MATH3283W LECTURE NOTES: WEEK 12

4/12/2010

Power series(cont.)

Examples:

(1) $f(x)=(1+x)^{\frac{1}{2}}$

$$
\begin{aligned}
f^{\prime}(x)= & \frac{1}{2}(1+x)^{-\frac{1}{2}} \\
f^{\prime \prime}(x)= & \frac{1}{2} \cdot\left(-\frac{1}{2}\right)(1+x)^{-\frac{3}{2}} \\
f^{\prime \prime \prime}(x)= & \frac{1}{2} \cdot\left(-\frac{1}{2}\right) \cdot\left(-\frac{3}{2}\right)(1+x)^{-\frac{5}{2}} \\
f^{(4)}(x)= & -\frac{1 \cdot 3 \cdot 5}{2^{4}}(1+x)^{-\frac{7}{2}} \\
& \vdots \\
f^{(n)}(x)= & (-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-3)}{2^{n}}(1+x)^{-\frac{2 n-1}{2}}
\end{aligned}
$$

So $f^{(n)}(0)=(-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-3)}{2^{n}}$ and

$$
T S=1+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n}} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-3)}{n!} x^{n}
$$

(2) $f(x)=\sin x$ at $x=\frac{\pi}{2}$. $\begin{array}{ccccccl}f^{(n)}(x): & \sin x & \cos x & -\sin x & -\cos x & \sin x & \cdots \\ f^{(n)}\left(\frac{\pi}{2}\right): & 1 & 0 & -1 & 0 & 1 & \cdots\end{array}$
So

$$
T\left(\frac{\pi}{2}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(x-\frac{\pi}{2}\right)^{2 n}
$$

We have shown that the Taylor series of $\sin x$ at $x=0$ is

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

From this example, we can see that the Taylor series of a function at different points can be very different. Moreover,

$$
T_{3}(0)=x-\frac{x^{3}}{3!}, \quad T_{3}\left(\frac{\pi}{2}\right)=1-\frac{\left(x-\frac{\pi}{2}\right)^{2}}{2!}
$$

These two polynomials even have different degrees!
(3) Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} . f(x)$ is a polynomial and

$$
f(0)=a_{0}, f^{\prime}(0)=a_{1}, f^{\prime \prime}(0)=2 a_{2}=2!a_{2}, \cdots
$$

Note that $f^{(m)}(x)=0$ if $m>n$. So

$$
T(0)=a_{0}+\cdots+a_{n} x^{n}
$$

It means that any polynomial of x is its Taylor series.
(4) Consider $f(x)=e^{x^{2}}$. Since $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ holds for all real x , replace x with x^{2} can get

$$
e^{x^{2}}=\sum_{n=0}^{\infty} \frac{\left(x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}=1+\frac{x^{2}}{1!}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\cdots
$$

If we directly compute $T_{n}(0)$, we have

$$
f(0)=1, f^{\prime}(0)=\left.2 x e^{x^{2}}\right|_{0}=0, f^{\prime \prime}(0)=2 e^{x^{2}}+\left.4 x e^{x^{2}}\right|_{0}=2, \cdots
$$

and hence $T_{0}(0)=1, T_{1}(0)=1, T_{2}(0)=1+x^{2}, \cdots$, i.e. the above series is the Taylor series for $e^{x^{2}}$.
(5) Consider $P(x)=2+x-x^{3}+x^{5}$. It is clear that $T_{3}(0)=2+x-x^{3}$, we want to find $T_{3}(2)$.
We know that

$$
\begin{aligned}
T_{3}(2)=P(2)+P^{\prime}(2) & (x-2)+\frac{P^{\prime \prime}(2)}{2!}(x-2)^{2}+\frac{P^{\prime \prime \prime}(2)}{3!}(x-2)^{3} \\
P(2) & =2+2-8+32=28 \\
P^{\prime}(2) & =1-3 \cdot 4+5 \cdot 16=69 \\
P^{\prime \prime}(2) & =-3 \cdot 2 c d o t 2+5 \cdot 4 \cdot 8=148 \\
P^{\prime \prime \prime}(3) & =-6+60 \cdot 4=234
\end{aligned}
$$

