MATH3283W LECTURE NOTES: WEEK 6

2/22/2010
Recursive sequences (cont.)

Examples:

(2) $a_{1}=2, a_{n+1}=\frac{1}{3-a_{n}}$.

The first few terms are

$$
2,1, \frac{1}{2}, \frac{1}{\frac{5}{2}}=\frac{2}{5}, \frac{1}{\frac{13}{5}}=\frac{5}{13}, \cdots
$$

Since $\frac{5}{13}<\frac{2}{5}$, we suspect that a_{n} is a decreasing sequence. Let's prove it by induction:
$a_{2}<a_{1}$ is true.
Suppose $a_{n+1}<a_{n}$, then we want to show that $a_{n+2}=\frac{1}{3-a_{n+1}}<$ a_{n+1}. First, we need to show that $\left\{a_{n}\right\}$ is bounded.
Claim: $a_{n} \leq 2$ (by induction).
It's true for $a_{1}=2$.
If $a_{n} \leq 2$, then $a_{n+1}=\frac{1}{3-a_{n}} \leq \frac{1}{3-2} \leq 2$. So $a_{n} \leq 2$ is true by induction.
Now $3-a_{n+1}>3-a_{n} \geq 1>0$. So $a_{n+2}=\frac{1}{3-a_{n+1}}<\frac{1}{3-a_{n}}=$ a_{n+1}.
We also need to claim: $0<a_{n}, \forall n$.
True for $n=1$.
Assume it is true for n, then $3-a_{n}>3-2=1$ and $\frac{1}{3-a_{n}}>0$.
By bounded convergence theorem, $a_{n} \rightarrow L$ for some L. Using recursive sequences,

$$
\begin{gathered}
L=\lim _{n \rightarrow \infty} a_{n+1}=\frac{1}{3-\lim _{n \rightarrow \infty} a_{n}}=\frac{1}{3-L} \\
L(3-L)=3 L-L^{2}=1 \\
L^{2}-3 L+1=0 \Rightarrow L=\frac{3 \pm \sqrt{9-4}}{2}
\end{gathered}
$$

So $L=\frac{3-\sqrt{5}}{2} \approx .382$. (Q: why do we know $L \neq \frac{3+\sqrt{5}}{2}$?)

Newton's Method

formula: check calculus textbook.

Examples

1 Method of finding square roots.
Consider $f(x)=x^{2}-2 . f(x)=0$ when $x= \pm \sqrt{2}$.
Using Newton method: guess $x_{1}=\frac{3}{2}$, then

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-2}{2 x_{n}}=\frac{2 x_{n}^{2}-x_{n}^{2}+2}{2 x_{n}}=\frac{x_{n}^{2}+2}{2 x_{n}}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) \tag{*}
\end{equation*}
$$

Rule: divide 2 by guess and average with guess (divide and average method). Does it work?
First, we show: $\forall n, x_{n}>\sqrt{2}$.
$x_{1}=\frac{3}{2}>\sqrt{2}$ true.
Assume $x_{n}>\sqrt{2}$, we want to show $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right)>\sqrt{2}$,
i.e. $\frac{x_{n}^{2}+2}{2 x_{n}}>\sqrt{2}$, same as $x_{n}^{2}-2 \sqrt{2} x_{n}+2>0$.

But $x_{n}^{2}-2 \sqrt{2} x_{n}+2=\left(x_{n}-\sqrt{2}\right)^{2}>0$ is always true.
Second, we have to show that $\left\{x_{n}\right\}$ is decreasing, or

$$
x_{n+1}=\frac{x_{n}^{2}+2}{2 x_{n}} \leq x_{n} \text { i.e. } x_{n}^{2}+2 \leq 2 x_{n}^{2} \text { or } 2 \leq x_{n}^{2}
$$

