MATH3283W LECTURE NOTES: WEEK 6

2/22/2010 Recursive sequences (cont.)

Examples:

(2) $a_1 = 2, \ a_{n+1} = \frac{1}{3-a_n}.$ The first few terms are $2, 1, \frac{1}{2}, \frac{1}{\frac{5}{2}} = \frac{2}{5}, \frac{1}{\frac{13}{5}} = \frac{5}{13}, \cdots$

Since $\frac{5}{13} < \frac{2}{5}$, we suspect that a_n is a decreasing sequence. Let's prove it by induction: $a_2 < a_1$ is true. Suppose $a_{n+1} < a_n$, then we want to show that $a_{n+2} = \frac{1}{3-a_{n+1}} < a_{n+1}$. First, we need to show that $\{a_n\}$ is bounded. Claim: $a_n \leq 2$ (by induction). It's true for $a_1 = 2$. If $a_n \leq 2$, then $a_{n+1} = \frac{1}{3-a_n} \leq \frac{1}{3-2} \leq 2$. So $a_n \leq 2$ is true by induction. Now $3 - a_{n+1} > 3 - a_n \geq 1 > 0$. So $a_{n+2} = \frac{1}{3-a_{n+1}} < \frac{1}{3-a_n} = a_{n+1}$. We also need to claim: $0 < a_n$, $\forall n$. True for n = 1. Assume it is true for n, then $3 - a_n > 3 - 2 = 1$ and $\frac{1}{3-a_n} > 0$.

By bounded convergence theorem, $a_n \to L$ for some L. Using recursive sequences,

$$L = \lim_{n \to \infty} a_{n+1} = \frac{1}{3 - \lim_{n \to \infty} a_n} = \frac{1}{3 - L}$$
$$L(3 - L) = 3L - L^2 = 1$$
$$L^2 - 3L + 1 = 0 \Rightarrow L = \frac{3 \pm \sqrt{9 - 4}}{2}$$
So $L = \frac{3 - \sqrt{5}}{2} \approx .382$. (Q: why do we know $L \neq \frac{3 + \sqrt{5}}{2}$?)

Newton's Method

formula: check calculus textbook. Examples

> 1 Method of finding square roots. Consider $f(x) = x^2 - 2$. f(x) = 0 when $x = \pm \sqrt{2}$. Using Newton method: guess $x_1 = \frac{3}{2}$, then

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - 2}{2x_n} = \frac{2x_n^2 - x_n^2 + 2}{2x_n} = \frac{x_n^2 + 2}{2x_n} = \frac{1}{2}(x_n + \frac{2}{x_n}) \quad (*)$$

Rule: divide 2 by guess and average with guess (divide and average method). Does it work?

First, we show: $\forall n, x_n > \sqrt{2}$.

 $x_1 = \frac{3}{2} > \sqrt{2}$ true.

Assume $x_n > \sqrt{2}$, we want to show $x_{n+1} = \frac{1}{2}(x_n + \frac{2}{x_n}) > \sqrt{2}$, i.e. $\frac{x_n^2+2}{2x_n} > \sqrt{2}$, same as $x_n^2 - 2\sqrt{2}x_n + 2 > 0$. But $x_n^2 - 2\sqrt{2}x_n + 2 = (x_n - \sqrt{2})^2 > 0$ is always true. Second, we have to show that $\{x_n\}$ is decreasing, or

$$x_{n+1} = \frac{x_n^2 + 2}{2x_n} \le x_n$$
 i.e. $x_n^2 + 2 \le 2x_n^2$ or $2 \le x_n^2$

But this is true by (1).

To compute L, we use (*) and take limits:

$$L = \frac{L^2 + 2}{2L}, 2L^2 = L^2 + 2, L = \pm\sqrt{2}$$

Since $\forall n, x_n > \sqrt{2}$, we know $L = \sqrt{2}$. How well does it work? $\sqrt{2} = 1.4142135$ $x_1 = \frac{3}{2} = 1.5, x_2 = \frac{1}{2}(\frac{3}{2} + \frac{4}{3}) = \frac{17}{12} = 1.4167$ $x_3 = \frac{1}{2}(\frac{17}{12} + \frac{24}{17}) = \frac{577}{408} = 1.4142056 \text{ accurate to 5 decimal places!}$ 2 Newton method and inversion.

