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Power series(cont.)

Examples:

(1) f(x) = (1 + x)
1
2

f ′(x) =
1

2
(1 + x)−

1
2

f ′′(x) =
1

2
· (−1

2
)(1 + x)−

3
2

f ′′′(x) =
1

2
· (−1

2
) · (−3

2
)(1 + x)−

5
2

f (4)(x) = −1 · 3 · 5
24

(1 + x)−
7
2

...

f (n)(x) = (−1)n+1 1 · 3 · 5 · · · (2n− 3)

2n
(1 + x)−

2n−1
2

So f (n)(0) = (−1)n+1 1·3·5···(2n−3)
2n and

TS = 1 +
∞∑
n=1

(−1)n+1

2n
1 · 3 · 5 · · · (2n− 3)

n!
xn

(2) f(x) = sinx at x = π
2
.

f (n)(x) : sinx cosx − sinx − cosx sinx · · ·
f (n)(π

2
) : 1 0 −1 0 1 · · ·

So

T (
π

2
) =

∞∑
n=0

(−1)n

(2n)!
(x− π

2
)2n

We have shown that the Taylor series of sinx at x = 0 is

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
1
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From this example, we can see that the Taylor series of a
function at different points can be very different. Moreover,

T3(0) = x− x3

3!
, T3(

π

2
) = 1−

(x− π
2
)2

2!
These two polynomials even have different degrees!

(3) Let f(x) = a0 + a1x+ · · ·+ anx
n. f(x) is a polynomial and

f(0) = a0, f
′(0) = a1, f

′′(0) = 2a2 = 2!a2, · · ·
Note that f (m)(x) = 0 if m > n. So

T (0) = a0 + · · ·+ anx
n

It means that any polynomial of x is its Taylor series.
(4) Consider f(x) = ex

2
. Since ex =

∑∞
n=0

xn

n!
holds for all real x,

replace x with x2 can get

ex
2

=
∞∑
n=0

(x2)n

n!
=
∞∑
n=0

x2n

n!
= 1 +

x2

1!
+
x4

2!
+
x6

3!
+ · · ·

If we directly compute Tn(0), we have

f(0) = 1, f ′(0) = 2xex
2|0 = 0, f ′′(0) = 2ex

2

+ 4xex
2|0 = 2, · · ·

and hence T0(0) = 1, T1(0) = 1, T2(0) = 1 + x2, · · · , i.e. the

above series is the Taylor series for ex
2
.

(5) Consider P (x) = 2+x−x3+x5. It is clear that T3(0) = 2+x−x3,
we want to find T3(2).
We know that

T3(2) = P (2) + P ′(2)(x− 2) +
P ′′(2)

2!
(x− 2)2 +

P ′′′(2)

3!
(x− 2)3

P (2) = 2 + 2− 8 + 32 = 28

P ′(2) = 1− 3 · 4 + 5 · 16 = 69

P ′′(2) = −3 · 2cdot2 + 5 · 4 · 8 = 148

P ′′′(3) = −6 + 60 · 4 = 234

So

T3(2) = 28 + 69(x− 2) + 74(x− 2)2 + 39(x− 2)3
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Differentiating and Integrating Power Series
We now show how to differentiate and integrate power series by doing
the obvious way: computing term-by-term. This will allow us to find
the power series for many more functions. A key result is

Theorem 0.1. If
∑∞

k=0 akx
k converges on (−c, c), then the power se-

ries formula by term-by-term differentiation
∞∑
k=0

d

dx
(akx

k) =
∞∑
k=1

kakx
k−1 (Remark: k starts from 1)

also converges on (−c, c).

Proof. Pick t ∈ (−c, c) and ε > 0 s.t. |t| < |t|+ε < c. Since |t|+ε < R
(R: the radius of convergence),

∑
|ak(|t|+ ε)k| converges. Now

(k|t|k−1)
1
k = k

1
k |t|1−

1
k
k→+∞−→ 1 · |t| = |t|

So ∃k0, k ≥ k0 ⇒ (k|t|k−1)
1
k < |t|+ ε i.e. k|t|k−1 < (|t|+ ε)k

Hence, by CT,
∑∞

k=k0
|ak|k|t|k−1 =

∑∞
k=k0
|kaktk−1| converges and so

does
∑∞

k=1 |kaktk−1|. �

Corollary 0.2. (1)
∑
akx

k and
∑
kakx

k−1 have the same radius
of convergence R.

