1. Let $\left\{a_{n}\right\}$, and $\left\{b_{n}\right\}$ be sequences. Determine if the following are true or false. If true, give a proof. If false, give an example to show that it is false.
(a) If $\left\{a_{n}\right\}$ converges and $\left\{a_{n} b_{n}\right\}$ converges, than $\left\{b_{n}\right\}$ converges.
(b) If for every $n, a_{n}>0$ and $\lim _{n \rightarrow \infty} a_{n}=L$, with $L>0$, and $\left\{a_{n} b_{n}\right\}$ converges, then $\left\{b_{n}\right\}$ converges.
(c) If $\left\{a_{n}\right\}$ converges to 0 and $\left\{b_{n}\right\}$ is bounded, then $\left\{a_{n} b_{n}\right\}$ converges.
(d) If for every $n, a_{n}>0$ and $\lim _{n \rightarrow \infty} a_{n}=L$, with $L<1$, then there exists an $n_{0} \in \mathbb{N}$ such that $n \geq n_{0} \Rightarrow a_{n}<1$.
(e) If $\left\{a_{n}\right\}$, and $\left\{b_{n}\right\}$ converge, then $\left\{\cos \left(a_{n}^{2} b_{n}^{3}\right)\right\}$ converges.
2. (a) Prove the Decreasing Monotonic Convergence Theorem: If $\left\{a_{n}\right\}$ is a decreasing sequence bounded below, then $\left\{a_{n}\right\}$ converges.
(b) Let $a_{n}=e^{\frac{n+3}{n+1}}$.
i Show that $\left\{a_{n}\right\}$ is decreasing and bounded below.
ii Find the limit of $\left\{a_{n}\right\}$ as $n \rightarrow \infty$.
