MATH3283W PROFESSIONAL PROBLEM 4 SOLUTIONS

(1) Let $a_{n}=\frac{1}{n^{2} b^{2 n}}(x-a)^{n}$. By ratio test,

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right|= & \left|\frac{\frac{1}{(n+1)^{2} b^{2(n+1)}}(x-a)^{n+1}}{\frac{1}{n^{2} b^{2 n}}(x-a)^{n}}\right|=\left|\frac{n^{2} b^{2 n}(x-a)^{n+1}}{(n+1)^{2} b^{2 n+2}(x-a)^{n}}\right|=\left|\left(\frac{n}{n+1}\right)^{2} \frac{x-a}{b^{2}}\right| \rightarrow\left|\frac{x-a}{b^{2}}\right| \\
& \because\left|\frac{x-a}{b^{2}}\right|<1 \Leftrightarrow|x-a|<b^{2} \text { and }\left|\frac{x-a}{b^{2}}\right|>1 \Leftrightarrow|x-a|>b^{2} . \\
& \therefore a_{n} \text { converges when }|x-a|<b^{2} \text { and diverges when }|x-a|> \\
& b^{2} . \text { The radius of converges(ROC) is } b^{2} .
\end{aligned}
$$

$$
|x-a|<b^{2} \Leftrightarrow-b^{2}<x-a<b^{2} \Leftrightarrow a-b^{2}<x<a+b^{2}
$$

When $x=a-b^{2}$ or $x-a=-b^{2}, \sum \frac{\left(-b^{2}\right)^{n}}{n^{2} b^{2 n}}=\sum \frac{(-1)^{n}}{n^{2}}$ converges by alternating series test.
When $x=a+b^{2}$ or $x-a=b^{2}, \sum \frac{\left(b^{2}\right)^{n}}{n^{2} b^{2 n}}=\sum \frac{1}{n^{2}}$ converges by p-test. So the interval of convergence is $\left[a-b^{2}, a+b^{2}\right]$.
(2) (a) We know that the PS of $h(y)=e^{y}$ at $y=0$ is $1+\sum_{n=1}^{\infty} \frac{y^{n}}{n!}$ and it converges for any $y \in \mathbb{R}$. Replace y by $x^{2}+x^{3}$, we get $h\left(x^{2}+x^{3}\right)=e^{x^{2}+x^{3}}=1+\sum_{n=1}^{\infty} \frac{\left(x^{2}+x^{3}\right)^{n}}{n!}$ and it converges for any $x \in \mathbb{R}$ (since $x^{2}+x^{3} \in \mathbb{R}$ as well). Consider the first 4 terms of the series,

$$
\begin{aligned}
& 1+\sum_{n=1}^{\infty} \frac{\left(x^{2}+x^{3}\right)^{n}}{n!} \\
= & 1+\frac{x^{2}+x^{3}}{1!}+\frac{\left(x^{2}+x^{3}\right)^{2}}{2!}+\frac{\left(x^{2}+x^{3}\right)^{3}}{3!}+\sum_{n=4}^{\infty} \frac{\left(x^{2}+x^{3}\right)^{n}}{n!} \\
= & 1+x^{2}+x^{3}+\frac{x^{4}}{2}+x^{5}+\frac{x^{6}}{2}+\frac{x^{6}+3 x^{7}+3 x^{8}+x^{9}}{6}+\sum_{n=4}^{\infty} \frac{\left(x^{2}+x^{3}\right)^{n}}{n!} \\
= & 1+x^{2}+x^{3}+\frac{x^{4}}{2}+x^{5}+\frac{2 x^{6}}{3}+\frac{x^{7}}{2}+\frac{x^{8}}{2}+\frac{x^{9}}{6}+\sum_{n=4}^{\infty} \frac{\left(x^{2}+x^{3}\right)^{n}}{n!}
\end{aligned}
$$

Since alll the terms in the second part have degree ≥ 8, the first 7 terms of the PS is $1+x^{2}+x^{3}+\frac{x^{4}}{2}+x^{5}+\frac{2 x^{6}}{3}+\frac{x^{7}}{2}$.
(b) Since $\left(e^{x^{2}+x^{3}}\right)^{\prime}=\left(2 x+3 x^{2}\right) e^{x^{2}+x^{3}}=g(x)$ and the PS of $e^{x^{2}+x^{3}}$ has $\mathrm{ROC}=\infty$ by part (a), the PS of $g(x)$ also has
$\mathrm{ROC}=\infty$.
(c) If $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ is a polynomial, then

$$
f^{(k)}(x)=a_{k} \cdot k(k-1) \cdots 2 \cdot 1+(k+1) k \cdots 3 \cdot 2 x+\cdots+n(n-1) \cdots(n-k+1) x^{n-k}
$$

when $1 \leq k \leq n$ and $f^{(k)}(x)=0$ when $k>n$. So $f(0)=a_{0}$ and $f^{(k)}(0)=a_{k} \cdot k$! when $1 \leq k \leq n$. Thus the PS of $f(x)$ is

$$
f(0)+\sum_{k=1}^{\infty} \frac{f^{(k)}(0) x^{k}}{k!}=a_{0}+\sum_{k=1}^{n} a_{k} x^{k}=f(x) .
$$

In particular, when $f(x)=3 x^{17}-9 x^{11}+x^{7}-5 x^{4}+x-3$, the PS is also $3 x^{17}-9 x^{11}+x^{7}-5 x^{4}+x-3$.
(3) (a) If $x \geq 0,|x|=x$ and $\left(x^{2}\right)^{\frac{1}{2}}=x$.

