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Power series(cont.)

Examples:

f(z) = %(1—&-:10)_5

@) = 55+

@) = (5 (D0 )

o = L

) = (mayer LB BT gy

So fM(0) = (—1)r 128 g

(=1)"*'1.3.5---(2n —3)
TS =1 "
+; 2n n! v
(2) f(x) =sinz at x = 7.
f™(z): sinz cosx —sinz —cosz sinz
fmE): 1 0 —1 0 1
So
il — (=" T2
75y = ~Tyom

We have shown that the Taylor series of sinz at x = 0 is

00
x2n+1

sinx = Z(—l)”m
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From this example, we can see that the Taylor series of a
function at different points can be very different. Moreover,
23 T (x —Z)?
T2y =1-2"_27
g () 2!
These two polynomials even have different degrees!

(3) Let f(z) = ap +a1x + -+ - + a,x™. f(x) is a polynomial and
f(0) = ao, f'(0) = a1, f"(0) = 2a, = 2lay, - --
Note that f(™)(x) =0 if m > n. So
T0)=ag+ -+ a,z"

It means that any polynomial of x is its Taylor series.
(4) Consider f(z) = e*’. Since e* = 3% % holds for all real x,

n=0 n!
replace x with 22 can get

T3(0) =z —

> 2\n > .2n 2 4 6
> (x*) x N
x: —_— _:1 —_— — — DRI
‘ ;n! ;n! TR T TI

If we directly compute 7,,(0), we have
£(0) =1, f/(0) = 2ze® |o = 0, f7(0) = 2™ + dze” |y =2,
and hence Ty(0) = 1,71(0) = 1,T5(0) = 1 + 2%,---, i.e. the
above series is the Taylor series for e’
(5) Consider P(z) = 2+x—23+2°. Tt is clear that T3(0) = 2+x—1?,
we want to find T5(2).
We know that

T32) = P(2) + P/(2)(a —2) + L2

2!

w22+ 2@ gy

(2) = 24+2-8+32=28
P2 = 1-3-4+5-16 =69
(2) = —3-2cdot2+5-4-8=148
(3) = —6+460-4=234
So
T3(2) = 28 + 69(x — 2) + T4(x — 2)* + 39(x — 2)*
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Differentiating and Integrating Power Series

We now show how to differentiate and integrate power series by doing
the obvious way: computing term-by-term. This will allow us to find
the power series for many more functions. A key result is

Theorem 0.1. If Y7 apz® converges on (—c,c), then the power se-
ries formula by term-by-term differentiation

o d [e.e]
g d—(akxk) = E kapz™'  (Remark: k starts from 1)
T

also converges on (—c,c).

Proof. Pick t € (—¢,c¢) and € > 0 s.t. [t| < |t|+e < c. Since [t|+e < R
(R: the radius of convergence), > |ax(|t| + ¢)*| converges. Now

(k|tP=1) % = kx|t =% "2 1 ] = |¢f

So ko k > ko = (k|t]")E < |t| +e e k|t < (|t +e)F
Hence, by CT, Y702, Japlklt|*~ = 3202, |kapt*~"| converges and so
does >0, |kagt*1|. O

Corollary 0.2. (1) S arx® and >~ kapx*t have the same radius
of convergence R.

(2) If f(x) = aga®, then f'(z) = kapa®!

Proof. (1) From theorem 0.1, we know that Y kapz®~1 converges
n (—R,R). Now suppose R; is the radius of converges for
Zkakxk Vand |z1] < Ry. Then Y |kagah™ | converges. Since
lagzh™| < |kagah™ 1\ we know that > |apzh™!| converges, as
well as 21| - [karzh ™| = 3 |ax2¥|. So Ry < R, which means

that Ry = R

(2) skip proof.
U

We know can compute all derivatives of f(x) in the same way.
d2
f(z) = Zd 5 (apz®) Zk — agz*?
( Z k(k — a3 ete
k=

3

4/14/2010
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Enrichment: partial sum of divergent positive series.

Just as rearrangements of conditional convergent series giving any real
numbers, divergent series have similar properties for summing rear-
ranged terms. Note that > 7, % diverges. We have:

Any positive rational number can be written as a finite sum of terms

from Y ;7 L.

