MATH3283W LECTURE NOTES: WEEK 3

2/1/2010

Proof without words: picture depicts

What is being proved from Fig.3.1?

1 Adding more and more dots gives bigger and bigger squares. \rightarrow It is too vague and it is not actually a math statement.
2 Each consecutive line has two more dots than the previous line. \rightarrow Nothing to prove.
3 The sum of consecutive odd numbers gives a square number . It can be proved by induction:

Observation: $P(n): 1+3+\cdots+(2 n+1)=$?
$n=1,1+(1+2)=1+(1+2 \cdot 1)=4=2^{2}$
$n=2,1+(1+2)+(1+4)=1+(1+2 \cdot 1)+(1+2 \cdot 2)=9=3^{2}$
So we guess that $P(n)$ is $1+3+\cdots+(2 n+1)=(n+1)^{2}$ and prove it by induction.
$n=0$, OK.
Assume $P(n)$ is true, we want to show that $P(n+1)$ is true.

$$
\begin{array}{ll}
& 1+3+5+\cdots+(2 n+1)+(2(n+1)+1) \\
\stackrel{P(n)}{=} & (n+1)^{2}+2 n+3 \\
= & n^{2}+2 n+1+2 n+3 \\
= & n^{2}+4 n+4 \\
= & (n+2)^{2} \\
= & ((n+1)+1)^{2}
\end{array}
$$

So $P(n+1)$ is true.

Upper and lower bounds

Suppose $A(\neq \emptyset) \subset \mathbb{R}$ has an upper bound (bounded above). Let

$$
B=\{r \in \mathbb{R} \mid r: \text { upper bound for } A\} \neq \emptyset
$$

Suppose B has a smallest element w. Then w is called the least upper bound of A, or the supremum of A, write $w=l u b A$ or $w=\sup A$. Thus $w=\sup A$ if
(1) w is an upper bound for A and
(2) if r is an upper bound for A, then $r \geq w$.

Another form of (2), using contrapositive:
(2') $\forall r \in \mathbb{R}(r<w \Rightarrow \exists a \in A, r<a)$
Note that any $r<w$ is not an upper bound.

Facts

- If $r>w=\sup A$, then $r \in B$.

Since w is also an upper bound, B is a ray $[w, \infty)$.

- Let $\varepsilon>0$, then $w-\varepsilon<w$ and by (2^{\prime}), $\exists a \in A, w-\varepsilon<a$, so we also have an equivlant condition:
(2") $\forall \varepsilon>0, \exists a \in A, w-\varepsilon<a$.

Similar for lower bounds:
Suppose $A(\neq \emptyset) \subset \mathbb{R}$ is bounded below and w is the greatest lower bound for A, write $w=g l b A$ or $w=\inf A$ (infemum of A). Thus $w=\inf A$ if
(1) w is a lower bound for A and
(2) if s is a lower bound for A, then $w \geq s$.

Again, using contrapositive of (2)
(2') $\forall r \in \mathbb{R}(r>w \Rightarrow \exists a \in A, a<r)$

Facts

- If $s<w=\inf A$, then S is a lower bound and $s \in C$: set of lower bounds of $A(C$ is the ray $(-\infty, w])$
- We also have
(2") $\forall \varepsilon>0, \exists a \in A, a<w+\varepsilon$.
Note: If $A \neq \emptyset$ has a maximal value w, then $w=\sup A$. If $A \neq \emptyset$ has a minimum value s, then $s=\inf A$. sup's and inf's generalize max/min values.

Examples:

(1) $A=(0,1)$. Then $\sup (0,1)=1$ and $\inf (0,1)=0$.
(Observe: 1 is an upper bound. If $r<1$, we have to show that r is not an upper bound. Or we want to find $s \in(0,1)$ such that $r<s<1$. Choose average $\frac{1+r}{2}$, then $r<\frac{1+r}{2}=s<1$.) $A^{\prime}=[0,1]$ also has $\sup [0,1]=1$ and $\inf [0,1]=0$. So $\sup A$ and $\inf A$ may or may not be an element of A.