But this is true by (1).
To compute L, we use (*) and take limits:

$$
L=\frac{L^{2}+2}{2 L}, 2 L^{2}=L^{2}+2, L= \pm \sqrt{2}
$$

Since $\forall n, x_{n}>\sqrt{2}$, we know $L=\sqrt{2}$.
How well does it work? $\sqrt{2}=1.4142135$
$x_{1}=\frac{3}{2}=1.5, x_{2}=\frac{1}{2}\left(\frac{3}{2}+\frac{4}{3}\right)=\frac{17}{12}=1.4167$
$x_{3}=\frac{1}{2}\left(\frac{17}{12}+\frac{24}{17}\right)=\frac{577}{408}=1.4142056$ accurate to 5 decimal places!
2 Newton method and inversion.
To find $\frac{1}{a}$ (if $a>0$), we need to solve

$$
f(x)=\frac{1}{x}-a=0
$$

Use Newton method:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{\frac{1}{x_{n}}-a}{-\frac{1}{x_{n}^{2}}}=x_{n}+\frac{x_{n}-a x_{n}^{2}}{1}=2 x_{n}-a x_{n}^{2}
$$

Note: replace division (inversion) by multiplication.
$a=13, \frac{1}{13}=.076923$

$$
\begin{gathered}
x_{1}=.08, x_{2}=x_{1}\left(2-13 x_{1}\right)=.08 \times .96=0.0768 \\
x_{3}=x_{2}\left(2-13 x_{2}\right)=.0768 \times 1.0016=0.07692285 \text { place accuracy }
\end{gathered}
$$

Continued fraction expansion

Consider recursive sequence $a_{1}=1, a_{n+1}=1+\frac{1}{1+a_{n}}$.

$$
\begin{gathered}
\text { even terms odd terms } \\
a_{2}=1+\frac{1}{1+1}=1 \frac{1}{2}, a_{3}=1+\frac{1}{1+\frac{3}{2}}=1 \frac{2}{5} \\
a_{4}=1+\frac{1}{1+\frac{7}{5}}=1 \frac{5}{12}, a_{5}=1+\frac{1}{1+\frac{17}{12}}=1 \frac{12}{29}
\end{gathered}
$$

It turns out that $a_{2}=x_{1}$ and $a_{4}=x_{2}$ from Newtons method to compute $\sqrt{2}$ starting with $x_{1}=\frac{3}{2}$. It can be shown that $a_{2 n}$ is decreasing, bounded below and $a_{n} \rightarrow \sqrt{2}$.
Also $a_{2 n+1}$ is increasing and $a_{2 n+1} \rightarrow \sqrt{2}$. This means

$$
\sqrt{2}=\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}
$$

For example, $a_{1}=1, a_{2}=1+\frac{1}{1+1}, a_{3}=1+\frac{1}{1+\frac{1}{1+1}}$.

2/24/2010

Example: Find Cubic roots
To find $2^{\frac{1}{3}}$, solve $f(x)=x^{3}-2=0$.
Newton method:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{3}-2}{3 x_{n}^{2}}=\frac{2}{3}\left(\frac{x_{n}^{3}+1}{x_{n}^{2}}\right)=\frac{2}{3}\left(x_{n}+\frac{1}{x_{n}^{2}}\right)
$$

set $x_{1}=2, x_{2}=\frac{2}{3}\left(2+\frac{1}{4}\right)=\frac{2}{3} \cdot \frac{9}{4}=\frac{3}{2}<x_{1}$
$x_{n+1}=\frac{2}{3} x^{n}+\frac{2}{3 x_{n}^{2}}<x_{n}$ if $\frac{2}{3 x_{n}^{2}}<\frac{1}{3} x_{n}$ i.e. $x_{n}^{3} \geq 2$
Show by induction:
$x_{1}^{3}=8>2$
$x_{n}^{3}>2, x_{n}^{2} \leq 2, n \geq 3$
So $\lim x_{n}$ exists, $L=\frac{2}{3}\left(\frac{L^{3}+1}{L^{2}}\right), 3 L^{3}=2 L^{3}+2, L^{3}=2, L=2^{\frac{1}{3}}$
values: $x_{1}=2, x_{2}=\frac{3}{2}, x_{3}=\frac{2}{3}\left(\frac{3}{2}+\frac{4}{9}\right)=\frac{2}{3} \cdot \frac{35}{18}=\frac{35}{27}=1.296296$
$x_{4}=\frac{2}{3}\left(\frac{35}{27}+\frac{729}{1225}\right)=\frac{70}{81}+\frac{486}{1225}=1.26095$
$2^{\frac{1}{3}}=1.25992$, error $\approx .001$
Exercise: Ch3 3.7, 4.4, 4.5(a)-(d), 5.5, 5.6(a)-(e), 6.6, 6.7, 6.8, 6.11

