- 1. Prove the following results
 - (a) Let $k \in \mathbb{Z}^+$ and let $A \subseteq \mathbb{Z}^+$ such that
 - 1. k is the smallest element of A
 - 2. If $n \in A$, then $n + 1 \in A$

Then $A = \{n \in \mathbb{Z}^+ | n \ge k\}.$

- (b) (Theorem 4.13 on page 22). Let $k \in \mathbb{Z}^+$ and let be a statement P(n) depending on $n \in \mathbb{Z}^+$. Assume that
 - 1. P(k) is true, 2. $\forall n \in \mathbb{Z}^+$, if P(n) is true, then P(n+1) is true. Then $\forall n \ge k, P(n)$ is true.
- 2. (a) Use induction to prove that the following formula holds for any $n \in \mathbb{N}$:

$$1^{3} + 2^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}.$$

(b) Consider the following implicit definition for a function $f : \mathbb{N} \to \mathbb{N}$,

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = 1 - f(n).$$

Find a closed formula for f(n) (i.e., an expression for f(n) in which the number of terms does not vary with n), and prove your result using induction.

(c) Find a closed formula for the sum

$$2^3 + 4^3 + 6^3 + \dots + (2n)^3;$$

be sure to prove that your formula works (using induction or other means).