$(-\infty, 0]$	$(0,1)$	$[1, \infty)$
\uparrow	\uparrow	\uparrow
set of lower bounds	A	set of upper bounds

(2)

$$
A=\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}
$$

Since $\frac{1}{n}$ is decreasing, 1 is the largest element of A and $\sup (A)=$ 1.
calculus: $\frac{1}{x} \rightarrow 0$ as $x \rightarrow+\infty$
replacing x by n (integer values): $\frac{1}{n} \rightarrow 0$
So $\inf (A)=0$. This means:
$\forall \varepsilon>0, \exists n \in \mathbb{N}$ s.t. $\frac{1}{n}<\varepsilon$.

$$
A=\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}, \cdots\right\}
$$

A is bounded above by 1 . What is $\sup (A)$? Note that

$$
\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}
$$

Let $\varepsilon>0, \exists n \in \mathbb{N}$ s.t. $\frac{1}{n+1}<\varepsilon$. Then

$$
1-\varepsilon<1-\frac{1}{n+1}=\frac{n}{n+1}
$$

By (2"), $1=\sup A$.
(4) Let

$$
A=\left\{x \mid x^{3}<4\right\}
$$

Now $\left[x>0\right.$ and $\left.x^{3}<4\right]$ iff $0<x<4^{\frac{1}{3}}$. If $x<0$, then $x^{3}<0$ and so $x^{3}<4$. Hence $A=\left(-\infty, 4^{\frac{1}{3}}\right)$.
$\sup A=4^{\frac{1}{3}}$ and $\inf A$ DOES NOT exist.
(5)

$$
A=\{x \cos x \mid 0 \leq x \leq \pi\}
$$

Observe: $f(0)=0, f\left(\frac{\pi}{2}\right)=0, f(\pi)=-\pi$. The graph may look like Fig.3.2. By calculus, f has a max and min value on $[0, \pi]$.
$f^{\prime}(x)=x \sin x+\cos x=0 \Rightarrow \cos x=x \sin x, \tan x=\frac{1}{x}$
Then $x \approx .87$ and $x \cos x \approx .56$. So $\sup A=.56$ (check by graph), $f(\pi)=-\pi$ is the minimum value and $\inf A=-\pi$.
(6)

$$
\begin{aligned}
& \qquad A=\left\{x \mid x^{2}+x-6<0\right\} \\
& x^{2}+x-6=(x+3)(x-2)=0 \text { when } x=-3 \text { or } x=2 . \\
& \text { For } x=0 \text {, we can get } x^{2}+x-6=-6<0 . \text { So } A=(-3,2) \text { and } \\
& \sup A=2, \inf A=-3
\end{aligned}
$$

2/3/2010
Q: Is $2^{2^{k}}+1$ prime for any $k \in \mathbb{N}$?
A: No!

$$
k=5,2^{2^{5}}+1=2^{32}+1=4294967297=641 \cdot 6700417
$$

Examples:

(1) Let $A \subset \mathbb{R}$ and suppose $\sup A=\inf A$. What can we say about A ?
Let $w=\sup A=\inf A$. If $a \in A$, then

$$
\begin{gathered}
w=\sup A \Rightarrow w \geq a \\
w=\inf A \Rightarrow w \leq a
\end{gathered}
$$

So $w=a$ and $A=\{w\}$.
(2) Let $A \subset \mathbb{R}$ and $B \subset A$. What can we say about $\sup A$ and $\sup B$?
Assuming both A and B are bounded. Let $w=\sup A$, then w is an upper bound for A. Since $B \subset A, w$ is also an upper bound for B. Hence $w \geq \sup B$.
Exercise: What can you prove about $\inf A$ and $\inf B$?
(3)

$$
A=\left\{\frac{1}{3}, \frac{2}{4}, \frac{3}{5}, \frac{4}{6}, \cdots\right\}
$$

