(2/8) **Sequences**

Look at exercises 1.17-1.26 in section 3.1

Sequences

Some prerequisites from calculus:

Limits

- **Limits at a point \(a \in \mathbb{R} \)**
 - Let \(f \) be defined in an open interval about \(a \in \mathbb{R} \).

- **Limits at infinity**
 - Let \(f \) be defined on some ray \([R, +\infty) \).

Intuitively,

- \(\lim_{x \to a} f(x) = L \) means "as \(x \) gets closer and closer to \(a \), \(f(x) \) gets closer and closer to \(L \)."

Let \(\varepsilon > 0 \) is an "error" or "tolerance" by which we allow \(f(x) \) to differ from \(L \).

Let \(\delta > 0 \), or \(N \), is the "deviation number"; it depends on \(\varepsilon \).

In terms of error,

- \(\lim_{x \to a} f(x) = L \) means that given \(\varepsilon > 0 \), we can find \(\delta > 0 \) such that if \(|x - a| < \delta \), then \(|f(x) - L| < \varepsilon \).

- \(\lim_{x \to +\infty} f(x) = L \) means that given \(\varepsilon > 0 \), we can find \(N \) such that if \(x > N \), then \(|f(x) - L| < \varepsilon \). (i.e., \(L \) is a horizontal asymptote)

Formal definition of continuity:

- \(f \) is continuous at \(x = a \) if, given \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that if \(|x - a| < \delta \) then \(|f(x) - f(a)| < \varepsilon \).

Definition of a sequence

A sequence is a function \(a : \{ n \in \mathbb{Z}^+ \mid n \geq K \} \to \mathbb{R} \) for some \(K \in \mathbb{Z}^+ \). We typically use \(K = 0 \) (domain: \(\mathbb{Z}^+ \)) or \(K = 1 \) (domain: \(\mathbb{N} \)). We usually write \(a_n = a(n) \), and we write the sequence as \(\langle a_n \rangle \) or \(\langle a_n \rangle_{n=K}^{+\infty} \). Note that the sequence \(\langle a_n \rangle \) and the set \(\{ a_n \mid n \geq K \} \) of its values are not the same thing. (E.g., if \(a_n = \{1, n \text{ even} \} \) is defined for \(n \geq 1 \), then \(\{ a_n \mid n \geq 1 \} \) is just the two-element set \(\{1, -1\} \).)
Limits of sequences

This concept is similar to the “limit at infinity” of a function. We say that

\[\lim_{n \to \infty} a_n = L \]

or

\[a_n \to L \text{ as } n \to \infty \]

or \(\langle a_n \rangle \) converges to \(L \), if

\(a_n \) gets closer and closer to \(L \) as \(n \) gets larger and larger.

Formal Definition

The sequence \(\langle a_n \rangle \) converges to the limit \(L \) (written \(\lim_{n \to \infty} a_n = L \)) if for every \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that if \(n > N \),

\[\left| a_n - L \right| < \varepsilon \]

(“error”) ("cutoff point") then \(|a_n - L| < \varepsilon \).

Connection between Functions and Sequences

If \(F: [0, +\infty) \to \mathbb{R} \), \(\lim_{x \to +\infty} F(x) = L \), and we define a sequence \(a_n = F(n) \) (the values of \(F \) on \(\mathbb{N} \)), then \(\lim_{n \to \infty} a_n = L \). (Just compare the definitions, and “round up” the \(N \) to the nearest integer if necessary.)

This will allow us to use techniques of calculus (e.g. L'Hôpital's Rule) to investigate sequences.

Convergence/Divergence

We say that a sequence converges if \(\lim_{n \to \infty} a_n \) exists, and diverges otherwise. There are multiple ways for a sequence to diverge:

1. \(\lim_{n \to \infty} a_n = +\infty \) or \(-\infty \); (examples: \(a_n = n^2 \) (\(a_n \to +\infty \)); \(a_n = \ln(n) \) (\(a_n \to -\infty \)).

