Part A

For problems 1 and 2 determine if the sequences converge. If they do, find their limit. If they diverge, give reasons why they diverge.

1. (a) $a_{n}=\frac{\ln (n)}{n^{1 / 3}}, n \geq 1$
(b) $b_{n}=n \tan \left(\frac{1}{n}\right), n \geq 1$
2. (a) $c_{n}=\frac{\sqrt{n}+1}{\sqrt[3]{n}+2}$
(b) $d_{n}=\frac{(\sin (n))^{n}}{n}$
3. Consider the recursive sequence $s_{1}=\sqrt{6}, s_{2}=\sqrt{6+\sqrt{6}}$, and in general $s_{n+1}=\sqrt{6+s_{n}}$. You can assume that s_{n} is increasing.
(a) Prove that $\left\langle s_{n}\right\rangle$ is bounded above by 6 .
(b) Why does s_{n} converge? Compute $\lim _{n \rightarrow \infty} s_{n}$.
4. (a) Use Newton's method to find a recursive sequence to estimate $\frac{1}{a}$, where $a>0$. Hint: Look at $f(x)=\frac{1}{x}-a$, where $x>0$.
(b) For $a=17$, find a good first guess $x_{1}>\frac{1}{17}$. Compute x_{2} and x_{3}. Using a calculator, how accurate is x_{3} ?

Part B

5. Suppose $\lim _{x \rightarrow 0^{+}} f(x)=L$ (where $x \rightarrow 0^{+}$indicates that $x \rightarrow 0$ and $x>0$). Prove that if $a_{n}=f\left(\frac{1}{n}\right)$ then $a_{n} \rightarrow L$.
6. Consider the recursive sequence $s_{1}=\sqrt{5}$, and $s_{n+1}=\sqrt{5 s_{n}}$ for $n \geq 1$.
(a) Prove that for each $n \in \mathbb{N}, 1 \leq s_{n} \leq 5$.
(b) Prove that $\left\langle s_{n}\right\rangle$ is increasing.
(c) Why does $\left\langle s_{n}\right\rangle$ converge? Find $\lim _{n \rightarrow \infty} s_{n}$.
7. Let $a_{n}=\frac{n^{2}-4 n-5}{n^{2}-2 n-3}$.
(a) Prove that $\left\langle a_{n}\right\rangle$ converges. Find $L=\lim _{n \rightarrow \infty} a_{n}$
(b) Find n_{0} such that $n \geq n_{0} \Rightarrow\left|a_{n}-L\right|<\frac{1}{10^{2}}$
