SEQUENCES
PREREQUUHITES FROM CALCULUS LIMITS LET F BE DEFINED ON SOME OPEN INTERVAL ABOUT $a \in \mathbb{R}$ THEN $\lim _{x \rightarrow a} f(x)=L$ INTUITIVELY
MEANS: AS x GETS CLOSER \& CLOSER TO $a, f(x)$ GETS CLOSER \& CLOSER
TO L. ALTERNATIVELY, WE CAN GET $f(x)$ AS CLOSE AS WE WANT TO L IF WE TAKE x SUFFICIENTLY CLOSE TO a.
IN TERMS OF ERROR: GIVEN ANY ERROR/TOLERANCE $\varepsilon>0$ THAT WE : WILL ALLOW $f(x)$ TO DIFFER FROM L, WE CAN FIND AN ALLOWABLE DEVIATION $\delta>0$ (WHICH DEPENDS ON ε) SO THAT IF x DEVIATES FROM a BY LESS THAN δ, THEN $f(x)$ DIFFERS FROM L BY LESS THAN ε. $|x-a|<\delta: x$ DEVIATES FROM a by LESS THAN $|f(x)-L|<\varepsilon: f(x)$ DIFFERS FROM L BY LESS THAN

LIMITS AT INFINITY LET f BE DEFINED ON SOME RIGHT RAY [$R,+\infty$) THEN $\lim f(x)=L$ INTUITIVELY
$x \rightarrow+\infty \times$ GETS CLOSER \& CLOSER TO L. HOW CAN X GET CLOSE TO $+\infty: X$ IS VERY LARGE.
ALTERNATIVELY, WE CAN GET $f(x)$ AS CLOSE AS WE WANT TO IF WE TAKE X SUFFICIENTLY CLOSE TO $+\infty$, I. E., X SUFFICENTLY LARGE.

GIVEN ANY ERROR/TOLERANCE $\varepsilon>0$ THAT WE ALLOW $f(x)$ TO DIFFER FROM L, WE CAN FIND A DEVIATION NUMBER $N>O$ (WHICH DEPENDS ON E) SO THAT IF x is $N-C$ LOSE $T O+\infty, I . E ., X>N$, THEN $f(x)$ DIFFERS FROM L BY LESS THAN ε
HERE, A SET WHICH is "close to $+\infty$ " is A RAY ($N,+\infty$) CONTINUOUS AT $a \quad \lim _{x \rightarrow a} f(x)=f(a)$

FORMAL DEFINITION: CONTINUITY f is continuous at $x=a$ IF GIVEN $\varepsilon>0$, THERE EXISTS $\delta>0$ SUCH THAT IF $|x-a|<\delta$, THEN $|f(x)-f(a)|<\varepsilon$
f is CONTINUOUS ON (a, b) or $[k,+\infty)$ If f is continuous at ALL POINTS OF THE INTERVAL OR RAY.

STEWART, ET,

must be able to bring it below any positive number. And, by the same reasoning, we can! If we write ε (the Greek letter epsilon) for an arbitrary positive number, then we find as before that

$$
|f(x)-5|<\varepsilon \quad \text { if } \quad 0<|x-3|<\delta=\frac{\varepsilon}{2}
$$

This is a precise way of saying that $f(x)$ is close to 5 when x is close to 3 because (1) says that we can make the values of $f(x)$ within an arbitrary distance ε from 5 by taking the values of x within a distance $\varepsilon / 2$ from 3 (but $x \neq 3$).

Note that (1) can be rewritten as

$$
5-\varepsilon<f(x)<5+\varepsilon \quad \text { whenever } \quad 3-\delta<x<3+\delta \quad(x \neq 3)
$$

and this is illustrated in Figure 1. By taking the values of $x(\neq 3)$ to lie in the interval $(3-\delta, 3+\delta)$ we can make the values of $f(x)$ lie in the interval $(5-\varepsilon, 5+\varepsilon)$.

Using (1) as a model, we give a precise definition of a limit.
Definition Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of $f(x)$ as x approaches a is \mathcal{L}, and we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-a|<\delta
$$

Another way of writing the last line of this definition is

$$
\text { if } \quad 0<|x-a|<\delta \quad \text { then } \quad|f(x)-L|<\varepsilon
$$

Since $|x-a|$ is the distance from x to a and $|f(x)-L|$ is the distance from $f(x)$ to L, and since ε can be arbitrarily small, the definition of a limit can be expressed in words as follows:
$\lim _{x \rightarrow a} f(x)=L$ means that the distance between $f(x)$ and L can be made arbitrarily small by taking the distance from x to a sufficiently small (but not 0).