(2) If f(x) =
∑
akx

k, then f ′(x) =
∑
kakx

k−1.

Proof. (1) From theorem 0.1, we know that
∑
kakx

k−1 converges
on (−R,R). Now suppose R1 is the radius of converges for∑
kakx

k−1 and |x1| < R1. Then
∑
|kakxk−1

1 | converges. Since
|akxk−1

1 | ≤ |kakxk−1
1 |, we know that

∑
|akxk−1

1 | converges, as
well as |x1|

∑
|kakxk−1

1 | =
∑
|akxk1|. So R1 ≤ R, which means

that R1 = R
(2) skip proof.

�

We know can compute all derivatives of f(x) in the same way.

f ′′(x) =
∞∑
k=0

d2

dx2
(akx

k) =
∞∑
k=2

k(k − 1)akx
k−2

f ′′′(x) =
∞∑
k=3

k(k − 1)(k − 2)akx
k−3 etc

4/14/2010
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Enrichment: partial sum of divergent positive series.
Just as rearrangements of conditional convergent series giving any real
numbers, divergent series have similar properties for summing rear-
ranged terms. Note that

∑∞
k=1

1
n

diverges. We have:

Any positive rational number can be written as a finite sum of terms
from

∑∞
k=1

1
n
.

Examples:

(1) 27
37

.

Find smallest n1 s.t. 1
n1

< 27
31

. n1 = 2 because 1
2
< 27

31
and

1
1
> 27

31
.

If we look at 27
31
− 1

2
= 54−31

62
= 23

62
, then n2 = 3 since 1

3
< 23

62
.

23
62
− 1

3
= 69−62

186
= 7

186
. Since 186

7
= 26.57, we know that n3 = 27

and 7
186

= 1
27

= 189−186
2322

= 3
2322

= 1
774

.
So n4 = 774 and we are done:

27

31
=

1

2
+

1

3
+

1

27
+

1

774

(2) 3
7
.

n1 = 3 since 1
3
< 3

7
and 3

7
− 1

3
= 9−7

21
= 2

21
.

n2 = 311 since 1
11
< 2

21
and 2

21
− 1

11
= 22−21

231
= 1

231
.

n3 = 231 and 3
7

= 1
3

+ 1
11

+ 1
231

.
Check:

1

3
+

1

11
+

1

231
=

77 + 21 + 1

231
=

99

231
=

9

21
=

3

7

Note: the sum is unique by fact in number theory.
Exercises: Do the above for x = 2

3
, x = 7

9
, x = 28

41
.

(3) 10
7

= 1 + 3
7
.

We know that 3
7

= 1
3

+ 1
11

+ 1
231

, we can’t use 3, 11 and 231 to

compute 1. We start with 1
2
+ 1

4
+ 1

5
= 19

20
< 1 which is the largest

possible partial sum of the series
∑∞

k=1
1
n

removing 1
3
, 1

11
, 1

231
and

less than 1. Then 1− 19
20

= 1
20

and we have 1 = 1
2

+ 1
4

+ 1
5

+ 1
20

.
Thus

10

7
=

1

2
+

1

3
+

1

4
+

1

5
+

1

11
+

1

20
+

1

231

Exercises: Do the above for x = 5
3

and x = 25
9

.
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(4) The above works for the odd harmonic series 1
3

+ 1
5

+ 1
7

+ · · ·
and rational number p

q
with q odd. For example, if x = 7

13
,

the largest 1
n

wit h n odd and less than 7
13

is 1
3
, so n1 = 3 and

7
13
− 1

3
= 21−13

39
= 8

39
.

1
5
< 8

39
and n2 = 5, 8

39
− 1

5
= 40−39

195
= 1

195
.

S0 n3 = 195 and we have 7
13

= 1
3

+ 1
5

+ 1
195

.

For full harmonic series, we have 7
13

= 1
2

+ 1
26

.

