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2/22/2010
Recursive sequences (cont.)

Examples:

(2) a1 = 2, an+1 = 1
3−an

.
The first few terms are

2, 1,
1

2
,

1
5
2

=
2

5
,

1
13
5

=
5

13
, · · ·

Since 5
13

< 2
5
, we suspect that an is a decreasing sequence. Let’s

prove it by induction:
a2 < a1 is true.
Suppose an+1 < an, then we want to show that an+2 = 1

3−an+1
<

an+1. First, we need to show that {an} is bounded.
Claim: an ≤ 2 (by induction).
It’s true for a1 = 2.
If an ≤ 2, then an+1 = 1

3−an
≤ 1

3−2
≤ 2. So an ≤ 2 is true by

induction.
Now 3 − an+1 > 3 − an ≥ 1 > 0. So an+2 = 1

3−an+1
< 1

3−an
=

an+1.
We also need to claim: 0 < an, ∀n.
True for n = 1.
Assume it is true for n, then 3− an > 3− 2 = 1 and 1

3−an
> 0.

By bounded convergence theorem, an → L for some L. Using
recursive sequences,

L = lim
n→∞

an+1 =
1

3− limn→∞ an

=
1

3− L

L(3− L) = 3L− L2 = 1

L2 − 3L + 1 = 0⇒ L =
3±
√

9− 4

2

So L = 3−
√

5
2
≈ .382. (Q: why do we know L 6= 3+

√
5

2
?)

1
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Newton’s Method
formula: check calculus textbook.
Examples

1 Method of finding square roots.
Consider f(x) = x2 − 2. f(x) = 0 when x = ±

√
2.

Using Newton method: guess x1 = 3
2
, then

xn+1 = xn−
f(xn)

f ′(xn)
= xn−

x2
n − 2

2xn

=
2x2

n − x2
n + 2

2xn

=
x2

n + 2

2xn

=
1

2
(xn+

2

xn

) (∗)

Rule: divide 2 by guess and average with guess (divide and
average method). Does it work?
First, we show: ∀n, xn >

√
2.

x1 = 3
2

>
√

2 true.

Assume xn >
√

2, we want to show xn+1 = 1
2
(xn + 2

xn
) >
√

2,

i.e. x2
n+2
2xn

>
√

2, same as x2
n − 2

√
2xn + 2 > 0.

But x2
n − 2

√
2xn + 2 = (xn −

√
2)2 > 0 is always true.

Second, we have to show that {xn} is decreasing, or

xn+1 =
x2

n + 2

2xn

≤ xn i.e. x2
n + 2 ≤ 2x2

n or 2 ≤ x2
n

But this is true by (1).
To compute L, we use (*) and take limits:

L =
L2 + 2

2L
, 2L2 = L2 + 2, L = ±

√
2

Since ∀n, xn >
√

2, we know L =
√

2.
How well does it work?

√
2 = 1.4142135

x1 = 3
2

= 1.5, x2 = 1
2
(3

2
+ 4

3
) = 17

12
= 1.4167

x3 = 1
2
(17

12
+ 24

17
) = 577

408
= 1.4142056 accurate to 5 decimal places!

2 Newton method and inversion.
To find 1

a
(if a > 0), we need to solve

f(x) =
1

x
− a = 0

Use Newton method:

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

1
xn
− a

− 1
x2

n

= xn +
xn − ax2

n

1
= 2xn − ax2

n

Note: replace division (inversion) by multiplication.
a = 13, 1

13
= .076923
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x1 = .08, x2 = x1(2− 13x1) = .08× .96 = 0.0768,

x3 = x2(2−13x2) = .0768×1.0016 = 0.0769228 5 place accuracy

Continued fraction expansion
Consider recursive sequence a1 = 1, an+1 = 1 + 1

1+an
.

even terms odd terms

a2 = 1 +
1

1 + 1
= 1

1

2
, a3 = 1 +

1

1 + 3
2

= 1
2

5

a4 = 1 +
1

1 + 7
5

= 1
5

12
, a5 = 1 +

1

1 + 17
12

= 1
12

29

It turns out that a2 = x1 and a4 = x2 from Newtons method to compute√
2 starting with x1 = 3

2
. It can be shown that a2n is decreasing,

bounded below and an →
√

2.
Also a2n+1 is increasing and a2n+1 →

√
2. This means

√
2 =

1

1 + 1
1+ 1

1+ 1
1+···

For example, a1 = 1, a2 = 1 + 1
1+1

, a3 = 1 + 1
1+ 1

1+1

.