Cauchy sequences

A sequence is called Cauchy if terms get closer and closer to another as n gets larger and larger.
Formally, $<a_{n}>$ is Cauchy if

$$
\forall \varepsilon>0, \exists n_{0} \in \mathbb{N},\left(m, n \geq n_{0} \Rightarrow\left|a_{m}-a_{n}\right|<\varepsilon\right)
$$

Theorem 0.1. If $<a_{n}>$ is convergent, then $<a_{n}>$ is Cauchy.
Proof. Let $\varepsilon>0$ and $L=\lim _{n \rightarrow \infty} a_{n}$. Since $<a_{n}>$ is convergent,

$$
\exists n_{0} \in \mathbb{N},\left(n \geq n_{0} \Rightarrow\left|a_{n}-L\right|<\frac{\varepsilon}{2}\right)
$$

If $m, n \geq n_{0}$, then

$$
\left|a_{m}-a_{n}\right|=\left|\left(a_{m}-L\right)+\left(L-a_{n}\right)\right| \leq\left|a_{m}-L\right|+\left|L-a_{n}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

We now investigate whether Cauchy sequences converge.
Theorem 0.2. Let $<a_{n}>$ Cauchy. Then $<a_{n}>$ is bounded.
Proof. Let $\varepsilon=1 .<a_{n}>$ Cauchy implies $\exists n_{0} \in \mathbb{N}$, s.t. $\left|a_{m}-a_{n}\right|<1$ if $m, n \geq n_{0}$. In particular, for any $m \geq n_{0},\left|a_{m}-a_{n_{0}}\right|<1$ and

$$
\left|a_{m}\right|=\left|a_{m}-a_{n_{0}}+a_{n_{0}}\right| \leq\left|a_{m}-a_{n_{0}}\right|+\left|a_{n_{0}}\right|<1+\left|a_{n_{0}}\right|
$$

A bound for $\left|a_{1}\right|,\left|a_{2}\right|, \cdots,\left|a_{n_{0}-1}\right|$ is

$$
M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \cdots,\left|a_{n_{0}-1}\right|\right\}
$$

So $n \in \mathbb{N} \Rightarrow\left|a_{n}\right|<M+\left|a_{n_{0}}\right|+1$
Corollary 0.3. Let $<a_{n}>$ be Cauchy, then

$$
<a_{n}>\text { is monotone } \Rightarrow<a_{n}>\text { converges. }
$$

Proof. Since $<a_{n}>$ is bounded, if $\left.<a_{n}\right\rangle$ is monotone, then $\left.<a_{n}\right\rangle$ converges by the bounded convergent theorem.

A very hard result is:
If $\left\langle a_{n}>\right.$ is a sequence, then $<a_{n}>$ contains another sequence $<b_{m}>$ (a subsequence $<a_{n_{m}}>$, like odd or even terms), which is monotone. Now let $\left\langle a_{n}\right\rangle$ Cauchy, and $\left.<b_{m}\right\rangle$ is a monotone subsequence of $<a_{n}>$.

$$
<a_{n}>\text { is bounded } \Rightarrow<b_{m}>\text { is bounded }
$$

So $<b_{m}>$ converges to some limit L. Since $<a_{n}>$ is Cauchy, the terms b_{m} "attract" the terms a_{n} and $a_{n} \rightarrow L$.