Integration of power series
Consider a PS

∑∞
k=0 akx

k and the PS formed by term-by-term integra-
tion:

∞∑
k=0

∫
akx

kdx =
∞∑
k=0

akx
k+1

k + 1

IfR is the radius of converges for this new series, then since d
dx

(akx
k+1

k+1
) =

akx
k, the original series also has radius of convergence R as before. If

f(x) =
∑∞

k=0 akx
k, then∫

f(x)dx =
∞∑
k=0

∫
akx

kdx =
∞∑
k=0

akx
k+1

k + 1

= C + a0x+ a1x
2 + a2

x3

3
+ · · · , C: constant of integration

Examples:

(1) We have

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− · · ·

Then

cosx =
d

dx
(sinx) =

∞∑
n=0

d

dx
((−1)n

x2n+1

(2n+ 1)!
)

=
∞∑
n=0

(−1)n
x2n(2n+ 1)

(2n+ 1)!
=
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− · · ·

(2) Consider

ln(x) =
∞∑
n=1

(−1)n+1

n
(x− 1)n, 0 < x ≤ 2

Replace x − 1 by w. Since 0 < x ≤ 2,−1 < x − 1 ≤ 1. So

−1 < w ≤ 1 and we get ln(1 + w) =
∑∞

n=1
(−1)n+1

n
wn with
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R = 1 as before, but now it is a PS with w at w = 0. We can
form a PS for

ln(
1 + x

1− x
) = ln(1 + x)− ln(1− x) =

∞∑
n=1

(
(−1)n+1

n
− an)xn

where
∑∞

n=1 anx
n = ln(1− x). But

ln(1−x) =

∫
−1

1− x
dx = (−1)

∞∑
n=0

∫
xndx = (−1)

∞∑
n=0

xn+1

n+ 1
=
∞∑
n=1

−x
n

n
(C = 0)

So (−1)n+1

n
− 1

n
=

{
2
n
, n = 2k + 1 : odd

0, n = 2k : even
and R = 1.

ln(
1 + x

1− x
) =

∞∑
k=0

2

2k + 1
x2k+1 = 2

∞∑
k=0

x2k+1

2k + 1

This allows us to estimate lnw for any positive w. If we solve
1+x
1−x = w for 0 < x < 1,

1 + x = w(1− x) = w − wx, (1 + w)x = w − 1, x =
w − 1

w + 1

w = 9, x = .8,

ln 9 ≈ 2[
.8

1
+
.83

3
+
.85

5
] ≈ 2 · 1.0362 = 2.0724

(A modest estimate is 2.1972. Adding .87

7
gives 2.1023)

w = 2, x1
3
,

ln 2 ≈ 2× [
1

3
+

(1
3
)3

3
+

(1
3
)5

5
] = 2× .3465 = .6930

an excellent estimate (ln 2 ≈ .69315).

(3) We have ex
2

=
∑∞

n=0
x2n

n!
(start ex =

∑∞
n=0

xn

n!
, and replace x by

x2). Suppose we want to estimate
∫ 1

0
ex

2
dx. Now∫

ex
2

dx =
∞∑
n=0

∫
x2n

n!
dx =

∞∑
n=0

x2n+1

(2n+ 1) · n!
= x+

x3

3 · 1!
+

x5

5 · 2!
+

x7

7 · 3!
+· · ·

So
∫ 1

0
ex

2
dx ≈ x+ x3

3
+ x5

10
+ x7

42
|10 = 1 + 1

3
+ 1

10
+ 1

42
= 1.4571

4/16/2010
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(4) The geometric series together with differentiation/integration
of power sries gives us lots of new PS. Since we know

1

1 + x2
=

1

1− (−x2)
=
∞∑
n=0

(−x2)n =
∞∑
n=0

(−1)nx2n

We can get

arctanx =

∫
1

1 + x2
dx =

∞∑
n=0

∫
(−1)nx2ndx =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
+ C

= x− x3

3
+
x5

5
− x7

7
+ · · ·+ C

= x− x3

3
+
x5

5
− x7

7
+ · · · (C = arctan 0 = 0)

This PS converges for R = 1.

At x = −1, we get
∑∞

n=0(−1)n (−1)2n+1

2n+1
=
∑∞

n=0
(−1)n+1

2n+1
which

converges by alternating series test.

At x = 1, we get
∑∞

n=0
(−1)n

2n+1
which also converges .

