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Proof without words: picture depicts
What is being proved from Fig.3.1?

1 Adding more and more dots gives bigger and bigger squares.
→ It is too vague and it is not actually a math statement.

2 Each consecutive line has two more dots than the previous line.
→ Nothing to prove.

3 The sum of consecutive odd numbers gives a square number .
It can be proved by induction:

Observation: P (n) : 1 + 3 + · · ·+ (2n+ 1) =?
n = 1, 1 + (1 + 2) = 1 + (1 + 2 · 1) = 4 = 22

n = 2, 1 + (1 + 2) + (1 + 4) = 1 + (1 + 2 · 1) + (1 + 2 · 2) = 9 = 32

So we guess that P (n) is 1 + 3 + · · ·+ (2n+ 1) = (n+ 1)2 and prove it
by induction.
n = 0, OK.
Assume P (n) is true, we want to show that P (n+ 1) is true.

1 + 3 + 5 + · · ·+ (2n+ 1) + (2(n+ 1) + 1)
P (n)
= (n+ 1)2 + 2n+ 3

= n2 + 2n+ 1 + 2n+ 3

= n2 + 4n+ 4

= (n+ 2)2

= ((n+ 1) + 1)2

So P (n+ 1) is true.

Upper and lower bounds
Suppose A(6= ∅) ⊂ R has an upper bound (bounded above). Let

B = {r ∈ R|r : upper bound for A} 6= ∅
1
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Suppose B has a smallest element w. Then w is called the least upper
bound of A, or the supremum of A, write w = lubA or w = supA.
Thus w = supA if

(1) w is an upper bound for A and
(2) if r is an upper bound for A, then r ≥ w.

Another form of (2), using contrapositive:

(2’) ∀r ∈ R(r < w ⇒ ∃a ∈ A, r < a)

Note that any r < w is not an upper bound.

Facts

• If r > w = supA, then r ∈ B.
Since w is also an upper bound, B is a ray [w,∞).
• Let ε > 0, then w − ε < w and by (2’), ∃a ∈ A,w − ε < a, so

we also have an equivlant condition:
(2”) ∀ε > 0,∃a ∈ A,w − ε < a.

Similar for lower bounds:
Suppose A(6= ∅) ⊂ R is bounded below and w is the greatest lower
bound for A, write w = glbA or w = inf A (infemum of A). Thus
w = inf A if

(1) w is a lower bound for A and
(2) if s is a lower bound for A, then w ≥ s.

Again, using contrapositive of (2)

(2’) ∀r ∈ R(r > w ⇒ ∃a ∈ A, a < r)

Facts

• If s < w = inf A, then S is a lower bound and

s ∈ C : set of lower bounds of A (C is the ray (−∞, w])

• We also have
(2”) ∀ε > 0,∃a ∈ A, a < w + ε.

Note: If A 6= ∅ has a maximal value w, then w = supA. If A 6= ∅ has
a minimum value s, then s = inf A. sup’s and inf’s generalize max/min
values.

Examples:
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(1) A = (0, 1). Then sup(0, 1) = 1 and inf(0, 1) = 0.
(Observe: 1 is an upper bound. If r < 1, we have to show that
r is not an upper bound. Or we want to find s ∈ (0, 1) such
that r < s < 1. Choose average 1+r

2
, then r < 1+r

2
= s < 1.)

A′ = [0, 1] also has sup[0, 1] = 1 and inf[0, 1] = 0. So supA and
inf A may or may not be an element of A.

(−∞, 0] (0, 1) [1,∞)

↑ ↑ ↑
set of lower bounds A set of upper bounds

(2)

A = {1, 1

2
,
1

3
, · · · } = { 1

n
|n ∈ N}

Since 1
n

is decreasing, 1 is the largest element of A and sup(A) =
1.
calculus: 1

x
→ 0 as x→ +∞

replacing x by n (integer values): 1
n
→ 0

So inf(A) = 0. This means:
∀ε > 0,∃n ∈ N s.t. 1

n
< ε.

(3)

A = {1

2
,
2

3
,
3

4
, · · · , n

n+ 1
, · · · }

A is bounded above by 1. What is sup(A)? Note that

n

n+ 1
=
n+ 1− 1

n+ 1
= 1− 1

n+ 1

Let ε > 0,∃n ∈ N s.t. 1
n+1

< ε. Then

1− ε < 1− 1

n+ 1
=

n

n+ 1

By (2”), 1 = supA.
(4) Let

A = {x|x3 < 4}

Now [x > 0 and x3 < 4] iff 0 < x < 4
1
3 . If x < 0, then x3 < 0

and so x3 < 4. Hence A = (−∞, 4 1
3 ).

supA = 4
1
3 and inf A DOES NOT exist.