Examples:
(1) 3.
. 1 27 _ 1 27
Fmd smallest nost. oo < oM = 2 because ; < £ and
= > =0
W ———: o = n ng = J since 7 < =5
If e look at 2 é 546231 62, the 3 since <
23 1 69-65_ %
RN —18686186811(10e3 - —126 .57, we know that n3 = 27
and 3 = 97 = To5 2322 — 774"

So ny = 774 and we are done:

27 1,1, 1 1
31 23 271 T4

3
;1:3since%<%and3—%—%:%.
ny = 311 since {5 < & and & — & = £21 = L
ng = 231 and 3 §+ &+ 57
Check:
1 1 1 TT+21+1 99 9 3
3 T W w1 w2 7
Note: the sum is unique by fact in number theory.
Exercises: Do the above for x = %, T = g, T = Z?
D=1+2

We know that % = % + 1—11 + 2%,)1, we can’t use 3,11 and 231 to
compute 1. We start with %+}1+% = % < 1 which is the largest
possible partial sum of the series ZZO 15 removing 35 11, 231 and
less than 1. Then 1 — L2 = L and we have 1== —|— —|— + =

20 — 20

Thus
0o 1 1 1 1 1 1 1
T2 3TITs T o T T mn
Exercises: Do the above for t = 3 and v = 2

3 9
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(4) The above works for the odd harmonic series 5 + 1 + 1 + - --

and rational number § with ¢ odd. For example if v = 173,

the largest % wit h n odd and less than 1—73 is £, so ny = 3 and

7 1 __21-13 _ 8

13 3 — 739 T 39

37

1 1 _40-39 _ 1
g<—andn2_5,39_5_ P
Son3—195andwehave— —_1_%4_ L

For full harmonic series, we have l = % + %

Integration of power series
Consider a PS Y77 axz”® and the PS formed by term-by-term integra-

tion:
k+1

d —
WS
d

If R is the radius of converges for this new series, then since 7 (“4%—) =

aka:k the original series also has radius of convergence R as before. If
(z) = > po o axx®, then
k+1

. k _ > apx
/f = kZ/akx dx E 1
=0 k=0

3

k+1

= C+apx+ a2’ + ag% + .-, C: constant of integration
Examples:
(1) We have
0 . x2n+1 x?) 5
e =3 D g T w
Then
d — d !
= Z(sinag) =S —((-1)"———
cos T dx(smx) nz; dx(( ) ot 1)!)
= LTM2n+ 1) Lo 22zt
= > (-1 S () =
(2n +1)! — (2n) 21 4

Replace x — 1 by w. Since 0 < z < 2,-1 <z —1<1. So
n+1
—1 < w <1 and we get In(1 +w) = >°° &

nel w™ with
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R =1 as before, but now it is a PS with w at w = 0. We can
form a PS for

1ti) =In(1+2z)—In(1—-2)= Z(T — ay)x

In(

where Y7 a,2" = In(1 — z). But

In(1—z) = = (—-1) Z/x”dm = (-
n=0 n= n=1
2
(71)n+1 1 o n:2k’—i—1 :Odd o
So "=, ”_{0, n = 2k : even and ft = 1.
1 +x 0 ok _ i 2+
k=0

1 . x
This allows us to estimate Inw for any positive w. If we solve

}J_“—ﬁzwfor0<x<1,
w—1

ltz=wl—g2)=w— 1 —w-1, =
+tr=wl—2)=w—-—wz, (l+wzr=w-1, z ——

g 8 &
+—+ —]~2-1.0362 = 2.0724

In9 = 2[-
IR 2AT g
(A modest estimate is 2.1972. Addlng glves 2.1023)

w—2x
1 1
L6 6Py 3465 = 6030

3 5

1n2~2><[
3 3

an excellent estimate (In2 ~ .69315)
> 2% and replace z by

(3) We have e** = 3% ’”ni,n (start e® = > > (&7
). Suppose we want to estimate fol e dz. Now