Theorem 0.3 (Abel Theorem). (see textbook)
If f(x) =

∑∞
n=0 akx

k converges for |x| < 1 and
∑∞

n=0 ak converges,
then f(1) =

∑∞
n=0 ak when f(1) is continuous at x = 1.

Thus π
4

= arctan 1 =
∑∞

n=0
(−1)n

2n+1
= 1− 1

3
+ 1

5
− 1

7
+ · · ·

(Note: this is amazing because an irrational number π
4

can be expressed
as sum of rational numbers. But this PS is not useful because it con-
verges too slowly.)

Example: Find power series for f(x) = 1
(1+x2)2

.

We can multiply PS of 1
1+x2 to get it. An alternate way is to use the

following formula:

d

dx
(

1

1 + x2
) = (−1)

1

(1 + x2)2
· 2x =

−2x

(1 + x2)2

Since 1
1+x2 =

∑∞
n=0(−1)nx2n,

d

dx
(

1

1 + x2
) =

∞∑
n=1

(−1)n2n·x2n−1 = 2
∞∑
m=0

(−1)m+1(m+1)·x2m+1 (m = n−1)
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So
−2x

(1 + x2)2
= 2

∞∑
n=0

(−1)n+1(n+ 1) · x2n+1

x

(1 + x2)2
=

∞∑
n=0

(−1)n(n+ 1) · x2n+1

1

(1 + x2)2
=

∞∑
n=0

(−1)n(n+ 1) · x2n = 1− 2x2 + 3x4 − 4x6 + · · ·

Test: when x = .17, 1
(1+x2)2

≈ .9446 and the first 4 terms ≈ .9536. So

the error ≈ .009.

Counting sets: levels of infinity
Recall: A 6= ∅ is finite if ∃n ∈ N such that A has precisely n elements:

A = {ai|1 ≤ i ≤ n} & i 6= j ⇒ ai 6= aj

Another way: if Nn = {1, 2, · · · , n}, then there is an 1-to-1 and onto
function f : Nn → A, f(i) = ai.
(Onto means that the set Rangef = {y|y = f(x) for some x} is equal
to A.) 1-to-1 and onto functions are also called bijections.

Definition 0.4. f : C → D is 1-to-1 if

∀c1, c2 ∈ C, c1 6= c2 ⇒ f(c1) 6= f(c2).

f : C → D is onto if

∀d ∈ D, ∃c ∈ C ⇒ f(c) = d

This is the corresponding definition of finite:
A 6= ∅ is finite if ∃n ∈ N and a bijection f : Nn → A.

Examples:

(1) fj, gj : N → N, fj(n) = n + j, gj(n) = jn where j ∈ N is fixed.
(For instance, f2(n) = n+ 2, g2(n) = 2n.) Both are 1-to-1, but
not onto:
If j 6= 1, suppose fj(n1) = fj(n2), so n1+j = n2+j and n1 = n2.
This is the contrapositive of n1 6= n2 ⇒ fj(n1) 6= fj(n2). So fj
is 1-to-1.
Since jn1 = jn2 → n1 = n2, gj is also 1-1.
If j 6= 1, fj(N) = {n > j|n ∈ N} = {1 + j, 2 + j, 3 + j, · · · } and
1, 2, · · · , j /∈ fj(N). So fj is not onto. (Note: in this case, it is
true even if j = 1.)
gj(N) = {jn|n ∈ N} = {j, 2j, 3j, · · · } and 1, 2, · · · , j − 1 /∈
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gj(N). So gj is not onto.
If j = 1, gj(n) = 1 · n = n and g1 is onto (so a bijection).

(2) Suppose A is a finite set and f : Nn → A, f(j) = aj a bijection.
Then g : Nn → A, g(j) = an+1−j is also a bijection.

We can use these ideas to refine our notion of infinitity (previous
definition: not finite.)

Definition 0.5. A is countably infinite if ∃f : N → A such that f
is a bijection. Setting f(i) = ai, we can express A = {ai|i ∈ N} and
i 6= j ⇒ ai 6= aj

Example: The set O of odd positive integers and set E of even positive
integers are countably infinite. The functions f : N → E, f(n) = 2n
and g : N→ O, g(n) = 2n− 1 are bijections (Exercise).