(5)

A = {x cosx|0 ≤ x ≤ π}
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Observe: f(0) = 0, f(π
2
) = 0, f(π) = −π. The graph may look

like Fig.3.2. By calculus, f has a max and min value on [0, π].

f ′(x) = x sinx+ cosx = 0 ⇒ cosx = x sinx, tanx =
1

x
Then x ≈ .87 and x cosx ≈ .56. So supA = .56 (check by
graph), f(π) = −π is the minimum value and inf A = −π.

(6)

A = {x|x2 + x− 6 < 0}
x2 + x− 6 = (x+ 3)(x− 2) = 0 when x = −3 or x = 2.
For x = 0, we can get x2 +x− 6 = −6 < 0. So A = (−3, 2) and

supA = 2, inf A = −3

2/3/2010

Q: Is 22k
+ 1 prime for any k ∈ N?

A: No!

k = 5, 225

+ 1 = 232 + 1 = 4294967297 = 641 · 6700417

Examples:

(1) Let A ⊂ R and suppose supA = inf A. What can we say about
A?
Let w = supA = inf A. If a ∈ A, then

w = supA⇒ w ≥ a

w = inf A⇒ w ≤ a

So w = a and A = {w}.
(2) Let A ⊂ R and B ⊂ A. What can we say about supA and

supB?
Assuming both A and B are bounded. Let w = supA, then
w is an upper bound for A. Since B ⊂ A, w is also an upper
bound for B. Hence w ≥ supB.
Exercise: What can you prove about inf A and inf B?

(3)

A = {1

3
,
2

4
,
3

5
,
4

6
, · · · }

an = n
n+2

= 1
1+ 2

n

→ 1 ( 2
n
→ 1 when n→ 1)

or n
n+2

= n+2−2
n+2

= 1− 2
n+2
→ 1.

So supA = 1 and inf A = 1
3
. Note that supA is not an element

of A but inf A ∈ A.
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(4)

B = {1,−1

2
,
1

3
,−1

4
,
1

5
,−1

6
, · · · }

supA = 1 and inf A = −1
2
.

(5)
A = {x ∈ R|x2 + x > 0, x > 0}

x2 + x = 0 = x(x+ 1), x = 0,−1.
x = −1

2
, (−1

2
)2 + (−1

2
) = 1

4
− 1

2
= −1

2
< 0

So A = (0,+∞). No supA and inf A = 0.
(6)

B = {1, 1

3
,
1

9
,

1

27
, · · · , 1

3n
, · · · }

supA = 1, inf A = 0 because 1
3n → 0.

In order to prove inf A = 0, we need to show that ∀ε > 0, 0+ε =
ε is not a lower bound. So we ”need to find” some n such that
1
3n < ε or 1

ε
< 3n.

Take logs: ln(1
ε
) < n ln(3), − ln(ε) < n ln(3), n > − ln 3

ln ε
.

The existence of such integer is given by the next topic.

The Least upper bound axiom
Math statement that the reals R have no ”holes”. Equivalently, if we
approach a number as a l.u.b, then that number exists.
Least upper bound/complete axiom
Every non-empty set of real numbers that is bounded above has a least
upper bound.

From this, we get a version of the well-ordering theorem for the reals.

Theorem 0.1. Let A 6= ∅, A ⊂ R and A bounded below. Then glbA
exists.

Proof. Consider B = {−a|a ∈ A}. Since A is bounded below, ∃x ∈ R,
∀a ∈ A, a ≥ x. Then ∀a ∈ A,−a ≤ −x and −x is an upper bound for
B. By LUB axiom, B has a l.u.b., say y = lub(B).
Claim: −y = glb(A).
First, we want to show that −y is a lower bound.

∀a ∈ A,−a ≤ y ⇒ ∀a ∈ A, a ≥ −y
and −y is a lower bound.
Second, we have to show that −y is the greatest one. Suppose −y < r,
then y > −r. Since y = lub(B),∃a ∈ A, y > −a > −r. Then a < r
and r is not a lower bound for A. So −y = glb(A). �
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An important consequence is:
The natural numbers N and in fact the set Ar = {nr|n ∈ N} for any
positive real r are unbounded above.

Theorem 0.2 (Archimedean Property of Reals). Let a, b be positive
real numbers, then ∃n ∈ N, na > b.

Proof. By contradiction. Suppose ∀n ∈ N, na ≤ b. Then A = {na|n ∈
N} is bounded above. Let b∗ = lub(A). Since a > 0, b∗ − a is not an
upper bound. So ∃m ∈ N, b∗ − a < ma. This implies

b = (b∗ − a) + a < ma+ a = (m+ 1)a

contradicts that b∗ is an upper bound for A. So ∃n ∈ N, na > b. �

Corollary 0.3. (1) N is unbounded above.
(2) glb{ 1

n
|n ∈ N} = 0

Proof. (1) N = {n · 1|n ∈ N} is unbounded by A.P. (a = 1).
(2) Foe any r > 0, we want to show ∃n, 1

n
< r. Since

1

n
< r ⇔ 1 < nr

This follows from A.P. (b = 1, a = r). So 0 is the greatest lower
bound. �

Exercises

(1) Let a > 0. Then

glb{a
n
|n ∈ N} = 0

(2) Prove the following variant of A.P.:

Let a, b > 0, then ∃n ∈ N,−na < −b
This means {−na|n ∈ N} and {−n|n ∈ N} are unbounded in
NEG SENSE (goes to −∞).