2. More than one possible limiting value; (example: \(\langle a_n \rangle = 1, -1, 1, -1, 1, -1, \ldots \)).

3. No possible limiting value; (example: \(a_n = \text{nth digit in the decimal expansion of } \pi = 3.14159\ldots \)).

Boundedness

The sequence \(\langle a_n \rangle \) is bounded if the set \{ \(a_n \mid n \in \mathbb{N} \} \) (i.e. the range of the function \(a \)) is bounded (so \(\exists R \in \mathbb{R} \) such that \(\forall n \in \mathbb{N}, \left| a_n \right| < R \)).

Theorem. If \(\langle a_n \rangle \) is convergent, then it is bounded.

Sketch of proof. Take \(\varepsilon = 1 \) in the definition of \(\lim_{n \to \infty} a_n = L \). Then \(L - 1 < a_n < L + 1 \) for all but a finite number of the \(a_n \); consider the maximum absolute value of these, and compare with \(|L - 1| \) and \(|L + 1| \).
(2/10) Last time, we proved the following: if \(\{a_n\} \) is convergent, then \(\{a_n\} \) is bounded. (The converse is not true: why?) The contrapositive — if \(\{a_n\} \) is unbounded, then \(\{a_n\} \) is divergent — gives us a test for divergence.

E.g. Let \(r > 1 \) be given. We'll show that \(\{r^n\} \) diverges by showing it's unbounded: let \(M > 0 \) be given, and find \(n \in \mathbb{N} \) such that \(r^n > M \). But \(r^n > M \Leftrightarrow n \ln r > \ln M \Leftrightarrow n > \frac{\ln M}{\ln r} \), and such an \(n \) certainly exists since \(\mathbb{N} \) is bounded above.

Exercise. What happens if \(0 < r < 1 \)? If \(r = 1 \)?

The algebra of limits

Limit Laws Suppose \(\{a_n\}, \{b_n\} \) are sequences, with

\[
\lim_{n \to \infty} a_n = L, \quad \lim_{n \to \infty} b_n = M.
\]

(1) \(\lim_{n \to \infty} (a_n + b_n) = L + M \)

(2) If \(c \in \mathbb{R} \), \(\lim_{n \to \infty} (ca_n) = cL \)

(3) \(\lim_{n \to \infty} (a_n b_n) = LM \)

(4) If \(M > 0 \) and \(b_n > 0 \) \(\forall n \in \mathbb{N} \),

\[
\lim_{n \to \infty} \left(\frac{1}{b_n} \right) = \frac{1}{M}
\]

(5) If \(M > 0 \) and \(b_n > 0 \) \(\forall n \in \mathbb{N} \),

\[
\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{L}{M}
\]

Proofs

(1), (2) and (3): see course notes.

(5) follows from (3) and (4) by writing

\[
\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n}.
\]

We prove (4): let \(\varepsilon > 0 \) be given. We need to show

\[
\exists n_0 \in \mathbb{N} \text{ such that if } n > n_0, \text{ then } \left| \frac{1}{b_n} - \frac{1}{M} \right| < \varepsilon.
\]

Now \(\frac{1}{b_n} - \frac{1}{M} = \frac{M - b_n}{M b_n} = \frac{1}{M b_n} (M - b_n) \). Since

\[
b_n \to M, \exists n_1 \in \mathbb{N} \text{ such that if } n > n_1, \text{ then } b_n > \frac{M}{2}.
\]

(Why?) So, if \(n > n_1 \),

\[
\frac{1}{b_n} < \frac{1}{M/2} = \frac{2}{M^2}.
\]

On the other hand, since \(b_n \to M \) and \(\frac{M^2}{2} \varepsilon \) is positive, \(\exists n_2 \in \mathbb{N} \) such that if \(n > n_2 \), then \(|M - b_n| < \frac{M^2}{2} \varepsilon \).

Finally, put \(n_0 = \max(n_1, n_2) \), so \(n_0 > n_1 \) and \(n_0 > n_2 \).

Whenever \(n > n_0 \),

\[
\left| \frac{1}{b_n} - \frac{1}{M} \right| = \left| \frac{1}{M b_n} \right| \left| M - b_n \right| < \frac{2}{M^2} \frac{M^2}{2} \varepsilon = \varepsilon,
\]

and so \(\frac{1}{b_n} \to \frac{1}{M} \) as claimed.