So

$$
T_{3}(2)=28+69(x-2)+74(x-2)^{2}+39(x-2)^{3}
$$

Differentiating and Integrating Power Series

We now show how to differentiate and integrate power series by doing the obvious way: computing term-by-term. This will allow us to find the power series for many more functions. A key result is
Theorem 0.1. If $\sum_{k=0}^{\infty} a_{k} x^{k}$ converges on $(-c, c)$, then the power series formula by term-by-term differentiation

$$
\sum_{k=0}^{\infty} \frac{d}{d x}\left(a_{k} x^{k}\right)=\sum_{k=1}^{\infty} k a_{k} x^{k-1} \quad(\text { Remark: } k \text { starts from 1) }
$$

also converges on $(-c, c)$.
Proof. Pick $t \in(-c, c)$ and $\varepsilon>0$ s.t. $|t|<|t|+\varepsilon<c$. Since $|t|+\varepsilon<R$ (R: the radius of convergence), $\sum\left|a_{k}(|t|+\varepsilon)^{k}\right|$ converges. Now

$$
\begin{gathered}
\left(k|t|^{k-1}\right)^{\frac{1}{k}}=k^{\frac{1}{k}}|t|^{1-\frac{1}{k}} \xrightarrow{k \rightarrow+\infty} 1 \cdot|t|=|t| \\
\text { So } \quad \exists k_{0}, k \geq k_{0} \Rightarrow\left(k|t|^{k-1}\right)^{\frac{1}{k}}<|t|+\varepsilon \text { i.e. } k|t|^{k-1}<(|t|+\varepsilon)^{k}
\end{gathered}
$$

Hence, by CT, $\sum_{k=k_{0}}^{\infty}\left|a_{k}\right| k|t|^{k-1}=\sum_{k=k_{0}}^{\infty}\left|k a_{k} t^{k-1}\right|$ converges and so does $\sum_{k=1}^{\infty}\left|k a_{k} t^{k-1}\right|$.

Corollary 0.2. (1) $\sum a_{k} x^{k}$ and $\sum k a_{k} x^{k-1}$ have the same radius of convergence R.
(2) If $f(x)=\sum a_{k} x^{k}$, then $f^{\prime}(x)=\sum k a_{k} x^{k-1}$.

Proof. (1) From theorem 0.1, we know that $\sum k a_{k} x^{k-1}$ converges on $(-R, R)$. Now suppose R_{1} is the radius of converges for $\sum k a_{k} x^{k-1}$ and $\left|x_{1}\right|<R_{1}$. Then $\sum\left|k a_{k} x_{1}^{k-1}\right|$ converges. Since $\left|a_{k} x_{1}^{k-1}\right| \leq\left|k a_{k} x_{1}^{k-1}\right|$, we know that $\sum\left|a_{k} x_{1}^{k-1}\right|$ converges, as well as $\left|x_{1}\right| \sum\left|k a_{k} x_{1}^{k-1}\right|=\sum\left|a_{k} x_{1}^{k}\right|$. So $R_{1} \leq R$, which means that $R_{1}=R$
(2) skip proof.

We know can compute all derivatives of $f(x)$ in the same way.

$$
\begin{gathered}
f^{\prime \prime}(x)=\sum_{k=0}^{\infty} \frac{d^{2}}{d x^{2}}\left(a_{k} x^{k}\right)=\sum_{k=2}^{\infty} k(k-1) a_{k} x^{k-2} \\
f^{\prime \prime \prime}(x)=\sum_{k=3}^{\infty} k(k-1)(k-2) a_{k} x^{k-3} \text { etc }
\end{gathered}
$$

4/14/2010

Enrichment: partial sum of divergent positive series.
Just as rearrangements of conditional convergent series giving any real numbers, divergent series have similar properties for summing rearranged terms. Note that $\sum_{k=1}^{\infty} \frac{1}{n}$ diverges. We have:

Any positive rational number can be written as a finite sum of terms from $\sum_{k=1}^{\infty} \frac{1}{n}$.

