MATH3283W PROFESSIONAL PROBLEM 4 SOLUTIONS

$$\begin{aligned} (1) \text{ Let } a_n &= \frac{1}{n^{2}b^{2n}}(x-a)^n. \text{ By ratio test,} \\ |\frac{a_{n+1}}{a_n}| &= |\frac{\frac{1}{(n+1)^{2}b^{2(n+1)}}(x-a)^{n+1}}{\frac{1}{n^{2}b^{2(n+1)}}}| = |\frac{n^{2}b^{2n}(x-a)^{n+1}}{(n+1)^{2}b^{2n+2}(x-a)^{n}}| = |(\frac{n}{n+1})^{2}\frac{x-a}{b^{2}}| \to |\frac{x-a}{b^{2}}| \\ &\therefore [\frac{n}{n^{2}b^{2n}}| < 1 \Leftrightarrow |x-a| < b^{2} \text{ and } |\frac{x-a}{b^{2}}| > 1 \Leftrightarrow |x-a| > b^{2}. \\ &\therefore \sum a_n \text{ converges when } |x-a| < b^{2} \text{ and diverges when } |x-a| > b^{2}. \\ &\therefore \sum a_n \text{ converges when } |x-a| < b^{2} \text{ and diverges when } |x-a| > b^{2}. \\ &|x-a| < b^{2} \Leftrightarrow -b^{2} < x-a < b^{2} \Leftrightarrow a-b^{2} < x < a+b^{2} \\ &\text{When } x = a-b^{2} \text{ or } x-a = -b^{2}, \sum \frac{(b^{2})^{n}}{n^{2}b^{2n}} = \sum \frac{(-1)^{n}}{n^{2}} \text{ converges by} \\ &\text{ylternating series test.} \\ &\text{When } x = a+b^{2} \text{ or } x-a = b^{2}, \sum \frac{(b^{2})^{n}}{n^{2}b^{2n}} = \sum \frac{1}{n^{2}} \text{ converges by} \\ &\text{p-test. So the interval of convergence is } [a-b^{2}, a+b^{2}]. \\ (2) (a) We know that the PS of $h(y) = e^{y}$ at $y = 0$ is $1 + \sum_{n=1}^{\infty} \frac{y^{n}}{n!} \\ &\text{and it converges for any } y \in \mathbb{R}. \text{ Replace } y \text{ by } x^{2} + x^{3}, \text{ we get} \\ &h(x^{2} + x^{3}) = e^{x^{2} + x^{3}} = 1 + \sum_{n=1}^{\infty} \frac{(x^{2} + x^{3})^{n}}{n!} \\ &= 1 + \frac{x^{2} + x^{3}}{1!} + \frac{(x^{2} + x^{3})^{2}}{2!} + \frac{(x^{2} + x^{3})^{3}}{3!} + \sum_{n=4}^{\infty} \frac{(x^{2} + x^{3})^{n}}{n!} \\ &= 1 + x^{2} + x^{3} + \frac{x^{4}}{2} + x^{5} + \frac{x^{6}}{2} + \frac{x^{6} + 3x^{7} + 3x^{8} + x^{9}}{6} + \sum_{n=4}^{\infty} \frac{(x^{2} + x^{3})^{n}}{n!} \\ &= 1 + x^{2} + x^{3} + \frac{x^{4}}{2} + x^{5} + \frac{2x^{6}}{3} + \frac{x^{7}}{2} + \frac{x^{8}}{6} + \sum_{n=4}^{\infty} \frac{(x^{2} + x^{3})^{n}}{n!} \end{aligned}$$$

Since all the terms in the second part have degree ≥ 8 , the first 7 terms of the PS is $1 + x^2 + x^3 + \frac{x^4}{2} + x^5 + \frac{2x^6}{3} + \frac{x^7}{2}$.

(b) Since $(e^{x^2+x^3})' = (2x+3x^2)e^{x^2+x^3} = g(x)$ and the PS of $e^{x^2+x^3}$ has ROC= ∞ by part (a), the PS of g(x) also has

 $ROC = \infty$.