Corollary. If \(\lim_{n \to \infty} a_n = M \), then \(\lim_{n \to \infty} a_n - M = 0 \) and \(\lim_{n \to \infty} |a_n - M| = 0 \).

Pinching/Squeeze Theorem Let \(\{a_n\}, \{b_n\}, \{c_n\} \) be sequences such that, for some \(k \in \mathbb{N} \), \(a_n \leq c_n \leq b_n \) for all \(n > k \). Then if \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = L \), we must \(\lim_{n \to \infty} c_n = L \).
By using the limit laws, and the fact that \(\lim_{n \to \infty} \frac{1}{n} = 0 \), we can find limits of rational functions.

For example, we can show (easily) that

\[
\lim_{n \to \infty} \frac{5n^5 + 7n^3 + 2n + 8}{4n^5 - 9n^4 - 3n^2} = \frac{5}{4} \quad \text{and} \quad \lim_{n \to \infty} \frac{n^3 + 2n^2 + 3n}{n^3 - 3n^2 - 1} = 0.
\]

(First step: pull out the largest power from numerator and denominator)

True or False?

1. \(\langle a_n \rangle, \langle b_n \rangle \) divergent \(\Rightarrow \) \(\langle a_n b_n \rangle \) divergent?
 (FALSE: take \(a_n = b_n = \frac{1}{(-1)^n} \), \(n \) odd;)

2. \(\langle a_n b_n \rangle \) divergent \(\Rightarrow \) at least one of \(\langle a_n \rangle, \langle b_n \rangle \) divergent?
 (TRUE: contrapositive of Limit Law (3))

E.g. Show \(\frac{2^n}{n!} \to 0 \). (Idea: Pinch \(\frac{2^n}{n!} \) between 0 and \(a_n \), with \(a_n \to 0 \).

\[
\text{But } \frac{2^n}{n!} = 2 \cdot \frac{2}{3} \cdot \frac{2}{4} \cdots \frac{2}{n-1} \cdot \frac{2}{n} \leq \frac{2}{n}, \text{ so } a_n = \frac{2}{n} \to 0 \text{ works.)}
\]

(2/12) Given a sequence \(\langle a_n \rangle \), we can form the subsequences \(\langle e_n \rangle \), \(e_n = a_{2n} \), of even-index terms and \(\langle o_n \rangle \), \(o_n = a_{2n+1} \), of odd-index terms.

Exercises. Prove:

1. \(a_n \to L \), then \(e_n \to L \) and \(o_n \to L \).
2. \(a_n \to L \) and \(e_n \to M \), with \(L \neq M \), then \(\langle a_n \rangle \) diverges.

Claim. If \(e_n \to L \) and \(o_n \to L \), then \(a_n \to L \).

Proof. Let \(\varepsilon > 0 \) be given. \(\exists n_1 \in \mathbb{N} \) such that \(n > n_1 \implies |a_{2n+1} - L| < \varepsilon \), and \(\exists n_2 \in \mathbb{N} \) such that \(n > n_2 \implies |a_{2n} - L| < \varepsilon \). But \(n_0 = 2n_1n_2 \); then if \(n > n_0 \), \(|a_n - L| < \varepsilon \) whether \(n \) is even or odd, so \(a_n \to L \).

Sequences and functions

Theorem. If \(\langle a_n \rangle \) is a sequence such that \(a_n \to L \), and \(f: \mathbb{R} \to \mathbb{R} \) is a function which is continuous at \(L \), then \(f(a_n) \to f(L) \).

Proof. Let \(\varepsilon > 0 \). Since \(f \) is continuous at \(L \), \(\exists \delta > 0 \) such that \(|x - L| < \delta \implies |f(x) - f(L)| < \varepsilon \).

Since \(a_n \to L \), \(\exists n_0 \in \mathbb{N} \) such that \(n > n_0 \implies |a_n - L| < \delta \implies |f(a_n) - f(L)| < \varepsilon \), so in fact \(f(a_n) \to f(L) \).