Examples:

(1) $\frac{27}{37}$.

Find smallest n_{1} s.t. $\frac{1}{n_{1}}<\frac{27}{31}$. $n_{1}=2$ because $\frac{1}{2}<\frac{27}{31}$ and $\frac{1}{1}>\frac{27}{31}$.
If we look at $\frac{27}{31}-\frac{1}{2}=\frac{54-31}{62}=\frac{23}{62}$, then $n_{2}=3$ since $\frac{1}{3}<\frac{23}{62}$.
$\frac{23}{62}-\frac{1}{3}=\frac{69-62}{186}=\frac{7}{186}$. Since $\frac{186}{7}=26.57$, we know that $n_{3}=27$ and $\frac{7}{186}=\frac{1}{27}=\frac{189-186}{2322}=\frac{3}{2322}=\frac{1}{774}$.
So $n_{4}=774$ and we are done:

$$
\frac{27}{31}=\frac{1}{2}+\frac{1}{3}+\frac{1}{27}+\frac{1}{774}
$$

(2) $\frac{3}{7}$.
$n_{1}=3$ since $\frac{1}{3}<\frac{3}{7}$ and $\frac{3}{7}-\frac{1}{3}=\frac{9-7}{21}=\frac{2}{21}$.
$n_{2}=311$ since $\frac{1}{11}<\frac{2}{21}$ and $\frac{2}{21}-\frac{1}{11}=\frac{22-21}{231}=\frac{1}{231}$.
$n_{3}=231$ and $\frac{3}{7}=\frac{1}{3}+\frac{1}{11}+\frac{1}{231}$.
Check:

$$
\frac{1}{3}+\frac{1}{11}+\frac{1}{231}=\frac{77+21+1}{231}=\frac{99}{231}=\frac{9}{21}=\frac{3}{7}
$$

Note: the sum is unique by fact in number theory.
Exercises: Do the above for $x=\frac{2}{3}, x=\frac{7}{9}, x=\frac{28}{41}$.
(3) $\frac{10}{7}=1+\frac{3}{7}$.

We know that $\frac{3}{7}=\frac{1}{3}+\frac{1}{11}+\frac{1}{231}$, we can't use 3,11 and 231 to compute 1 . We start with $\frac{1}{2}+\frac{1}{4}+\frac{1}{5}=\frac{19}{20}<1$ which is the largest possible partial sum of the series $\sum_{k=1}^{\infty} \frac{1}{n}$ removing $\frac{1}{3}, \frac{1}{11}, \frac{1}{231}$ and less than 1 . Then $1-\frac{19}{20}=\frac{1}{20}$ and we have $1=\frac{1}{2}+\frac{1}{4}+\frac{1}{5}+\frac{1}{20}$. Thus

$$
\frac{10}{7}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{11}+\frac{1}{20}+\frac{1}{231}
$$

Exercises: Do the above for $x=\frac{5}{3}$ and $x=\frac{25}{9}$.
(4) The above works for the odd harmonic series $\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots$ and rational number $\frac{p}{q}$ with q odd. For example, if $x=\frac{7}{13}$, the largest $\frac{1}{n}$ wit $\mathrm{h} n$ odd and less than $\frac{7}{13}$ is $\frac{1}{3}$, so $n_{1}=3$ and $\frac{7}{13}-\frac{1}{3}=\frac{21-13}{39}=\frac{8}{39}$.
$\frac{1}{5}<\frac{8}{39}$ and $n_{2}=5, \frac{8}{39}-\frac{1}{5}=\frac{40-39}{195}=\frac{1}{195}$.
S0 $n_{3}=195$ and we have $\frac{7}{13}=\frac{1}{3}+\frac{1}{5}+\frac{1}{195}$.
For full harmonic series, we have $\frac{7}{13}=\frac{1}{2}+\frac{1}{26}$.