21 3 25 T

TS TR TR T

/€d$_§;/n”w_ —~(2n+1)-n 3

1+ + 15 +—*14571

7

Sofoe doe ~z + % +10+42!0

4/16,/2010
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(4) The geometric series together with differentiation/integration
of power sries gives us lots of new PS. Since we know

[e.9] [e.9]

1 1 9 9
_ _ . no_ —1)g2n
1+22  1—(—22) nzzo(x) HZ:O( )'e
We can get
1 > ) > x2n+1
arctanx = /1+$2dx=nz_o/(—1)$ dx:nzzo(_l) 2n—|—1+0
x> xd al
= r—— 4+ - 4. C
x 3—1—5 7+ +
3 5 7
= a:—%—i—%—%—l—--- (C = arctan0 = 0)

This PS converges for R = 1.

At x = —1, we get Zfzo(—l)”% = Z:’:O% which
converges by alternating series test.

Atz =1, weget Y (2;2: which also converges .

Theorem 0.3 (Abel Theorem). (see textbook)

If f(z) = >20°  aga® converges for |x| < 1 and Y oo i converges,

then f(1) =" ", ai when f(1) is continuous at x = 1.
Thus%:arctanlzzzo:()%:1—%+%—%—|—---

(Note: this is amazing because an irrational number 7 can be expressed

as sum of rational numbers. But this PS is not useful because it con-

verges too slowly.)

1
+a2)2
We can multiply PS of ﬁ to get it. An alternate way is to use the

following formula:

Example: Find power series for f(z) =

d 1 1 —2x

A (e R (F S

Since ﬁ = > (=1)ma?,
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—2x s
So —— — = QZ )" (n 4 1) - g2 !
2)2
(1+ 22?) —
_r N n 2n+1
N2 Z(—l) (n+1) -z
(1+ 22?) ~
1 o
(1 + 22)2 = Z(_l)n(n+1)-$2": 1 — 222+ 324 — 428 4 ...
n=0
Test: when z = .17, (sz)z ~ .9446 and the first 4 terms = .9536. So

the error ~ .0009.

Counting sets: levels of infinity
Recall: A # () is finite if 3n € N such that A has precisely n elements:

Another way: if N,, = {1,2,--- ,n}, then there is an 1-to-1 and onto
function f: N, — A, f(i) = a;.

(Onto means that the set Rangef = {y|y = f(x) for some z} is equal
to A.) 1-to-1 and onto functions are also called bijections.

Definition 0.4. f: C — D s 1-to-1 if
Vep,e0 € Coey # 0o = fer) # fle).
f:C — D s onto if
Vde D,3ce C = f(c) =

This is the corresponding definition of finite:
A # () is finite if 3n € N and a bijection f : N, — A.

Examples:

(1) fj,9; : N—=N, fj(n) =n+j,9;(n) = jn where j € N is fixed.
(For instance, fa(n) =n+ 2, gs(n) = 2n.) Both are 1-to-1, but
not onto:

If j # 1, suppose f;(n1) = fj(n2), so n1+j = ne+j and ny = no.

This is the contrapositive of ny # ny = f;(n1) # f;(n2). So f;

is 1-to-1.

Since jn; = jny — ny = ng, g; is also 1-1.

Ifj#1fi(N={n>jneN}={1+42+43+7---}and
-7 ¢ fj(N). So f; is not onto. (Note: in this case, it is

true even if j = 1.)

g](N) = {]n|n S N} = {j72.]73j7} and L2,---,5—1 ¢
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g;(N). So g; is not onto.
If j=1, gj(n)=1-n=mn and ¢ is onto (so a bijection).
(2) Suppose A is a finite set and f : N,, — A, f(j) = a; a bijection.
Then ¢ : N,, — A, g(j) = an4+1—; is also a bijection.
We can use these ideas to refine our notion of infinitity (previous
definition: not finite.)

Definition 0.5. A is countably infinite if 3f : N — A such that f
is a bijection. Setting f(i) = a;, we can express A = {a;|li € N} and
i F ] = a; # a,

Example: The set O of odd positive integers and set E of even positive

integers are countably infinite. The functions f : N — E| f(n) = 2n
and g : N — O, g(n) = 2n — 1 are bijections (Exercise).



