MATH3283W LECTURE NOTES: WEEK 3

2/1/2010 Proof without words: picture depicts What is being proved from Fig.3.1?

- 1 Adding more and more dots gives bigger and bigger squares. \rightarrow It is too vague and it is not actually a math statement.
- 2 Each consecutive line has two more dots than the previous line. \rightarrow Nothing to prove.
- 3 The sum of consecutive odd numbers gives a square number . It can be proved by induction:

Observation: $P(n) : 1 + 3 + \dots + (2n + 1) = ?$ $n = 1, 1 + (1 + 2) = 1 + (1 + 2 \cdot 1) = 4 = 2^{2}$ $n = 2, 1 + (1 + 2) + (1 + 4) = 1 + (1 + 2 \cdot 1) + (1 + 2 \cdot 2) = 9 = 3^{2}$ So we guess that P(n) is $1 + 3 + \dots + (2n + 1) = (n + 1)^{2}$ and prove it by induction. n = 0, OK. Assume P(n) is true, we want to show that P(n + 1) is true.

$$1 + 3 + 5 + \dots + (2n + 1) + (2(n + 1) + 1)$$

$$\stackrel{P(n)}{=} (n + 1)^{2} + 2n + 3$$

$$= n^{2} + 2n + 1 + 2n + 3$$

$$= n^{2} + 4n + 4$$

$$= (n + 2)^{2}$$

$$= ((n + 1) + 1)^{2}$$

So P(n+1) is true.

Upper and lower bounds

Suppose $A(\neq \emptyset) \subset \mathbb{R}$ has an upper bound (bounded above). Let

$$B = \{r \in \mathbb{R} | r : \text{upper bound for } A\} \neq \emptyset$$

Suppose *B* has a smallest element *w*. Then *w* is called the **least upper bound** of *A*, or the **supremum** of *A*, write w = lubA or $w = \sup A$. Thus $w = \sup A$ if

- (1) w is an upper bound for A and
- (2) if r is an upper bound for A, then $r \ge w$.

Another form of (2), using contrapositive:

(2') $\forall r \in \mathbb{R} (r < w \Rightarrow \exists a \in A, r < a)$

Note that any r < w is not an upper bound.

Facts

- If $r > w = \sup A$, then $r \in B$. Since w is also an upper bound, B is a ray $[w, \infty)$.
- Let ε > 0, then w ε < w and by (2'), ∃a ∈ A, w ε < a, so we also have an equivlant condition:
 (2") ∀ε > 0, ∃a ∈ A, w ε < a.

Similar for lower bounds:

Suppose $A(\neq \emptyset) \subset \mathbb{R}$ is bounded below and w is the **greatest lower bound** for A, write w = glbA or $w = \inf A$ (**infemum** of A). Thus $w = \inf A$ if

- (1) w is a lower bound for A and
- (2) if s is a lower bound for A, then $w \ge s$.

Again, using contrapositive of (2)

(2') $\forall r \in \mathbb{R} (r > w \Rightarrow \exists a \in A, a < r)$

Facts

• If $s < w = \inf A$, then S is a lower bound and

 $s \in C$: set of lower bounds of A (C is the ray $(-\infty, w]$)

• We also have

(2") $\forall \varepsilon > 0, \exists a \in A, a < w + \varepsilon.$

Note: If $A \neq \emptyset$ has a maximal value w, then $w = \sup A$. If $A \neq \emptyset$ has a minimum value s, then $s = \inf A$. sup's and inf's generalize max/min values.

Examples:

 $\mathbf{2}$

(1) A = (0, 1). Then $\sup(0, 1) = 1$ and $\inf(0, 1) = 0$. (Observe: 1 is an upper bound. If r < 1, we have to show that r is not an upper bound. Or we want to find $s \in (0, 1)$ such that r < s < 1. Choose average $\frac{1+r}{2}$, then $r < \frac{1+r}{2} = s < 1$.) A' = [0, 1] also has $\sup[0, 1] = 1$ and $\inf[0, 1] = 0$. So $\sup A$ and $\inf A$ may or may not be an element of A.

set of lower bounds A set of upper bounds

(2)

$$A = \{1, \frac{1}{2}, \frac{1}{3}, \cdots\} = \{\frac{1}{n} | n \in \mathbb{N}\}\$$

Since $\frac{1}{n}$ is decreasing, 1 is the largest element of A and $\sup(A) = 1$. calculus: $\frac{1}{x} \to 0$ as $x \to +\infty$ replacing x by n (integer values): $\frac{1}{n} \to 0$

So $\inf(A) = 0$. This means: $\forall \varepsilon > 0, \exists n \in \mathbb{N} \text{ s.t. } \frac{1}{n} < \varepsilon$.