Integration of power series

Consider a PS $\sum_{k=0}^{\infty} a_{k} x^{k}$ and the PS formed by term-by-term integration:

$$
\sum_{k=0}^{\infty} \int a_{k} x^{k} d x=\sum_{k=0}^{\infty} \frac{a_{k} x^{k+1}}{k+1}
$$

If R is the radius of converges for this new series, then since $\frac{d}{d x}\left(\frac{a_{k} x^{k+1}}{k+1}\right)=$ $a_{k} x^{k}$, the original series also has radius of convergence R as before. If $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$, then

$$
\begin{aligned}
\int f(x) d x & =\sum_{k=0}^{\infty} \int a_{k} x^{k} d x=\sum_{k=0}^{\infty} \frac{a_{k} x^{k+1}}{k+1} \\
& =C+a_{0} x+a_{1} x^{2}+a_{2} \frac{x^{3}}{3}+\cdots, \text { C: constant of integration }
\end{aligned}
$$

Examples:

(1) We have

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots
$$

Then

$$
\begin{aligned}
\cos x & =\frac{d}{d x}(\sin x)=\sum_{n=0}^{\infty} \frac{d}{d x}\left((-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}\right) \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}(2 n+1)}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots
\end{aligned}
$$

(2) Consider

$$
\ln (x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(x-1)^{n}, 0<x \leq 2
$$

Replace $x-1$ by w. Since $0<x \leq 2,-1<x-1 \leq 1$. So $-1<w \leq 1$ and we get $\ln (1+w)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} w^{n}$ with
$R=1$ as before, but now it is a PS with w at $w=0$. We can form a PS for
$\ln \left(\frac{1+x}{1-x}\right)=\ln (1+x)-\ln (1-x)=\sum_{n=1}^{\infty}\left(\frac{(-1)^{n+1}}{n}-a_{n}\right) x^{n}$
where $\sum_{n=1}^{\infty} a_{n} x^{n}=\ln (1-x)$. But

$$
\begin{aligned}
\ln (1-x)=\int \frac{-1}{1-x} d x & =(-1) \sum_{n=0}^{\infty} \int x^{n} d x=(-1) \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}=\sum_{n=1}^{\infty}-\frac{x^{n}}{n}(C=0) \\
\text { So } \frac{(-1)^{n+1}}{n}-\frac{1}{n} & =\left\{\begin{array}{ll}
\frac{2}{n}, & n=2 k+1: \text { odd } \\
0, & n=2 k: \text { even }
\end{array} \text { and } R=1 .\right. \\
\ln \left(\frac{1+x}{1-x}\right) & =\sum_{k=0}^{\infty} \frac{2}{2 k+1} x^{2 k+1}=2 \sum_{k=0}^{\infty} \frac{x^{2 k+1}}{2 k+1}
\end{aligned}
$$

This allows us to estimate $\ln w$ for any positive w. If we solve $\frac{1+x}{1-x}=w$ for $0<x<1$,

$$
1+x=w(1-x)=w-w x,(1+w) x=w-1, x=\frac{w-1}{w+1}
$$

$$
w=9, x=.8
$$

$$
\ln 9 \approx 2\left[\frac{.8}{1}+\frac{.8^{3}}{3}+\frac{.8^{5}}{5}\right] \approx 2 \cdot 1.0362=2.0724
$$