Find monotone subsequences of Cauchy sequences:
a_{m} is called a peak of point if it satisfies $\left(a_{m}>a_{n}\right.$ if $\left.n>m\right)$. Thus a_{m} is a strict upper bound for $\left\{a_{n} \mid n>m\right\}$.
Let $\left\langle a_{n}\right\rangle$ be a sequence. Then there are two cases:
(1) Suppose $<a_{n}>$ has infinitely many peak points $a_{n_{1}}<a_{n_{2}}<\cdots<$ $a_{n_{k}}<\cdots$. Then $<a_{n_{k}}>$ is a (strictly) decreasing subsequence.
(2) Suppose $<a_{n}>$ has only finitely many peak points $a_{n_{1}}, a_{n_{2}}, \cdots, a_{n_{k}}$ (It may have none: $a_{n}=1-\frac{1}{n}, n \geq 1$), then $a_{n_{1}}>a_{n_{2}}>\cdots>a_{n_{k}}$. Let $m_{1}=n_{k}+1$.
Since $a_{m_{1}}$ is not a peak point, $\exists m_{2}>m_{1}$ s.t. $a_{m_{2}} \geq a_{m_{1}}$.
Since $a_{m_{2}}$ is not a peak point, $\exists m_{3}>m_{2}$ s.t. $a_{m_{3}} \geq a_{m_{2}}$. continue: if $a_{m_{j}} \geq a_{m_{j-1}}$, then $a_{m_{j}}$ is not a peak point.
$\Rightarrow \exists m_{j+1}>m_{j}$ with $a_{m_{j+1}} \geq a_{m_{j}}$
Thus, we can construct a subsequence $<a_{m_{j}}>$. Moreover, $<a_{m_{j}}>$ is increasing.

2/26/2010

Summation Notation

Consider a sequence $a_{1}, a_{2}, \cdots<a_{n}, \cdots$. We will look at ways to add these terms. First need nice ways to add them. Suppose $m<n$. Then sigma notation for adding is

$$
\sum_{i=m}^{n} a_{i}=a_{m}+a_{m+1}+\cdots+a_{n}
$$

i is a "dummy" variable. Thus

$$
\sum_{j=m}^{n} a_{j}=\sum_{k=m}^{n} a_{k}=\sum_{i=m}^{n} a_{i}=a_{m}+a_{m+1}+\cdots+a_{n}
$$

Examples

1. $\sum_{k=m}^{n} a_{k}=\sum_{k=0}^{n-m} a_{k+m}$
2. $\sum_{j=m}^{2 m} a_{j}+\sum_{i=2 m+1}^{3 m} a_{i}=\sum_{k=m}^{3 m} a_{k}$
3. Write $2^{4}+3^{4}+\cdots+n^{4}$ in sigma notation.

$$
\sum_{j=2}^{n} j^{4}=\sum_{j=0}^{n-2}(j+2)^{4}=\sum_{j=n+2}^{2 n}(j-n)^{4}
$$

Examples

(1) Let $s_{n}=\sum_{i=1}^{n} \frac{3}{n}\left[\left(\frac{i}{n}\right)^{2}+1\right]$. Determine if $\lim _{n \rightarrow \infty} s_{n}$ exists.

$$
\begin{aligned}
s_{n} & =\frac{3}{n}\left[\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{2}+\sum_{i=1}^{n} 1\right] \\
& =\frac{3}{n} \sum_{i=1}^{n} \frac{i^{2}}{n^{2}}+\frac{3}{n} \cdot n \\
& =\frac{3}{n^{3}}\left(\sum_{i=1}^{n} i^{2}\right)+3 \\
& =\frac{3}{n^{3}} \frac{n(n+1)(2 n+1)}{6}+3 \\
& =\frac{6 n^{3}+9 n^{2}+3 n}{6 n^{3}}+3 \rightarrow 1+3=4
\end{aligned}
$$

(2) What is the value of $\sum_{j=0}^{n}(-1)^{j}$?

$$
\begin{aligned}
\sum_{j=0}^{n}(-1)^{j} & =(-1)^{0}+(-1)^{1}+\cdots+(-1)^{n} \\
& =1-1+1-1+\cdots+(-1)^{n} \\
& = \begin{cases}1 & \text { if } \mathrm{n} \text { is even } \\
0 & \text { if } \mathrm{n} \text { is odd }\end{cases}
\end{aligned}
$$

(3) Expand $\sum_{i=1}^{n}\left(5^{i}-5^{i-1}\right)$

$$
\sum_{i=1}^{n}\left(5^{i}-5^{i-1}\right)=\sum_{i=1}^{n} 5^{i}-\sum_{i=1}^{n} 5^{i-1}=\sum_{i=1}^{n} 5^{i}-\sum_{i=0}^{n-1} 5^{i}=5^{n}-5^{0}=5^{n}-1
$$