$a_{n}=\frac{n}{n+2}=\frac{1}{1+\frac{2}{n}} \rightarrow 1\left(\frac{2}{n} \rightarrow 1\right.$ when $\left.n \rightarrow 1\right)$
or $\frac{n}{n+2}=\frac{n+2-2}{n+2}=1-\frac{2}{n+2} \rightarrow 1$.
So $\sup A=1$ and $\inf A=\frac{1}{3}$. Note that $\sup A$ is not an element of A but $\inf A \in A$.

$$
\begin{equation*}
B=\left\{1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5},-\frac{1}{6}, \cdots\right\} \tag{4}
\end{equation*}
$$

$\sup A=1$ and $\inf A=-\frac{1}{2}$.
(5)

$$
\begin{aligned}
& \quad A=\left\{x \in \mathbb{R} \mid x^{2}+x>0, x>0\right\} \\
& x^{2}+x=0=x(x+1), x=0,-1 \\
& x=-\frac{1}{2},\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)=\frac{1}{4}-\frac{1}{2}=-\frac{1}{2}<0 \\
& \text { So } A=(0,+\infty) \text {. No sup } A \text { and inf } A=0 .
\end{aligned}
$$

$$
\begin{equation*}
B=\left\{1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \cdots, \frac{1}{3^{n}}, \cdots\right\} \tag{6}
\end{equation*}
$$

$\sup A=1, \inf A=0$ because $\frac{1}{3^{n}} \rightarrow 0$.
In order to prove inf $A=0$, we need to show that $\forall \varepsilon>0,0+\varepsilon=$ ε is not a lower bound. So we "need to find" some n such that $\frac{1}{3^{n}}<\varepsilon$ or $\frac{1}{\varepsilon}<3^{n}$.
Take logs: $\ln \left(\frac{1}{\varepsilon}\right)<n \ln (3),-\ln (\varepsilon)<n \ln (3), n>-\frac{\ln 3}{\ln \varepsilon}$.
The existence of such integer is given by the next topic.

The Least upper bound axiom

Math statement that the reals \mathbb{R} have no "holes". Equivalently, if we approach a number as a l.u.b, then that number exists.

Least upper bound/complete axiom

Every non-empty set of real numbers that is bounded above has a least upper bound.

From this, we get a version of the well-ordering theorem for the reals.
Theorem 0.1. Let $A \neq \emptyset, A \subset \mathbb{R}$ and A bounded below. Then glb A exists.

Proof. Consider $B=\{-a \mid a \in A\}$. Since A is bounded below, $\exists x \in \mathbb{R}$, $\forall a \in A, a \geq x$. Then $\forall a \in A,-a \leq-x$ and $-x$ is an upper bound for B. By LUB axiom, B has a l.u.b., say $y=\operatorname{lub}(B)$.
Claim: $-y=g l b(A)$.
First, we want to show that $-y$ is a lower bound.

$$
\forall a \in A,-a \leq y \Rightarrow \forall a \in A, a \geq-y
$$

and $-y$ is a lower bound.
Second, we have to show that $-y$ is the greatest one. Suppose $-y<r$, then $y>-r$. Since $y=\operatorname{lub}(B), \exists a \in A, y>-a>-r$. Then $a<r$ and r is not a lower bound for A. So $-y=g l b(A)$.

An important consequence is:
The natural numbers \mathbb{N} and in fact the set $A_{r}=\{n r \mid n \in \mathbb{N}\}$ for any positive real r are unbounded above.

Theorem 0.2 (Archimedean Property of Reals). Let a, b be positive real numbers, then $\exists n \in \mathbb{N}$, $n a>b$.