(A modest estimate is 2.1972. Adding $\frac{.8^{7}}{7}$ gives 2.1023) $w=2, x \frac{1}{3}$,

$$
\ln 2 \approx 2 \times\left[\frac{1}{3}+\frac{\left(\frac{1}{3}\right)^{3}}{3}+\frac{\left(\frac{1}{3}\right)^{5}}{5}\right]=2 \times .3465=.6930
$$

an excellent estimate $(\ln 2 \approx .69315)$.
(3) We have $e^{x^{2}}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}$ (start $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, and replace x by $\left.x^{2}\right)$. Suppose we want to estimate $\int_{0}^{1} e^{x^{2}} d x$. Now

$$
\begin{aligned}
& \int e^{x^{2}} d x=\sum_{n=0}^{\infty} \int \frac{x^{2 n}}{n!} d x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1) \cdot n!}=x+\frac{x^{3}}{3 \cdot 1!}+\frac{x^{5}}{5 \cdot 2!}+\frac{x^{7}}{7 \cdot 3!}+\cdots \\
& \quad \text { So } \int_{0}^{1} e^{x^{2}} d x \approx x+\frac{x^{3}}{3}+\frac{x^{5}}{10}+\left.\frac{x^{7}}{42}\right|_{0} ^{1}=1+\frac{1}{3}+\frac{1}{10}+\frac{1}{42}=1.4571 \\
& \mathbf{4} / \mathbf{1 6} / \mathbf{2 0 1 0}
\end{aligned}
$$

(4) The geometric series together with differentiation/integration of power sries gives us lots of new PS. Since we know

$$
\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

We can get

$$
\begin{aligned}
\arctan x & =\int \frac{1}{1+x^{2}} d x=\sum_{n=0}^{\infty} \int(-1)^{n} x^{2 n} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+C \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots+C \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \quad(C=\arctan 0=0)
\end{aligned}
$$

This PS converges for $R=1$.
At $x=-1$, we get $\sum_{n=0}^{\infty}(-1)^{n} \frac{(-1)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2 n+1}$ which converges by alternating series test.
At $x=1$, we get $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$ which also converges .

Theorem 0.3 (Abel Theorem). (see textbook)
If $f(x)=\sum_{n=0}^{\infty} a_{k} x^{k}$ converges for $|x|<1$ and $\sum_{n=0}^{\infty} a_{k}$ converges, then $f(1)=\sum_{n=0}^{\infty} a_{k}$ when $f(1)$ is continuous at $x=1$.

Thus $\frac{\pi}{4}=\arctan 1=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$
(Note: this is amazing because an irrational number $\frac{\pi}{4}$ can be expressed as sum of rational numbers. But this PS is not useful because it converges too slowly.)

Example: Find power series for $f(x)=\frac{1}{\left(1+x^{2}\right)^{2}}$.
We can multiply PS of $\frac{1}{1+x^{2}}$ to get it. An alternate way is to use the following formula:

$$
\frac{d}{d x}\left(\frac{1}{1+x^{2}}\right)=(-1) \frac{1}{\left(1+x^{2}\right)^{2}} \cdot 2 x=\frac{-2 x}{\left(1+x^{2}\right)^{2}}
$$

Since $\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$,

$$
\frac{d}{d x}\left(\frac{1}{1+x^{2}}\right)=\sum_{n=1}^{\infty}(-1)^{n} 2 n \cdot x^{2 n-1}=2 \sum_{m=0}^{\infty}(-1)^{m+1}(m+1) \cdot x^{2 m+1} \quad(m=n-1)
$$

$$
\text { So } \begin{aligned}
\frac{-2 x}{\left(1+x^{2}\right)^{2}} & =2 \sum_{n=0}^{\infty}(-1)^{n+1}(n+1) \cdot x^{2 n+1} \\
\frac{x}{\left(1+x^{2}\right)^{2}} & =\sum_{n=0}^{\infty}(-1)^{n}(n+1) \cdot x^{2 n+1} \\
\frac{1}{\left(1+x^{2}\right)^{2}} & =\sum_{n=0}^{\infty}(-1)^{n}(n+1) \cdot x^{2 n}=1-2 x^{2}+3 x^{4}-4 x^{6}+\cdots
\end{aligned}
$$

Test: when $x=.17, \frac{1}{\left(1+x^{2}\right)^{2}} \approx .9446$ and the first 4 terms $\approx .9536$. So the error $\approx .009$.