To find $\frac{1}{a}$ (if a > 0), we need to solve

$$f(x) = \frac{1}{x} - a = 0$$

Use Newton method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{\frac{1}{x_n} - a}{-\frac{1}{x_n^2}} = x_n + \frac{x_n - ax_n^2}{1} = 2x_n - ax_n^2$$

Note: replace division (inversion) by multiplication. $a = 13, \frac{1}{13} = .076923$

$$x_1 = .08, x_2 = x_1(2 - 13x_1) = .08 \times .96 = 0.0768,$$

 $x_3 = x_2(2 - 13x_2) = .0768 \times 1.0016 = 0.07692285$ place accuracy

Continued fraction expansion

Consider recursive sequence $a_1 = 1$, $a_{n+1} = 1 + \frac{1}{1+a_n}$.

even terms odd terms

$$a_2 = 1 + \frac{1}{1+1} = 1\frac{1}{2}, a_3 = 1 + \frac{1}{1+\frac{3}{2}} = 1\frac{2}{5}$$

 $a_4 = 1 + \frac{1}{1+\frac{7}{5}} = 1\frac{5}{12}, a_5 = 1 + \frac{1}{1+\frac{17}{12}} = 1\frac{12}{29}$

It turns out that $a_2 = x_1$ and $a_4 = x_2$ from Newtons method to compute $\sqrt{2}$ starting with $x_1 = \frac{3}{2}$. It can be shown that a_{2n} is decreasing, bounded below and $a_n \to \sqrt{2}$.

Also a_{2n+1} is increasing and $a_{2n+1} \rightarrow \sqrt{2}$. This means

$$\sqrt{2} = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}}$$

For example, $a_1 = 1, a_2 = 1 + \frac{1}{1+1}, a_3 = 1 + \frac{1}{1+\frac{1}{1+1}}$.

2/24/2010

Example: Find Cubic roots To find $2^{\frac{1}{3}}$, solve $f(x) = x^3 - 2 = 0$. Newton method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^3 - 2}{3x_n^2} = \frac{2}{3}\left(\frac{x_n^3 + 1}{x_n^2}\right) = \frac{2}{3}\left(x_n + \frac{1}{x_n^2}\right)$$

set $x_1 = 2, x_2 = \frac{2}{3}(2 + \frac{1}{4}) = \frac{2}{3} \cdot \frac{9}{4} = \frac{3}{2} < x_1$ $x_{n+1} = \frac{2}{3}x^n + \frac{2}{3x_n^2} < x_n \text{ if } \frac{2}{3x_n^2} < \frac{1}{3}x_n \text{ i.e. } x_n^3 \ge 2$ Show by induction: $x_1^3 = 8 > 2$ $x_n^3 > 2, x_n^2 \le 2, n \ge 3$ So $\lim x_n \text{ exists}, L = \frac{2}{3}(\frac{L^3+1}{L^2}), 3L^3 = 2L^3 + 2, L^3 = 2, L = 2^{\frac{1}{3}}$ values: $x_1 = 2, x_2 = \frac{3}{2}, x_3 = \frac{2}{3}(\frac{3}{2} + \frac{4}{9}) = \frac{2}{3} \cdot \frac{35}{18} = \frac{35}{27} = 1.296296$ $x_4 = \frac{2}{3}(\frac{35}{27} + \frac{729}{1225}) = \frac{70}{81} + \frac{486}{1225} = 1.26095$ $2^{\frac{1}{3}} = 1.25992, \text{ error} \approx .001$

Exercise: Ch3 3.7, 4.4, 4.5(a)-(d), 5.5, 5.6(a)-(e), 6.6, 6.7, 6.8, 6.11

Cauchy sequences

A sequence is called Cauchy if terms get closer and closer to another as n gets larger and larger.

Formally, $\langle a_n \rangle$ is Cauchy if

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, (m, n \ge n_0 \Rightarrow |a_m - a_n| < \varepsilon)$$

Theorem 0.1. If $< a_n > is$ convergent, then $< a_n > is$ Cauchy.

Proof. Let $\varepsilon > 0$ and $L = \lim_{n \to \infty} a_n$. Since $\langle a_n \rangle$ is convergent,

$$\exists n_0 \in \mathbb{N}, (n \ge n_0 \Rightarrow |a_n - L| < \frac{\varepsilon}{2})$$

If $m, n \ge n_0$, then

$$|a_m - a_n| = |(a_m - L) + (L - a_n)| \le |a_m - L| + |L - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

We now investigate whether Cauchy sequences converge.

Theorem 0.2. Let $\langle a_n \rangle$ Cauchy. Then $\langle a_n \rangle$ is bounded.

