1. Prove the following results
(a) Let $k \in \mathbb{Z}^{+}$and let $A \subseteq \mathbb{Z}^{+}$such that
2. $k$ is the smallest element of $A$
3. If $n \in A$, then $n+1 \in A$

Then $A=\left\{n \in \mathbb{Z}^{+} \mid n \geq k\right\}$.
(b) (Theorem 4.13 on page 22). Let $k \in \mathbb{Z}^{+}$and let be a statement $P(n)$ depending on $n \in \mathbb{Z}^{+}$. Assume that

1. $P(k)$ is true,
2. $\forall n \in \mathbb{Z}^{+}$, if $P(n)$ is true, then $P(n+1)$ is true.

Then $\forall n \geq k, P(n)$ is true.
2. (a) Use induction to prove that the following formula holds for any $n \in \mathbb{N}$ :

$$
1^{3}+2^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

(b) Consider the following implicit definition for a function $f: \mathbb{N} \rightarrow \mathbb{N}$,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=1-f(n)
$$

Find a closed formula for $f(n)$ (i.e, an expression for $f(n)$ in which the number of terms does not vary with $n$ ), and prove your result using induction.
(c) Find a closed formula for the sum

$$
2^{3}+4^{3}+6^{3}+\cdots+(2 n)^{3}
$$

be sure to prove that your formula works (using induction or other means).