Proof. By contradiction. Suppose $\forall n \in \mathbb{N}, n a \leq b$. Then $A=\{n a \mid n \in$ $\mathbb{N}\}$ is bounded above. Let $b^{*}=\operatorname{lub}(A)$. Since $a>0, b^{*}-a$ is not an upper bound. So $\exists m \in \mathbb{N}, b^{*}-a<m a$. This implies

$$
b=\left(b^{*}-a\right)+a<m a+a=(m+1) a
$$

contradicts that b^{*} is an upper bound for A. So $\exists n \in \mathbb{N}, n a>b$.
Corollary 0.3. (1) \mathbb{N} is unbounded above.
(2) $g l b\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}=0$

Proof. (1) $\mathbb{N}=\{n \cdot 1 \mid n \in \mathbb{N}\}$ is unbounded by A.P. $(a=1)$.
(2) Foe any $r>0$, we want to show $\exists n, \frac{1}{n}<r$. Since

$$
\frac{1}{n}<r \Leftrightarrow 1<n r
$$

This follows from A.P. $(b=1, a=r)$. So 0 is the greatest lower bound.

Exercises

(1) Let $a>0$. Then

$$
g l b\left\{\left.\frac{a}{n} \right\rvert\, n \in \mathbb{N}\right\}=0
$$

(2) Prove the following variant of A.P.:

$$
\text { Let } a, b>0 \text {, then } \exists n \in \mathbb{N},-n a<-b
$$

This means $\{-n a \mid n \in \mathbb{N}\}$ and $\{-n \mid n \in \mathbb{N}\}$ are unbounded in NEG SENSE (goes to $-\infty$).
(3) Prove: If $a>0$, then $\operatorname{lub}\left\{\left.-\frac{a}{n} \right\rvert\, n \in \mathbb{N}\right\}=0$

2/5/2010

Theorem 0.4. There is a real number x such that $x^{2}=2$.

Proof. Let $S=\left\{s \in \mathbb{R} \mid s>0\right.$ and $\left.s^{2}<2\right\}$.
Since $1 \in S, S$ is not empty. Moreover, 2 is an upper bound. This can be proved by contrapositive:
If $r \geq 2$, then $r^{2} \geq 2^{2}=4>2 \Rightarrow r$ is not in S.
By LUB axiom, $\sup S$ exists. Let $x=\sup S>1$.
Claim: $x^{2} \geq 2$ and $x^{2} \leq 2$, which says $x^{2}=2$.
Suppose $x^{2}<2$, then $b=2-x^{2}>0$. Set $a=2 x+1$. By exercise (1),
$\exists n \in \mathbb{N}, \frac{a}{n}<b$ i.e. $\frac{1}{n}(2 x+1)<2-x^{2}$
$\Rightarrow \frac{1}{n}\left(2 x+\frac{1}{n}\right) \leq \frac{1}{n}(2 x+1)<2-x^{2}$
$\Rightarrow x^{2}+\frac{2}{n}+\left(\frac{1}{n}\right)^{2}<2,\left(x+\frac{1}{n}\right)^{2}<2$ and $x+\frac{1}{n} \in S$.
This contradicts to the fact that $x=\sup S$, so $x^{2} \geq 2$.
A similar argument shows that if $x^{2}>2$, we can find $n \in \mathbb{N}$ with $\left(x-\frac{1}{n}\right)^{2}>2$, contradicting that x is the smallest upper bound. So we also have $2 \leq x^{2}$ and hence $x^{2}=2$.

Now we want to show that there are rational numbers everywhere.
Theorem 0.5. Let a, b be real numbers with $0<a<b<1$, then $\exists r \in \mathbb{Q}$ with $a<r<b$.
Proof. Since $b>a, b-a>0$. Since $\operatorname{glb}\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}=0$, we have $n_{1}, n_{2} \in \mathbb{N}$ with $\frac{1}{n_{1}}<b-a$ and $\frac{1}{n_{2}}<a$. Let $n=n_{1} n_{2}$, then $\frac{1}{n}<b-a$ and $\frac{1}{n}<a$ (see Fig.3.3). Let $B=\left\{\left.\frac{j}{n} \right\rvert\, 1 \leq j \leq n\right.$ and $\left.\frac{j}{n} \leq a\right\}$ $B \neq \emptyset$ since $\frac{1}{n} \in B$ and bound above by 1 .. By LUB axiom, B has a \max element $\frac{j_{0}}{n}$. (since B is finite, $\operatorname{lub}(B) \in B$). Then $\frac{j_{0}+1}{n}>a$. Also $\frac{j_{0}+1}{n}=\frac{j_{0}}{n}+\frac{1}{n}<a+(b-a)=b$. So we can choose $r=\frac{j_{0}+1}{n}$.
Theorem 0.6 ($n{ }^{\text {th }}$ roots of positive numbers). Let $n \in \mathbb{N}$ and $y>0$. Then $\exists x>0$ such that $x^{n}=y$ i.e. $x=y^{\frac{1}{n}}=\sqrt[n]{y}$.
Examples: find lub and glb if they exist:

$$
\begin{align*}
& A=\left\{x \mid x^{2}<4\right\}=\{x \| x \mid<2\}=(-2,2) \tag{1}\\
& \operatorname{lub}(A)=2, \operatorname{glb}(A)=-2 .
\end{align*}
$$

$$
\begin{equation*}
B=\left\{x \mid x^{5}>9\right\} \tag{2}
\end{equation*}
$$

(x negative $\Rightarrow x^{5}$ negative) $\Rightarrow x>0$
If $9 \leq x^{5}$, then $9^{\frac{1}{5}} \leq\left(x^{5}\right)^{\frac{1}{5}}=x$ (Why? Check it). So
$B=\left\{x \left\lvert\, x>9^{\frac{1}{5}}\right.\right\}=\left[9^{\frac{1}{5}},+\infty\right)$
No lub, $g l b(B)=9^{\frac{1}{5}} \in B$.
(3) $C=\left\{2 \frac{1}{2}, 2 \frac{1}{3}, 2 \frac{1}{4}, \cdots\right\}=\left\{\left.2+\frac{1}{n} \right\rvert\, n \geq 2\right\}$
$l u b(C)=2 \frac{1}{2} \in C$.
$g l b(C)=2+g l b\left\{\left.\frac{1}{n} \right\rvert\, n \geq 2\right\}=2+0=2$ not in C.
(4) $D=\{x \mid x>0$ and $\ln x<1\}$.
$\ln x=1 \Rightarrow x=e$.
So $D=(0, e), g l b(D)=0, \operatorname{lub}(D)=e$.
(5)

$$
A=\left\{\frac{1}{2},-\frac{1}{2}, \frac{2}{3},-\frac{1}{3}, \frac{3}{4},-\frac{1}{4}, \cdots\right\}
$$

$\sup (A)=1, \inf (A)=-\frac{1}{2}$
(6)

$$
A=\left\{0, \frac{1}{2},-\frac{1}{2}, \frac{3}{4},-\frac{1}{4}, \frac{7}{8},-\frac{1}{8}, \frac{15}{16},-\frac{1}{16}, \cdots, \frac{2^{n}-1}{2^{n}},-\frac{1}{2^{n}}, \cdots\right\}
$$

$\sup (A)=1, \inf (A)=-\frac{1}{2}$.
Find $a \in A$ with $a>.99$:
$n=7, \frac{2^{7}-1}{2^{7}}=1-\frac{1}{128}>1-\frac{1}{100}=.99$
Find $a \in A$ with $a>.999$:
$n=10, \frac{2^{10}-1}{2^{10}}=1-\frac{1}{1024}>1-\frac{1}{1000}=.999$
(7)

$$
\begin{aligned}
& A=\left\{x \mid x^{3}+x>0\right\}=\{x \mid x>0\} \\
& x^{3}+x=x\left(x^{2}+1\right)=0 \Rightarrow x=0
\end{aligned}
$$

$$
\text { No } \sup B, \inf B=0 \text { (see Fig.3.4). }
$$

(8)

$$
\begin{gathered}
B=\left\{x \mid x^{3}-x>0\right\} \\
x^{3}-x=0=x(x-1)(x+1) \\
B=\{x \mid x>1 \text { or }-1<x<0\}=(-1,0) \cup(1,+\infty)
\end{gathered}
$$

No $\sup B, \inf B=-1$ (see Fig.3.5).