2/24/2010
Example: Find Cubic roots
To find 2

1
3 , solve f(x) = x3 − 2 = 0.

Newton method:

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x3
n − 2

3x2
n

=
2

3
(
x3

n + 1

x2
n

) =
2

3
(xn +

1

x2
n

)

set x1 = 2, x2 = 2
3
(2 + 1

4
) = 2

3
· 9

4
= 3

2
< x1

xn+1 = 2
3
xn + 2

3x2
n

< xn if 2
3x2

n
< 1

3
xn i.e. x3

n ≥ 2

Show by induction:
x3

1 = 8 > 2
x3

n > 2, x2
n ≤ 2, n ≥ 3

So lim xn exists, L = 2
3
(L3+1

L2 ), 3L3 = 2L3 + 2, L3 = 2, L = 2
1
3

values: x1 = 2, x2 = 3
2
, x3 = 2

3
(3

2
+ 4

9
) = 2

3
· 35

18
= 35

27
= 1.296296

x4 = 2
3
(35

27
+ 729

1225
) = 70

81
+ 486

1225
= 1.26095

2
1
3 = 1.25992, error≈ .001

Exercise: Ch3 3.7, 4.4, 4.5(a)-(d), 5.5, 5.6(a)-(e), 6.6, 6.7, 6.8, 6.11
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Cauchy sequences
A sequence is called Cauchy if terms get closer and closer to another
as n gets larger and larger.
Formally, < an > is Cauchy if

∀ε > 0,∃n0 ∈ N, (m, n ≥ n0 ⇒ |am − an| < ε)

Theorem 0.1. If < an > is convergent, then < an > is Cauchy.

Proof. Let ε > 0 and L = limn→∞ an. Since < an > is convergent,

∃n0 ∈ N, (n ≥ n0 ⇒ |an − L| < ε

2
)

If m, n ≥ n0, then

|am − an| = |(am − L) + (L− an)| ≤ |am − L|+ |L− an| <
ε

2
+

ε

2
= ε

�

We now investigate whether Cauchy sequences converge.

Theorem 0.2. Let < an > Cauchy. Then < an > is bounded.

Proof. Let ε = 1. < an > Cauchy implies ∃n0 ∈ N, s.t.|am − an| < 1 if
m, n ≥ n0. In particular, for any m ≥ n0, |am − an0| < 1 and

|am| = |am − an0 + an0| ≤ |am − an0|+ |an0| < 1 + |an0 |
A bound for |a1|, |a2|, · · · , |an0−1| is

M = max{|a1|, |a2|, · · · , |an0−1|}
So n ∈ N⇒ |an| < M + |an0 |+ 1 �

Corollary 0.3. Let < an > be Cauchy, then

< an > is monotone ⇒< an > converges.

Proof. Since < an > is bounded, if < an > is monotone, then < an >
converges by the bounded convergent theorem. �

A very hard result is:
If < an > is a sequence, then < an > contains another sequence < bm >
(a subsequence < anm >, like odd or even terms), which is monotone.
Now let < an > Cauchy, and < bm > is a monotone subsequence of
< an >.

< an > is bounded ⇒< bm > is bounded

So < bm > converges to some limit L. Since < an > is Cauchy, the
terms bm ”attract” the terms an and an → L.
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Find monotone subsequences of Cauchy sequences:
am is called a peak of point if it satisfies (am > an if n > m). Thus am

is a strict upper bound for {an|n > m}.
Let < an > be a sequence. Then there are two cases:
(1) Suppose < an > has infinitely many peak points an1 < an2 < · · · <
ank

< · · · . Then < ank
> is a (strictly) decreasing subsequence.

(2) Suppose < an > has only finitely many peak points an1 , an2 , · · · , ank

(It may have none: an = 1 − 1
n
, n ≥ 1), then an1 > an2 > · · · > ank

.
Let m1 = nk + 1.
Since am1 is not a peak point, ∃m2 > m1 s.t. am2 ≥ am1 .
Since am2 is not a peak point, ∃m3 > m2 s.t. am3 ≥ am2 .
continue: if amj

≥ amj−1
, then amj

is not a peak point.
⇒ ∃mj+1 > mj with amj+1

≥ amj

Thus, we can construct a subsequence < amj
>. Moreover, < amj

> is
increasing.