(3)

$$A = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}, \cdots\}$$

A is bounded above by 1. What is $\sup(A)$? Note that

$$\frac{n}{n+1} = \frac{n+1-1}{n+1} = 1 - \frac{1}{n+1}$$

Let $\varepsilon > 0, \exists n \in \mathbb{N}$ s.t. $\frac{1}{n+1} < \varepsilon$. Then

$$1-\varepsilon < 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

By $(2^{"}), 1 = \sup A.$ (4) Let

$$A = \{x | x^3 < 4\}$$

Now $[x > 0 \text{ and } x^3 < 4]$ iff $0 < x < 4^{\frac{1}{3}}$. If x < 0, then $x^3 < 0$ and so $x^3 < 4$. Hence $A = (-\infty, 4^{\frac{1}{3}})$. $\sup A = 4^{\frac{1}{3}}$ and $\inf A$ **DOES NOT** exist. (5)

$$A = \{x \cos x | 0 \le x \le \pi\}$$

Observe: $f(0) = 0, f(\frac{\pi}{2}) = 0, f(\pi) = -\pi$. The graph may look like Fig.3.2. By calculus, f has a max and min value on $[0, \pi]$.

 $f'(x) = x \sin x + \cos x = 0 \implies \cos x = x \sin x, \tan x = \frac{1}{x}$ Then $x \approx .87$ and $x \cos x \approx .56$. So $\sup A = .56$ (check by graph), $f(\pi) = -\pi$ is the minimum value and $\inf A = -\pi$. (6) $A = \{x | x^2 + x - 6 < 0\}$

 $x^{2} + x - 6 = (x + 3)(x - 2) = 0$ when x = -3 or x = 2. For x = 0, we can get $x^{2} + x - 6 = -6 < 0$. So A = (-3, 2) and

$$\sup A = 2, \inf A = -3$$

2/3/2010

Q: Is $2^{2^k} + 1$ prime for any $k \in \mathbb{N}$? A: No!

$$k = 5, 2^{2^{\circ}} + 1 = 2^{3^{\circ}} + 1 = 4294967297 = 641 \cdot 6700417$$

Examples:

(3)

(1) Let $A \subset \mathbb{R}$ and suppose $\sup A = \inf A$. What can we say about A? Let $w = \sup A = \inf A$. If $a \in A$, then $w = \sup A \Rightarrow w \ge a$ $w = \inf A \Rightarrow w \le a$

So w = a and $A = \{w\}$.

(2) Let $A \subset \mathbb{R}$ and $B \subset A$. What can we say about $\sup A$ and $\sup B$?

Assuming both A and B are bounded. Let $w = \sup A$, then w is an upper bound for A. Since $B \subset A$, w is also an upper bound for B. Hence $w \ge \sup B$.

Exercise: What can you prove about $\inf A$ and $\inf B$?

$$A = \{\frac{1}{3}, \frac{2}{4}, \frac{3}{5}, \frac{4}{6}, \cdots\}$$

$$a_n = \frac{n}{n+2} = \frac{1}{1+\frac{2}{n}} \to 1 \ (\frac{2}{n} \to 1 \text{ when } n \to 1)$$

or $\frac{n}{n+2} = \frac{n+2-2}{n+2} = 1 - \frac{2}{n+2} \to 1.$
So sup $A = 1$ and inf $A = \frac{1}{3}$. Note that sup A is not an element of A but inf $A \in A$.

(4)

$$B = \{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, -\frac{1}{6}, \cdots\}$$

sup $A = 1$ and $\inf A = -\frac{1}{2}$.
(5)

$$A = \{x \in \mathbb{R} | x^2 + x > 0, x > 0\}$$

$$x^2 + x = 0 = x(x+1), x = 0, -1.$$

$$x = -\frac{1}{2}, (-\frac{1}{2})^2 + (-\frac{1}{2}) = \frac{1}{4} - \frac{1}{2} = -\frac{1}{2} < 0$$

So $A = (0, +\infty)$. No sup A and $\inf A = 0$.
(6)

$$B = \{1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \cdots, \frac{1}{3^n}, \cdots\}$$

sup $A = 1$, $\inf A = 0$ because $\frac{1}{3^n} \to 0$.
In order to prove $\inf A = 0$, we need to show that

In order to prove $\inf A = 0$, we need to show that $\forall \varepsilon > 0, 0 + \varepsilon = \varepsilon$ is not a lower bound. So we "need to find" some *n* such that $\frac{1}{3^n} < \varepsilon$ or $\frac{1}{\varepsilon} < 3^n$.

Take logs: $\ln(\frac{1}{\varepsilon}) < n \ln(3), -\ln(\varepsilon) < n \ln(3), n > -\frac{\ln 3}{\ln \varepsilon}$. The existence of such integer is given by the next topic.