Theorem 0.4 (Generalized triangle inequality). Let $n \in \mathbb{N}$ and $a_{1}, a_{2}, \cdots, a_{n}$ real. Then

$$
\left|\sum_{i=1}^{n} a_{i}\right| \leq \sum_{i=1}^{n}\left|a_{i}\right|
$$

Proof. Induction. True for $n=1$:

$$
\left|\sum_{i=1}^{1} a_{i}\right|=\left|a_{1}\right|=\left|\sum_{i=1}^{1}\right| a_{i} \mid
$$

Assume true for n. Then

$$
\begin{aligned}
\left|\sum_{i=1}^{n+1} a_{i}\right| & =\left|\sum_{i=1}^{n} a_{i}+a_{n+1}\right| \leq\left|\sum_{i=1}^{n} a_{i}\right|+\left|a_{n+1}\right| \quad \text { (usual triangle inequality) } \\
& \leq \sum_{i=1}^{n}\left|a_{i}\right|+\left|a_{n+1}\right|=\sum_{i=1}^{n+1}\left|a_{i}\right| \quad \text { (induction) }
\end{aligned}
$$

So it is true for all n by induction.

Examples

(1) Assume $x \neq 1$. Show: for $n \geq 0$,

$$
\sum_{k=1}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}
$$

$n=0,1=\frac{1-x}{1-x}$ true.
Assume true for n. Then

$$
\sum_{k=1}^{n+1} x^{k}=\sum_{k=1}^{n} x^{k}+x^{n+1}=\frac{1-x^{n+1}+x^{n+1}-x^{n+2}}{1-x}=\frac{1-x^{n+2}}{1-x}=\frac{1-x^{(n+1)+1}}{1-x}
$$

(2) Simplify the following:
(a) $\sum_{i=1}^{n}\left(\sum_{j=1}^{n}(i+j)\right)$ and $\sum_{j=1}^{n}\left(\sum_{i=1}^{n}(i+j)\right)$

$$
\begin{aligned}
\sum_{i=1}^{n}\left(\sum_{j=1}^{n}(i+j)\right) & =\sum_{i=1}^{n}\left(n i+\sum_{j=1}^{n} j\right)=\sum_{i=1}^{n} n i+n \sum_{j=1}^{n} j \\
& =n \sum_{i=1}^{n} i+n \sum_{j=1}^{n} j \\
& =2 n \cdot \frac{n(n+1)}{2}=n^{2}(n+1)\left(=\sum_{j=1}^{n}\left(\sum_{i=1}^{n}(i+j)\right) .\right)
\end{aligned}
$$

(b) $\sum_{n=1}^{i} \frac{(-1)^{n+1} 5^{n-1}}{(n+1)^{2} 4^{n+2}}$ $n+1$ appear several times. so we may want to write in terms of $n+1$: $5^{n-1}=5^{n+1-2}, 4^{n+2}=4^{(n+1)+1}$, so the series looks like

$$
\sum_{n=1}^{i} \frac{(-1)^{n+1}}{(n+1)^{2}} \cdot \frac{5^{(n+1)-2}}{4^{(n+1)+1}}
$$

Now replace $n+1=j$. Then j goes from 2 to $i+1$ and

$$
\begin{aligned}
& \sum_{n=1}^{i} \frac{(-1)^{n+1}}{(n+1)^{2}} \cdot \frac{5^{(n+1)-2}}{4^{(n+1)+1}}=\sum_{j=2}^{i+1} \frac{(-1)^{j}}{j^{2}} \cdot \frac{5^{j-2}}{4^{j+1}}=\sum_{j=2}^{i+1}\left(-\frac{5}{4}\right)^{j} \cdot \frac{1}{100 j^{2}} \\
& \quad \text { (c) } \sum_{i=1}^{n} \sum_{j=i}^{n}(i+j) \\
& \text { Observe: } \\
& \sum_{j=1}^{n}(1+j)+\sum_{j=2}^{n}(2+j)+\sum_{j=3}^{n}(3+j)+\cdots=n+\sum_{j=1}^{n} j+2(n-1)+\sum_{j=2}^{n} j+3(n-2)+\sum_{j=3}^{n} j+\cdots
\end{aligned}
$$

