above by 6.
 - (b) Why does s_n converge? Compute $\lim_{n \to \infty} s_n$.
- 4. (a) Use Newton's method to find a recursive sequence to estimate $\frac{1}{a}$, where a > 0. <u>Hint:</u> Look at $f(x) = \frac{1}{x} - a$, where x > 0.
 - (b) For a = 17, find a good first guess $x_1 > \frac{1}{17}$. Compute x_2 and x_3 . Using a calculator, how accurate is x_3 ?

Part B

- 5. Suppose $\lim_{x\to 0^+} f(x) = L$ (where $x \to 0^+$ indicates that $x \to 0$ and x > 0). Prove that if $a_n = f(\frac{1}{n})$ then $a_n \to L$.
- 6. Consider the recursive sequence $s_1 = \sqrt{5}$, and $s_{n+1} = \sqrt{5s_n}$ for $n \ge 1$.
 - (a) Prove that for each $n \in \mathbb{N}$, $1 \leq s_n \leq 5$.
 - (b) Prove that $\langle s_n \rangle$ is increasing.
 - (c) Why does $\langle s_n \rangle$ converge? Find $\lim_{n \to \infty} s_n$.
- 7. Let $a_n = \frac{n^2 4n 5}{n^2 2n 3}$.
 - (a) Prove that $\langle a_n \rangle$ converges. Find $L = \lim_{n \to \infty} a_n$
 - (b) Find n_0 such that $n \ge n_0 \Rightarrow |a_n L| < \frac{1}{10^2}$