Proof. Let $\varepsilon = 1$. $\langle a_n \rangle$ Cauchy implies $\exists n_0 \in \mathbb{N}, s.t. |a_m - a_n| < 1$ if $m, n \geq n_0$. In particular, for any $m \geq n_0, |a_m - a_{n_0}| < 1$ and

$$|a_m| = |a_m - a_{n_0} + a_{n_0}| \le |a_m - a_{n_0}| + |a_{n_0}| < 1 + |a_{n_0}|$$

A bound for $|a_1|, |a_2|, \cdots, |a_{n_0-1}|$ is

$$M = \max\{|a_1|, |a_2|, \cdots, |a_{n_0-1}|\}$$

So $n \in \mathbb{N} \Rightarrow |a_n| < M + |a_{n_0}| + 1$

Corollary 0.3. Let $\langle a_n \rangle$ be Cauchy, then

 $\langle a_n \rangle$ is monotone $\Rightarrow \langle a_n \rangle$ converges.

Proof. Since $\langle a_n \rangle$ is bounded, if $\langle a_n \rangle$ is monotone, then $\langle a_n \rangle$ converges by the bounded convergent theorem.

A very hard result is:

If $\langle a_n \rangle$ is a sequence, then $\langle a_n \rangle$ contains another sequence $\langle b_m \rangle$ (a subsequence $\langle a_{n_m} \rangle$, like odd or even terms), which is monotone. Now let $\langle a_n \rangle$ Cauchy, and $\langle b_m \rangle$ is a monotone subsequence of $\langle a_n \rangle$.

 $\langle a_n \rangle$ is bounded $\Rightarrow \langle b_m \rangle$ is bounded So $\langle b_m \rangle$ converges to some limit *L*. Since $\langle a_n \rangle$ is Cauchy, the terms b_m "attract" the terms a_n and $a_n \to L$. Find monotone subsequences of Cauchy sequences:

 a_m is called a peak of point if it satisfies $(a_m > a_n \text{ if } n > m)$. Thus a_m is a strict upper bound for $\{a_n | n > m\}$.

Let $\langle a_n \rangle$ be a sequence. Then there are two cases:

(1) Suppose $\langle a_n \rangle$ has infinitely many peak points $a_{n_1} \langle a_{n_2} \rangle \langle \cdots \rangle \langle a_{n_k} \rangle \langle \cdots \rangle$. Then $\langle a_{n_k} \rangle$ is a (strictly) decreasing subsequence.

(2) Suppose $\langle a_n \rangle$ has only finitely many peak points $a_{n_1}, a_{n_2}, \cdots, a_{n_k}$ (It may have none: $a_n = 1 - \frac{1}{n}, n \ge 1$), then $a_{n_1} > a_{n_2} > \cdots > a_{n_k}$. Let $m_1 = n_k + 1$.

Since a_{m_1} is not a peak point, $\exists m_2 > m_1$ s.t. $a_{m_2} \ge a_{m_1}$. Since a_{m_2} is not a peak point, $\exists m_3 > m_2$ s.t. $a_{m_3} \ge a_{m_2}$. continue: if $a_{m_j} \ge a_{m_{j-1}}$, then a_{m_j} is not a peak point.

 $\Rightarrow \exists m_{j+1} > m_j \text{ with } a_{m_{j+1}} \ge a_{m_j}$

Thus, we can construct a subsequence $\langle a_{m_j} \rangle$. Moreover, $\langle a_{m_j} \rangle$ is increasing.

2/26/2010 Summation Notation

Consider a sequence $a_1, a_2, \dots < a_n, \dots$. We will look at ways to add these terms. First need nice ways to add them. Suppose m < n. Then sigma notation for adding is

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_n$$

i is a "dummy" variable. Thus

$$\sum_{j=m}^{n} a_j = \sum_{k=m}^{n} a_k = \sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_n$$

Examples

1. $\sum_{k=m}^{n} a_k = \sum_{k=0}^{n-m} a_{k+m}$ 2. $\sum_{j=m}^{2m} a_j + \sum_{i=2m+1}^{3m} a_i = \sum_{k=m}^{3m} a_k$ 3. Write $2^4 + 3^4 + \dots + n^4$ in sigma notation.

$$\sum_{j=2}^{n} j^4 = \sum_{j=0}^{n-2} (j+2)^4 = \sum_{j=n+2}^{2n} (j-n)^4$$

Examples

(1) Let $s_n = \sum_{i=1}^n \frac{3}{n} [(\frac{i}{n})^2 + 1]$. Determine if $\lim_{n \to \infty} s_n$ exists.

$$s_n = \frac{3}{n} \left[\sum_{i=1}^n (\frac{i}{n})^2 + \sum_{i=1}^n 1 \right]$$

= $\frac{3}{n} \sum_{i=1}^n \frac{i^2}{n^2} + \frac{3}{n} \cdot n$
= $\frac{3}{n^3} (\sum_{i=1}^n i^2) + 3$
= $\frac{3}{n^3} \frac{n(n+1)(2n+1)}{6} + 3$
= $\frac{6n^3 + 9n^2 + 3n}{6n^3} + 3 \rightarrow 1 + 3 =$