(3) Prove: If a > 0, then lub{− a
n
|n ∈ N} = 0

2/5/2010

Theorem 0.4. There is a real number x such that x2 = 2.
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Proof. Let S = {s ∈ R|s > 0 and s2 < 2}.
Since 1 ∈ S, S is not empty. Moreover, 2 is an upper bound. This can
be proved by contrapositive:
If r ≥ 2, then r2 ≥ 22 = 4 > 2⇒ r is not in S.
By LUB axiom, supS exists. Let x = supS > 1.
Claim: x2 ≥ 2 and x2 ≤ 2, which says x2 = 2.
Suppose x2 < 2, then b = 2− x2 > 0. Set a = 2x+ 1. By exercise (1),
∃n ∈ N, a

n
< b i.e. 1

n
(2x+ 1) < 2− x2

⇒ 1
n
(2x+ 1

n
) ≤ 1

n
(2x+ 1) < 2− x2

⇒ x2 + 2
n

+ ( 1
n
)2 < 2, (x+ 1

n
)2 < 2 and x+ 1

n
∈ S.

This contradicts to the fact that x = supS, so x2 ≥ 2.
A similar argument shows that if x2 > 2, we can find n ∈ N with
(x− 1

n
)2 > 2, contradicting that x is the smallest upper bound. So we

also have 2 ≤ x2 and hence x2 = 2. �

Now we want to show that there are rational numbers everywhere.

Theorem 0.5. Let a, b be real numbers with 0 < a < b < 1, then
∃r ∈ Q with a < r < b.

Proof. Since b > a, b − a > 0. Since glb{ 1
n
|n ∈ N} = 0, we have

n1, n2 ∈ N with 1
n1
< b− a and 1

n2
< a. Let n = n1n2, then 1

n
< b− a

and 1
n
< a (see Fig.3.3). Let B = { j

n
|1 ≤ j ≤ n and j

n
≤ a}

B 6= ∅ since 1
n
∈ B and bound above by 1.. By LUB axiom, B has a

max element j0
n

. (since B is finite, lub(B) ∈ B). Then j0+1
n

> a. Also
j0+1
n

= j0
n

+ 1
n
< a+ (b− a) = b. So we can choose r = j0+1

n
. �

Theorem 0.6 (nth roots of positive numbers). Let n ∈ N and y > 0.

Then ∃x > 0 such that xn = y i.e. x = y
1
n = n
√
y.

Examples: find lub and glb if they exist:

(1)
A = {x|x2 < 4} = {x||x| < 2} = (−2, 2)

lub(A) = 2, glb(A) = −2.
(2)

B = {x|x5 > 9}
(x negative ⇒ x5 negative) ⇒ x > 0

If 9 ≤ x5, then 9
1
5 ≤ (x5)

1
5 = x (Why? Check it). So

B = {x|x > 9
1
5} = [9

1
5 ,+∞)

No lub, glb(B) = 9
1
5 ∈ B.

(3) C = {21
2
, 21

3
, 21

4
, · · · } = {2 + 1

n
|n ≥ 2}

lub(C) = 21
2
∈ C.

glb(C) = 2 + glb{ 1
n
|n ≥ 2} = 2 + 0 = 2 not in C.
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(4) D = {x|x > 0 and lnx < 1}.
lnx = 1⇒ x = e.
So D = (0, e), glb(D) = 0, lub(D) = e.

(5)

A = {1

2
,−1

2
,
2

3
,−1

3
,
3

4
,−1

4
, · · · }

sup(A) = 1, inf(A) = −1
2

(6)

A = {0, 1

2
,−1

2
,
3

4
,−1

4
,
7

8
,−1

8
,
15

16
,− 1

16
, · · · , 2n − 1

2n
,− 1

2n
, · · · }

sup(A) = 1, inf(A) = −1
2
.

Find a ∈ A with a > .99:
n = 7, 27−1

27 = 1− 1
128

> 1− 1
100

= .99
Find a ∈ A with a > .999:
n = 10, 210−1

210 = 1− 1
1024

> 1− 1
1000

= .999
(7)

A = {x|x3 + x > 0} = {x|x > 0}
x3 + x = x(x2 + 1) = 0⇒ x = 0
No supB, inf B = 0 (see Fig.3.4).

(8)
B = {x|x3 − x > 0}

x3 − x = 0 = x(x− 1)(x+ 1)

B = {x|x > 1 or − 1 < x < 0} = (−1, 0) ∪ (1,+∞)

No supB, inf B = −1 (see Fig.3.5).