2/26/2010
Summation Notation
Consider a sequence a1, a2, · · · < an, · · · . We will look at ways to add
these terms. First need nice ways to add them. Suppose m < n. Then
sigma notation for adding is

n∑
i=m

ai = am + am+1 + · · ·+ an

i is a ”dummy” variable. Thus

n∑
j=m

aj =
n∑

k=m

ak =
n∑

i=m

ai = am + am+1 + · · ·+ an

Examples
1.
∑n

k=m ak =
∑n−m

k=0 ak+m

2.
∑2m

j=m aj +
∑3m

i=2m+1 ai =
∑3m

k=m ak

3. Write 24 + 34 + · · ·+ n4 in sigma notation.

n∑
j=2

j4 =
n−2∑
j=0

(j + 2)4 =
2n∑

j=n+2

(j − n)4

Examples
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(1) Let sn =
∑n

i=1
3
n
[( i

n
)2 + 1]. Determine if limn→∞ sn exists.

sn =
3

n
[

n∑
i=1

(
i

n
)2 +

n∑
i=1

1]

=
3

n

n∑
i=1

i2

n2
+

3

n
· n

=
3

n3
(

n∑
i=1

i2) + 3

=
3

n3

n(n + 1)(2n + 1)

6
+ 3

=
6n3 + 9n2 + 3n

6n3
+ 3→ 1 + 3 = 4

(2) What is the value of
∑n

j=0(−1)j?

n∑
j=0

(−1)j = (−1)0 + (−1)1 + · · ·+ (−1)n

= 1− 1 + 1− 1 + · · ·+ (−1)n

=

{
1 if n is even
0 if n is odd

(3) Expand
∑n

i=1(5
i − 5i−1)

n∑
i=1

(5i − 5i−1) =
n∑

i=1

5i −
n∑

i=1

5i−1 =
n∑

i=1

5i −
n−1∑
i=0

5i = 5n − 50 = 5n − 1

Theorem 0.4 (Generalized triangle inequality). Let n ∈ N and a1, a2, · · · , an

real. Then

|
n∑

i=1

ai| ≤
n∑

i=1

|ai|

Proof. Induction. True for n = 1:

|
1∑

i=1

ai| = |a1| = |
1∑

i=1

|ai|
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Assume true for n. Then

|
n+1∑
i=1

ai| = |
n∑

i=1

ai + an+1| ≤ |
n∑

i=1

ai|+ |an+1| (usual triangle inequality)

≤
n∑

i=1

|ai|+ |an+1| =
n+1∑
i=1

|ai| (induction)

So it is true for all n by induction. �

Examples

(1) Assume x 6= 1. Show: for n ≥ 0,

n∑
k=1

xk =
1− xn+1

1− x

n = 0, 1 = 1−x
1−x

true.
Assume true for n. Then

n+1∑
k=1

xk =
n∑

k=1

xk+xn+1 =
1− xn+1 + xn+1 − xn+2

1− x
=

1− xn+2

1− x
=

1− x(n+1)+1

1− x

(2) Simplify the following:
(a)

∑n
i=1(
∑n

j=1(i + j)) and
∑n

j=1(
∑n

i=1(i + j))

n∑
i=1

(
n∑

j=1

(i + j)) =
n∑

i=1

(ni +
n∑

j=1

j) =
n∑

i=1

ni + n
n∑

j=1

j

= n
n∑

i=1

i + n
n∑

j=1

j

= 2n · n(n + 1)

2
= n2(n + 1)(=

n∑
j=1

(
n∑

i=1

(i + j)).)

(b)
∑i

n=1
(−1)n+15n−1

(n+1)24n+2

n + 1 appear several times. so we may want to write in
terms of n + 1:
5n−1 = 5n+1−2, 4n+2 = 4(n+1)+1, so the series looks like

i∑
n=1

(−1)n+1

(n + 1)2
· 5(n+1)−2

4(n+1)+1
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Now replace n + 1 = j. Then j goes from 2 to i + 1 and
i∑

n=1

(−1)n+1

(n + 1)2
· 5(n+1)−2

4(n+1)+1
=

i+1∑
j=2

(−1)j

j2
· 5j−2

4j+1
=

i+1∑
j=2

(−5

4
)j · 1

100j2

(c)
∑n

i=1

∑n
j=i(i + j)

Observe:
n∑

j=1

(1+j)+
n∑

j=2

(2+j)+
n∑

j=3

(3+j)+· · · = n+
n∑

j=1

j+2(n−1)+
n∑

j=2

j+3(n−2)+
n∑

j=3

j+· · ·