If $x<0,|x|=-x$ and $\left(x^{2}\right)^{\frac{1}{2}}=-x$.
So $|x|=\left(x^{2}\right)^{\frac{1}{2}}$ for any $x \in \mathbb{R}$.
(b) We know that the PS of $\cos y$ at $y=0$ is $1+\sum_{n=1}^{\infty} \frac{(-1)^{n} y^{2 n}}{n!}$ and it converges for any $y \in \mathbb{R}$. If we replace y by $\sqrt{|x|^{2}}$, we get
$\cos \sqrt{|x|^{2}}=1+\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(\sqrt{|x|^{2}}\right)^{2 n}}{n!}=1+\sum_{n=1}^{\infty} \frac{(-1)^{n}|x|^{n}}{n!}$
It converges for any $x \in \mathbb{R}$.
Note: this series actually is not a "power series" since its n-th term contains $|x|^{n}$ rather than x^{n}.
(4) A. since $\sum a_{n} x^{n}$ converges at $x=-\frac{3}{2}$, it converges absolutely for $|x|<\left|-\frac{3}{2}\right|=\frac{3}{2}$. So (i) $\sum a_{n}=\sum a_{n} \cdot 1^{n}$ and (ii) $\sum a_{n}\left(\frac{5}{4}\right)^{n}$ both converges because $|1|<\frac{3}{2}$ and $\left|\frac{5}{4}\right|<\frac{3}{2}$.
We don't know if $\sum a_{n}(-3)^{n}$ is convergent or not. For example, $\sum \frac{x^{n}}{3^{n}}$ and $\sum \frac{x^{n}}{n 3^{n}}$ both satisfy the given conditions, but $\sum \frac{x^{n}}{3^{n}}$ diverges at $x=-3$ and $\sum \frac{x^{n}}{n 3^{n}}$ converges at $x=-3$.
B. Since $\sum a_{n} x^{n}$ converges when $|x|<\frac{3}{2}, r=$ ROC should be at least $\frac{3}{2}$. If $\operatorname{not}\left(r<\frac{3}{2}\right)$, then $r^{\prime}=\frac{r+\frac{3}{2}}{2}=r+\frac{\frac{3}{2}-r}{2}>r$ and $\sum a_{n} x^{n}$ diverges at $x=r^{\prime}$, which is a contradiction because $\frac{3}{2}>r^{\prime}$.
If $r>3$, then $\sum a_{n} x^{n}$ is convergent at $x=3>r$, a contradiction.
So we know that $\frac{3}{2} \leq r \leq 3$. Moreover, $\sum \frac{2^{n} x^{n}}{n 3^{n}}$ and $\sum \frac{x^{n}}{n 3^{n}}$ both satisfy the given conditions and they have $\mathrm{ROC}=\frac{3}{2}$ and 3 respectively. So $\frac{3}{2}$ is the greatest lower bound and 3 is the
least upper bound, i.e the codition $\frac{3}{2} \leq r \leq 3$ can't be improved further.
C.

$$
\left|a_{n}(-2)^{n}\right|<\left(\frac{4}{5}\right)^{n} \Leftrightarrow\left|a_{n}\right|<\frac{\left(\frac{4}{5}\right)^{n}}{\left|(-2)^{n}\right|}=\left(\frac{2}{5}\right)^{n}
$$

So

$$
\sum_{n=100}^{\infty}\left|a_{n} x^{n}\right| \leq \sum_{n=100}^{\infty}\left(\frac{2}{5}\right)^{n}\left|x^{n}\right|=\sum_{n=100}^{\infty}\left|\frac{2 x}{5}\right|^{n}
$$

and $\sum_{n=100}^{\infty}\left|\frac{2 x}{5}\right|^{n}$ converges if $\left|\frac{2 x}{5}\right|<1$ or $|x|<\frac{5}{2}$. Hence $\sum_{n=100}^{\infty} a_{n} x^{n}$ (and $\sum_{n=1}^{\infty} a_{n} x^{n}$) converges absolutely when $|x|<$ $\frac{5}{2}$ and the ROC is at least $\frac{5}{2}$. So the condition in B should be $\frac{5}{2} \leq r \leq 3$. It can't be improved because the series $\sum_{n=1}^{\infty} a_{n} x^{n}$ with $a_{n}=\frac{2^{n}}{n 5^{n}}$ satisfies all the required conditions and has $\mathrm{ROC}=\frac{5}{2}$.