This result, together with the fact that if \(\lim_{x \to \infty} f(x) = M \) and \(a_n = f(n) \) then \(a_n \to M \), will allow us to compute many limits.
Examples

1. \(\lim_{n \to \infty} \sin^2 \left(\frac{\pi}{n^3} \right) = 0. \) Why? \(\frac{1}{x^3} \to 0 \) as \(x \to \infty \), so \(\frac{1}{n^3} \to 0 \) as \(n \to \infty \), and thus\(\pi \left(\frac{1}{n^3} \right) \to 0. \) But \(\sin \left(\frac{\pi}{n^3} \right) \) is continuous at \(0 \), so
\(\sin^2 \left(\frac{\pi}{n^3} \right) \to \sin^2 (0) = 0. \)

2. \(\lim_{n \to \infty} \cos (\ln (1 - \frac{1}{n})) = 1, \) because: \(1 - \frac{1}{n} \to 1, \) \(\ln (1) = 0, \) \(\cos (0) = 1, \)
\(\ln \) is continuous at \(1, \)
and \(\cos \) is continuous at \(0. \)

3. \(\lim_{n \to \infty} (1 + \frac{1}{n})^n = e. \)

If we can show \(\lim_{x \to \infty} f(x) = e, \) where \(f(x) = \left(1 + \frac{1}{x}\right)^x, \) we've done. Consider \(\ln f(x) = x \cdot \ln \left(1 + \frac{1}{x}\right). \)
Rewrite this as \(\frac{\ln \left(1 + \frac{1}{x}\right)}{\frac{1}{x}} \), which is an \(\frac{\infty}{\infty} \) form as \(x \to \infty \); thus L'Hopital's Rule applies.
\(\lim_{x \to \infty} \ln f(x) = \lim_{x \to \infty} \frac{\ln (1 + \frac{1}{x})}{\frac{1}{x}} = \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}} \cdot \frac{1}{x^2} = \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}} = 1, \)
so \(\lim_{x \to \infty} f(x) = e^1 = e, \) as claimed.

(Similar reasoning shows that \(\lim_{n \to \infty} n^{1/n} = 1, \) and for any \(a \neq 0 \), \(\lim_{n \to \infty} \left(1 + \frac{a}{n}\right)^n = e^a. \))

Remark. Suppose \(\lim_{x \to 0} f(x) = L \), if \(y = f \left(\frac{1}{x} \right) \), then \(b = L \) (exercise). For example, since \(\frac{\sin x}{x} \to 1 \) as \(x \to 0, \) we have \(n \cdot \sin \left(\frac{1}{n} \right) = \frac{\sin \left(\frac{1}{n} \right)}{\frac{1}{n}} \to 1 \) as \(n \to \infty. \)

Limits at infinity

Formally, a sequence \(\langle a_n \rangle \) diverges to \(\infty \) if \(\forall M \in \mathbb{R} \ \exists N \in \mathbb{N} \) such that \(n > N \Rightarrow a_n > M, \) and diverges to \(-\infty \) if \(\forall M \in \mathbb{R} \ \exists N \in \mathbb{N} \) such that \(n > N \Rightarrow a_n < -M. \) (Intuitively, \(a_n \to \infty \) if \(a_n \) gets arbitrarily larger and larger as \(n \to \infty, \) and \(a_n \to -\infty \) if \(a_n \) gets "larger in the negative sense" as \(n \to \infty. \))

Examples Find \(\langle a_n \rangle, \langle b_n \rangle \) such that \(a_n \to \infty, b_n \to \infty, \) and \((i) \ \frac{a_n}{b_n} \to \infty \) \((ii) \ \frac{a_n}{b_n} \to 0 \)
\((iii) \ \frac{a_n}{b_n} \to -\infty \) \((iv) \ \frac{a_n}{b_n} \to -\infty. \)

(i): take \(a_n = n, \) \(b_n = n. \)

(ii): take \(a_n = n, \) \(b_n = n^2. \)

(iii, iv): impossible!

Exercises to look at: 2.11(a,b); 2.14, 2.15
in section 3.2;
3.7, 4.4, 4.5 in sections 3.3 and 3.4.