(c) If
$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$
 is a polynomial, then
 $f^{(k)}(x) = a_k \cdot k(k-1) \cdots 2 \cdot 1 + (k+1)k \cdots 3 \cdot 2x + \dots + n(n-1) \cdots (n-k+1)x^{n-k}$
when $1 \le k \le n$ and $f^{(k)}(x) = 0$ when $k > n$. So $f(0) = a_0$ and
 $f^{(k)}(0) = a_k \cdot k!$ when $1 \le k \le n$. Thus the PS of $f(x)$ is

$$f(0) + \sum_{k=1}^{\infty} \frac{f^{(k)}(0)x^k}{k!} = a_0 + \sum_{k=1}^n a_k x^k = f(x).$$

In particular, when $f(x) = 3x^{17} - 9x^{11} + x^7 - 5x^4 + x - 3$, the PS is also $3x^{17} - 9x^{11} + x^7 - 5x^4 + x - 3$.

(3) (a) If $x \ge 0$, |x| = x and $(x^2)^{\frac{1}{2}} = x$. If x < 0, |x| = -x and $(x^2)^{\frac{1}{2}} = -x$. So $|x| = (x^2)^{\frac{1}{2}}$ for any $x \in \mathbb{R}$.

(b) We know that the PS of $\cos y$ at y = 0 is $1 + \sum_{n=1}^{\infty} \frac{(-1)^n y^{2n}}{n!}$ and it converges for any $y \in \mathbb{R}$. If we replace y by $\sqrt{|x|^2}$, we get

$$\cos\sqrt{|x|^2} = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n (\sqrt{|x|^2})^{2n}}{n!} = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n |x|^n}{n!}$$

It converges for any $x \in \mathbb{R}$.

Note: this series actually is not a "power series" since its n-th term contains $|x|^n$ rather than x^n .

(4) A. since $\sum a_n x^n$ converges at $x = -\frac{3}{2}$, it converges absolutely for $|x| < |-\frac{3}{2}| = \frac{3}{2}$. So (i) $\sum a_n = \sum a_n \cdot 1^n$ and (ii) $\sum a_n (\frac{5}{4})^n$ both converges because $|1| < \frac{3}{2}$ and $|\frac{5}{4}| < \frac{3}{2}$. We don't know if $\sum a_n (-3)^n$ is convergent or not. For example, $\sum \frac{x^n}{3^n}$ and $\sum \frac{x^n}{n3^n}$ both satisfy the given conditions, but $\sum \frac{x^n}{3^n}$ diverges at x = -3 and $\sum \frac{x^n}{n3^n}$ converges at x = -3.

B. Since $\sum a_n x^n$ converges when $|x| < \frac{3}{2}$, r = ROC should be at least $\frac{3}{2}$. If $\text{not}(r < \frac{3}{2})$, then $r' = \frac{r+\frac{3}{2}}{2} = r + \frac{\frac{3}{2}-r}{2} > r$ and $\sum a_n x^n$ diverges at x = r', which is a contradiction because $\frac{3}{2} > r'$. If r > 3, then $\sum a_n x^n$ is convergent at x = 3 > r, a contradiction-

tion. So we know that $\frac{3}{2} \leq r \leq 3$. Moreover, $\sum \frac{2^n x^n}{n^{3^n}}$ and $\sum \frac{x^n}{n^{3^n}}$ both satisfy the given conditions and they have $\text{ROC}=\frac{3}{2}$ and 3 respectively. So $\frac{3}{2}$ is the greatest lower bound and 3 is the least upper bound, i.e the codition $\frac{3}{2} \le r \le 3$ can't be improved further. C.

$$|a_n(-2)^n| < (\frac{4}{5})^n \Leftrightarrow |a_n| < \frac{(\frac{4}{5})^n}{|(-2)^n|} = (\frac{2}{5})^n$$

 So

$$\sum_{n=100}^{\infty} |a_n x^n| \le \sum_{n=100}^{\infty} (\frac{2}{5})^n |x^n| = \sum_{n=100}^{\infty} |\frac{2x}{5}|^n$$

and $\sum_{n=100}^{\infty} |\frac{2x}{5}|^n$ converges if $|\frac{2x}{5}| < 1$ or $|x| < \frac{5}{2}$. Hence $\sum_{n=100}^{\infty} a_n x^n$ (and $\sum_{n=1}^{\infty} a_n x^n$) converges absolutely when $|x| < \frac{5}{2}$ and the ROC is at least $\frac{5}{2}$. So the condition in B should be $\frac{5}{2} \le r \le 3$. It can't be improved because the series $\sum_{n=1}^{\infty} a_n x^n$ with $a_n = \frac{2^n}{n5^n}$ satisfies all the required conditions and has $\operatorname{ROC} = \frac{5}{2}$.