Alternatively,

$\lim _{x \rightarrow a} f(x)=\ddot{L}$ means that the values of $f(x)$ can be made as close as we please to L by taking x close enough to a (but not equal to a).
We can also reformulate Definition 2 in terms of intervals by observing that the inequality $|x-a|<\delta$ is equivalent to $-\delta<x-a<\delta$, which in turn can be written as $a-\delta<x<a+\delta$. Also $0<|x-a|$ is true if and only if $x-a \neq 0$, that is, $x \neq a$. Similarly, the inequality $|f(x)-L|<\varepsilon$ is equivalent to the pair of inequalities $L-\varepsilon<f(x)<L+\varepsilon$. Therefore, in terms of intervals, Definition 2 can be stated as follows:
$\lim _{x \rightarrow a} f(x)=L$ means that for every $\varepsilon>0$ (no matter how small ε is) we can find $\delta>0$ such that if x lies in the open interval $(a-\delta, a+\delta)$ and $x \neq a$, then $f(x)$ lies in the open interval $(L-\varepsilon, L+\varepsilon)$.

We interpret this statement geometrically by representing a function by an arrow diagram as in Figure 2, where f maps a subset of \mathbb{P} onto another subset of \mathbb{R}.

FIGURE 2

The definition of limit says that if any small interval $(L-\varepsilon, L+\varepsilon)$ is given around L, then we can find an interval $(a-\delta, a+\delta)$ around a such that f maps all the points in $(a-\delta, a+\delta)$ (except possibly a) into the interval ($L-\varepsilon, L+\varepsilon$). (See Figure 3.)

FIGURE 3

Another geometric interpretation of limits can be given in terms of the graph of a function. If $\varepsilon>0$ is given, then we draw the horizontal lines $y=L+\varepsilon$ and $y=L-\varepsilon$ and the graph of f (see Figure 4). If $\lim _{x \rightarrow a} f(x)=L$, then we can find a number $\delta>0$ such that if we restrict x to lie in the interval $(a-\delta, a+\delta)$ and take $x \neq a$, then the curve $y=f(x)$ lies between the lines $y=L-\varepsilon$ and $y=L+\varepsilon$. (See Figure 5.) You can see that if such a δ has been found, then any smaller δ will also work.

It is important to realize that the process illustrated in Figures 4 and 5 must work for every positive number ε no matter how small it is chosen. Figure 6 shows that if a smaller ε is chosen, then a smaller δ may be required.

FIGURE 4

EXAMPLE 1 Use a graph to find a number δ such that

$$
\left|\left(x^{3}-5 x+6\right)-2\right|<0.2 \quad \text { whenever } \quad|x-1|<\delta
$$

In other words, find a number δ that corresponds to $\varepsilon=0.2$ in the definition of a limit for the function $f(x)=x^{3}-5 x+6$ with $a=1$ and $L=2$.

STEWART, ET, $5^{\text {TH EO }}$ SEETION 2.6

1 Definition Let f be a function defined on some interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means that the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently large.

Another notation for $\lim _{x \rightarrow \infty} f(x)=L$ is

L HORIZONTAL

$$
f(x) \rightarrow L \quad \text { as } \quad x \rightarrow \infty
$$

The symbol ∞ does not represent a number. Nonetheless, the expression $\lim _{x \rightarrow \infty} f(x)=L$ is often read as
"the limit of $f(x)$, as x approaches infinity, is L "
"the limit of $f(x)$, as x becomes infinite, is L "
"the limit of $f(x)$, as x increases without bound, is L "
The meaning of such phrases is given by Definition 1. A more precise definition, similar to the ε, δ definition of Section 2.4, is given at the end of this section.

Geometric illustrations of Definition 1 are shown in Figure 2. Notice that there are many ways for the graph of f to approach the line $y=L$ (which is called a horizontal asymptote) as we look to the far right of each graph.

Referring back to Figurè 1 , we see that for numerically large negative values of x, the values of $f(x)$ are close to 1 . By letting x decrease through negative values without bound, we can make $f(x)$ as close as we like to 1 . This is expressed by writing

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}-1}{x^{2}+1}=1
$$

The general definition is as follows.

2 Definition Let f be a function defined on some interval $(-\infty, a)$. Then

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

means that the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently large negative.

Definition 1 can be stated precisely as follows.
(7) Definition Let f be a function defined on some interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means that for every $\varepsilon>0$ there is a corresponding number N such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad x>N
$$

In words, this says that the values of $f(x)$ can be made arbitrarily close to L (within a distance ε, where ε is any positive number) by taking x sufficiently large (larger than N, where N depends on ε). Graphically it says that by choosing x large enough (larger than
some number N) we can make the graph of f lie between the given horizontal lines $y=L-\varepsilon$ and $y=L+\varepsilon$ as in Figure 14. This must be true no matter how small we choose ε. Figure 15 shows that if a smaller value of ε is chosen, then a larger value of N may be required.

FIGURE 14
$\lim _{x \rightarrow \infty} f(x)=L$

Similarly, a precise version of Definition 2 is given by Definition 8, which is illustrated in Figure 16.