4

(2) What is the value of $\sum_{j=0}^{n} (-1)^{j}$?

$$\sum_{j=0}^{n} (-1)^{j} = (-1)^{0} + (-1)^{1} + \dots + (-1)^{n}$$
$$= 1 - 1 + 1 - 1 + \dots + (-1)^{n}$$
$$= \begin{cases} 1 & \text{if n is even} \\ 0 & \text{if n is odd} \end{cases}$$

(3) Expand $\sum_{i=1}^{n} (5^{i} - 5^{i-1})$

$$\sum_{i=1}^{n} (5^{i} - 5^{i-1}) = \sum_{i=1}^{n} 5^{i} - \sum_{i=1}^{n} 5^{i-1} = \sum_{i=1}^{n} 5^{i} - \sum_{i=0}^{n-1} 5^{i} = 5^{n} - 5^{0} = 5^{n} - 1$$

Theorem 0.4 (Generalized triangle inequality). Let $n \in \mathbb{N}$ and a_1, a_2, \dots, a_n real. Then

$$|\sum_{i=1}^{n} a_i| \le \sum_{i=1}^{n} |a_i|$$

Proof. Induction. True for n = 1:

$$|\sum_{i=1}^{1} a_i| = |a_1| = |\sum_{i=1}^{1} |a_i|$$

Assume true for n. Then

$$\begin{aligned} |\sum_{i=1}^{n+1} a_i| &= |\sum_{i=1}^n a_i + a_{n+1}| \le |\sum_{i=1}^n a_i| + |a_{n+1}| \quad \text{(usual triangle inequality)} \\ &\le \sum_{i=1}^n |a_i| + |a_{n+1}| = \sum_{i=1}^{n+1} |a_i| \quad \text{(induction)} \end{aligned}$$

So it is true for all n by induction.

Examples

. .

(1) Assume $x \neq 1$. Show: for $n \geq 0$, $\sum_{k=1}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}$ $n = 0, 1 = \frac{1-x}{1-x}$ true. Assume true for n. Then

$$\sum_{k=1}^{n+1} x^k = \sum_{k=1}^n x^k + x^{n+1} = \frac{1 - x^{n+1} + x^{n+1} - x^{n+2}}{1 - x} = \frac{1 - x^{n+2}}{1 - x} = \frac{1 - x^{(n+1)+1}}{1 - x}$$

(2) Simplify the following:
(a)
$$\sum_{i=1}^{n} (\sum_{j=1}^{n} (i+j))$$
 and $\sum_{j=1}^{n} (\sum_{i=1}^{n} (i+j))$

$$\begin{split} \sum_{i=1}^{n} (\sum_{j=1}^{n} (i+j)) &= \sum_{i=1}^{n} (ni + \sum_{j=1}^{n} j) = \sum_{i=1}^{n} ni + n \sum_{j=1}^{n} j \\ &= n \sum_{i=1}^{n} i + n \sum_{j=1}^{n} j \\ &= 2n \cdot \frac{n(n+1)}{2} = n^2(n+1) (= \sum_{j=1}^{n} (\sum_{i=1}^{n} (i+j)).) \end{split}$$

(b) $\sum_{n=1}^{i} \frac{(-1)^{n+1}5^{n-1}}{(n+1)^24^{n+2}}$

n+1 appear several times. so we may want to write in

terms of n + 1: $5^{n-1} = 5^{n+1-2}, 4^{n+2} = 4^{(n+1)+1}$, so the series looks like

$$\sum_{n=1}^{i} \frac{(-1)^{n+1}}{(n+1)^2} \cdot \frac{5^{(n+1)-2}}{4^{(n+1)+1}}$$

Now replace n + 1 = j. Then j goes from 2 to i + 1 and

$$\sum_{n=1}^{i} \frac{(-1)^{n+1}}{(n+1)^2} \cdot \frac{5^{(n+1)-2}}{4^{(n+1)+1}} = \sum_{j=2}^{i+1} \frac{(-1)^j}{j^2} \cdot \frac{5^{j-2}}{4^{j+1}} = \sum_{j=2}^{i+1} (-\frac{5}{4})^j \cdot \frac{1}{100j^2}$$
(c) $\sum_{\substack{i=1\\j=i}}^n \sum_{j=i}^n (i+j)$
Observe:

$$\sum_{j=1}^n (1+j) + \sum_{j=2}^n (2+j) + \sum_{j=3}^n (3+j) + \dots = n + \sum_{j=1}^n j + 2(n-1) + \sum_{j=2}^n j + 3(n-2) + \sum_{j=3}^n j + \dots$$