The Least upper bound axiom

Math statement that the reals \mathbb{R} have no "holes". Equivalently, if we approach a number as a l.u.b, then that number exists.

Least upper bound/complete axiom

Every non-empty set of real numbers that is bounded above has a least upper bound.

From this, we get a version of the well-ordering theorem for the reals.

Theorem 0.1. Let $A \neq \emptyset$, $A \subset \mathbb{R}$ and A bounded below. Then glbA exists.

Proof. Consider $B = \{-a | a \in A\}$. Since A is bounded below, $\exists x \in \mathbb{R}$, $\forall a \in A, a \geq x$. Then $\forall a \in A, -a \leq -x$ and -x is an upper bound for B. By LUB axiom, B has a l.u.b., say y = lub(B). Claim: -y = glb(A).

First, we want to show that -y is a lower bound.

$$\forall a \in A, -a \leq y \Rightarrow \forall a \in A, a \geq -y$$

and -y is a lower bound.

Second, we have to show that -y is the greatest one. Suppose -y < r, then y > -r. Since $y = lub(B), \exists a \in A, y > -a > -r$. Then a < r and r is not a lower bound for A. So -y = glb(A).

An important consequence is:

The natural numbers \mathbb{N} and in fact the set $A_r = \{nr | n \in \mathbb{N}\}$ for any positive real r are unbounded above.

Theorem 0.2 (Archimedean Property of Reals). Let a, b be positive real numbers, then $\exists n \in \mathbb{N}, na > b$.

Proof. By contradiction. Suppose $\forall n \in \mathbb{N}, na \leq b$. Then $A = \{na | n \in \mathbb{N}\}$ is bounded above. Let $b^* = lub(A)$. Since $a > 0, b^* - a$ is not an upper bound. So $\exists m \in \mathbb{N}, b^* - a < ma$. This implies

$$b = (b^* - a) + a < ma + a = (m+1)a$$

contradicts that b^* is an upper bound for A. So $\exists n \in \mathbb{N}, na > b$. \Box

Corollary 0.3. (1) \mathbb{N} is unbounded above. (2) $glb\{\frac{1}{n}|n \in \mathbb{N}\} = 0$

Proof. (1) $\mathbb{N} = \{n \cdot 1 | n \in \mathbb{N}\}\$ is unbounded by A.P. (a = 1). (2) Foe any r > 0, we want to show $\exists n, \frac{1}{n} < r$. Since

$$\frac{1}{n} < r \Leftrightarrow 1 < nr$$

This follows from A.P. (b = 1, a = r). So 0 is the greatest lower bound.

Exercises

(1) Let a > 0. Then

$$glb\{\frac{a}{n}|n\in\mathbb{N}\}=0$$

(2) Prove the following variant of A.P.:

Let a, b > 0, then $\exists n \in \mathbb{N}, -na < -b$

This means $\{-na|n \in \mathbb{N}\}$ and $\{-n|n \in \mathbb{N}\}$ are unbounded in **NEG SENSE** (goes to $-\infty$).

(3) Prove: If a > 0, then $lub\{-\frac{a}{n} | n \in \mathbb{N}\} = 0$

2/5/2010

Theorem 0.4. There is a real number x such that $x^2 = 2$.

 $\mathbf{6}$

Proof. Let $S = \{s \in \mathbb{R} | s > 0 \text{ and } s^2 < 2\}$. Since $1 \in S$, S is not empty. Moreover, 2 is an upper bound. This can be proved by contrapositive: If $r \ge 2$, then $r^2 \ge 2^2 = 4 > 2 \Rightarrow r$ is not in S. By LUB axiom, sup S exists. Let $x = \sup S > 1$. Claim: $x^2 \ge 2$ and $x^2 \le 2$, which says $x^2 = 2$. Suppose $x^2 < 2$, then $b = 2 - x^2 > 0$. Set a = 2x + 1. By exercise (1), $\exists n \in \mathbb{N}, \frac{a}{n} < b$ i.e. $\frac{1}{n}(2x + 1) < 2 - x^2$ $\Rightarrow \frac{1}{n}(2x + \frac{1}{n}) \le \frac{1}{n}(2x + 1) < 2 - x^2$ $\Rightarrow x^2 + \frac{2}{n} + (\frac{1}{n})^2 < 2, (x + \frac{1}{n})^2 < 2$ and $x + \frac{1}{n} \in S$. This contradicts to the fact that $x = \sup S$, so $x^2 \ge 2$. A similar argument shows that if $x^2 > 2$, we can find $n \in \mathbb{N}$ with $(x - \frac{1}{n})^2 > 2$, contradicting that x is the smallest upper bound. So we also have $2 \le x^2$ and hence $x^2 = 2$.

