- 1. Let $\{a_n\}$, and $\{b_n\}$ be sequences. Determine if the following are true or false. If true, give a proof. If false, give an example to show that it is false.
 - (a) If $\{a_n\}$ converges and $\{a_nb_n\}$ converges, than $\{b_n\}$ converges.
 - (b) If for every $n, a_n > 0$ and $\lim_{n \to \infty} a_n = L$, with L > 0, and $\{a_n b_n\}$ converges, then $\{b_n\}$ converges.
 - (c) If $\{a_n\}$ converges to 0 and $\{b_n\}$ is bounded, then $\{a_nb_n\}$ converges.
 - (d) If for every $n, a_n > 0$ and $\lim_{n \to \infty} a_n = L$, with L < 1, then there exists an $n_0 \in \mathbb{N}$ such that $n \ge n_0 \Rightarrow a_n < 1$.
 - (e) If $\{a_n\}$, and $\{b_n\}$ converge, then $\{\cos(a_n^2 b_n^3)\}$ converges.
- 2. (a) Prove the Decreasing Monotonic Convergence Theorem: If $\{a_n\}$ is a decreasing sequence bounded below, then $\{a_n\}$ converges.
 - (b) Let $a_n = e^{\frac{n+3}{n+1}}$.
 - i Show that $\{a_n\}$ is decreasing and bounded below.
 - ii Find the limit of $\{a_n\}$ as $n \to \infty$.