1. Determine if the following series converge or diverge. Carefully show all your reasoning.

 a) \[\sum_{n=1}^{\infty} \frac{1}{3^n - 2^n} \]
 b) \[\sum_{n=2}^{\infty} \frac{1}{n^2 - \sqrt{n}} \]
 c) \[\sum_{n=1}^{\infty} \frac{2n+1}{\sqrt{n^4 + 1}} \]

2. Suppose \[\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n \] are positive series such that \(\forall n \in \mathbb{N}, 0 < a_{2n} \leq b_{2n} \).

 (1) If \(\sum b_n \) converges, does \(\sum a_n \) converge?
 (2) If \(\sum a_n \) diverges, does \(\sum b_n \) diverge?

3. Determine if the series \[\sum_{n=1}^{\infty} \int_{\frac{n}{2}}^{\frac{2n}{3}} \frac{dx}{x} \] converges or diverges. Carefully show all steps in your reasoning.

 Hint: Rewrite the series using terms \[\int_{\frac{n}{2}}^{\frac{2n}{3}} \frac{dx}{x} \]

4. a) Prove that if the positive series \[\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n \] converge, then \[\sum_{n=1}^{\infty} a_n b_n \] converges.

 b) If \[\sum_{n=1}^{\infty} a_n \] positive series that converges and \(m \in \mathbb{N} \), prove that \[\sum_{n=1}^{\infty} a_n^m \] converges.