Counting sets: levels of infinity

Recall: $A \neq \emptyset$ is finite if $\exists n \in \mathbb{N}$ such that A has precisely n elements:

$$
A=\left\{a_{i} \mid 1 \leq i \leq n\right\} \quad \& \quad i \neq j \Rightarrow a_{i} \neq a_{j}
$$

Another way: if $\mathbb{N}_{n}=\{1,2, \cdots, n\}$, then there is an 1-to-1 and onto function $f: \mathbb{N}_{n} \rightarrow A, f(i)=a_{i}$.
(Onto means that the set Range $f=\{y \mid y=f(x)$ for some $x\}$ is equal to A.) 1-to-1 and onto functions are also called bijections.

Definition 0.4. $f: C \rightarrow D$ is 1-to-1 if

$$
\forall c_{1}, c_{2} \in C, c_{1} \neq c_{2} \Rightarrow f\left(c_{1}\right) \neq f\left(c_{2}\right) .
$$

$f: C \rightarrow D$ is onto if

$$
\forall d \in D, \exists c \in C \Rightarrow f(c)=d
$$

This is the corresponding definition of finite:
$A \neq \emptyset$ is finite if $\exists n \in \mathbb{N}$ and a bijection $f: \mathbb{N}_{n} \rightarrow A$.

Examples:

(1) $f_{j}, g_{j}: \mathbb{N} \rightarrow \mathbb{N}, f_{j}(n)=n+j, g_{j}(n)=j n$ where $j \in \mathbb{N}$ is fixed. (For instance, $f_{2}(n)=n+2, g_{2}(n)=2 n$.) Both are 1-to-1, but not onto:
If $j \neq 1$, suppose $f_{j}\left(n_{1}\right)=f_{j}\left(n_{2}\right)$, so $n_{1}+j=n_{2}+j$ and $n_{1}=n_{2}$. This is the contrapositive of $n_{1} \neq n_{2} \Rightarrow f_{j}\left(n_{1}\right) \neq f_{j}\left(n_{2}\right)$. So f_{j} is 1 -to- 1 .
Since $j n_{1}=j n_{2} \rightarrow n_{1}=n_{2}, g_{j}$ is also 1-1.
If $j \neq 1, f_{j}(\mathbb{N})=\{n>j \mid n \in \mathbb{N}\}=\{1+j, 2+j, 3+j, \cdots\}$ and $1,2, \cdots, j \notin f_{j}(\mathbb{N})$. So f_{j} is not onto. (Note: in this case, it is true even if $j=1$.)
$g_{j}(\mathbb{N})=\{j n \mid n \in \mathbb{N}\}=\{j, 2 j, 3 j, \cdots\}$ and $1,2, \cdots, j-1 \notin$
$g_{j}(\mathbb{N})$. So g_{j} is not onto.
If $j=1, g_{j}(n)=1 \cdot n=n$ and g_{1} is onto (so a bijection).
(2) Suppose A is a finite set and $f: \mathbb{N}_{n} \rightarrow A, f(j)=a_{j}$ a bijection. Then $g: \mathbb{N}_{n} \rightarrow A, g(j)=a_{n+1-j}$ is also a bijection.
We can use these ideas to refine our notion of infinitity (previous definition: not finite.)
Definition 0.5. A is countably infinite if $\exists f: \mathbb{N} \rightarrow A$ such that f is a bijection. Setting $f(i)=a_{i}$, we can express $A=\left\{a_{i} \mid i \in \mathbb{N}\right\}$ and $i \neq j \Rightarrow a_{i} \neq a_{j}$
Example: The set O of odd positive integers and set E of even positive integers are countably infinite. The functions $f: \mathbb{N} \rightarrow E, f(n)=2 n$ and $g: \mathbb{N} \rightarrow O, g(n)=2 n-1$ are bijections (Exercise).

