1. Let \(A, B \) be finite sets where \(\#A = m \) and \(\#B = n \), let \(f: A \rightarrow B \) be a function.
1. Prove that if \(f \) is 1-to-1, then \(m \leq n \).
2. Prove that if \(f \) is a bijection, then \(m = n \).

2. Let \(A, B \) be finite sets and \(F(A,B) \) the set of all functions \(f: A \rightarrow B \).
1. Suppose \(A = \{a_1, a_2, a_3\} \) and \(B = \{1, 2, 3\} \), find \(\#F(A,B) \). Show your reasoning.
2. Suppose \(A = \{a_1, a_2, a_3, a_4\} \) and \(B = \{1, 2, 3\} \), find \(\#F(A,B) \). Show your reasoning.
3. Suppose \(\#A = m \) and \(\#B = n \), find \(\#F(A,B) \). Prove that your reasoning is correct.

3. Consider the function \(f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \) defined by
\[
f(n,m) = \frac{1}{2} (n+m-2)(n+m-1) + m
\]
1. Compute \(f(1,1), f(2,1), f(1,2), f(1,3), f(2,2) \) and \(f(3,1) \).
2. Show that \(f(n,m) = f(n', m') \) implies \((n,m) = (n', m') \) in the following cases: a) \(n + m = n' + m' \), b) \(n + m \) not equal to \(n' + m' \), but \(n = n' \) c) \(n + m \) not equal to \(n' + m' \), but \(m = m' \).
3. Find pairs \((n,m) \) such that a) \(f(n,m) = 13 \), b) \(f(n,m) = 19 \), c) \(f(n,m) = 28 \).
4. It can be shown that \(f \) is onto. How is \(f \) related to the bijection \(g: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N} \) described in the lecture notes?