Now we want to show that there are rational numbers everywhere.

Theorem 0.5. Let a, b be real numbers with 0 < a < b < 1, then $\exists r \in \mathbb{Q}$ with a < r < b.

Proof. Since b > a, b - a > 0. Since $glb\{\frac{1}{n}|n \in \mathbb{N}\} = 0$, we have $n_1, n_2 \in \mathbb{N}$ with $\frac{1}{n_1} < b - a$ and $\frac{1}{n_2} < a$. Let $n = n_1 n_2$, then $\frac{1}{n} < b - a$ and $\frac{1}{n} < a$ (see Fig.3.3). Let $B = \{\frac{j}{n}|1 \le j \le n \text{ and } \frac{j}{n} \le a\}$

 $B \neq \emptyset$ since $\frac{1}{n} \in B$ and bound above by 1.. By LUB axiom, *B* has a max element $\frac{j_0}{n}$. (since *B* is finite, $lub(B) \in B$). Then $\frac{j_0+1}{n} > a$. Also $\frac{j_0+1}{n} = \frac{j_0}{n} + \frac{1}{n} < a + (b-a) = b$. So we can choose $r = \frac{j_0+1}{n}$.

Theorem 0.6 (n^{th} roots of positive numbers). Let $n \in \mathbb{N}$ and y > 0. Then $\exists x > 0$ such that $x^n = y$ i.e. $x = y^{\frac{1}{n}} = \sqrt[n]{y}$.

Examples: find lub and glb if they exist:

(1) $A = \{x|x^{2} < 4\} = \{x||x| < 2\} = (-2, 2)$ lub(A) = 2, glb(A) = -2.(2) $B = \{x|x^{5} > 9\}$ (x negative $\Rightarrow x^{5}$ negative) $\Rightarrow x > 0$ If $9 \le x^{5}$, then $9^{\frac{1}{5}} \le (x^{5})^{\frac{1}{5}} = x$ (Why? Check it). So $B = \{x|x > 9^{\frac{1}{5}}\} = [9^{\frac{1}{5}}, +\infty)$ No lub, $glb(B) = 9^{\frac{1}{5}} \in B.$ (3) $C = \{2^{\frac{1}{2}}, 2^{\frac{1}{3}}, 2^{\frac{1}{4}}, \cdots\} = \{2 + \frac{1}{n} | n \ge 2\}$ $lub(C) = 2^{\frac{1}{2}} \in C.$ $glb(C) = 2 + glb\{\frac{1}{n} | n \ge 2\} = 2 + 0 = 2 \text{ not in } C.$

$$\begin{array}{l} (4) \ D = \{x | x > 0 \ \text{and} \ln x < 1\}. \\ \ln x = 1 \Rightarrow x = e. \\ \text{So } D = (0, e), glb(D) = 0, lub(D) = e. \\ (5) \\ A = \{\frac{1}{2}, -\frac{1}{2}, \frac{2}{3}, -\frac{1}{2}, \frac{3}{4}, -\frac{1}{4}, \frac{7}{8}, -\frac{1}{3}, \frac{3}{4}, -\frac{1}{4}, \cdots\} \\ & \text{sup}(A) = 1, \inf(A) = -\frac{1}{2} \\ (6) \\ A = \{0, \frac{1}{2}, -\frac{1}{2}, \frac{3}{4}, -\frac{1}{4}, \frac{7}{8}, -\frac{1}{8}, \frac{15}{16}, -\frac{1}{16}, \cdots, \frac{2^n - 1}{2^n}, -\frac{1}{2^n}, \cdots\} \\ & \text{sup}(A) = 1, \inf(A) = -\frac{1}{2}. \\ & \text{Find } a \in A \text{ with } a > .99: \\ n = 7, \frac{2^{7-1}}{2^{7-1}} = 1 - \frac{1}{128} > 1 - \frac{1}{100} = .99 \\ & \text{Find } a \in A \text{ with } a > .999: \\ n = 10, \frac{2^{10} - 1}{2^{10}} = 1 - \frac{1}{1024} > 1 - \frac{1}{1000} = .999 \\ (7) \\ A = \{x | x^3 + x > 0\} = \{x | x > 0\} \\ & x^3 + x = x(x^2 + 1) = 0 \Rightarrow x = 0 \\ & \text{No sup } B, \inf B = 0 \text{ (see Fig.3.4).} \\ (8) \\ B = \{x | x^3 - x > 0\} \\ & x^3 - x = 0 = x(x - 1)(x + 1) \\ & B = \{x | x > 1 \text{ or } -1 < x < 0\} = (-1, 0) \cup (1, +\infty) \\ & \text{No sup } B, \inf B = -1 \text{ (see Fig.3.5).} \end{array}$$