Part A

1. Determine if the following sets are bounded above. If so, find the least upper bound. Are they bounded below? If so, find the greatest lower bound.
(a) $\left\{x \in \mathbb{R} \mid x<0\right.$ and $\left.x^{2}+2 x>0\right\}$
(b) $\left\{\frac{1}{2},-\frac{1}{2}, \frac{2}{3},-\frac{2}{3}, \frac{3}{4},-\frac{3}{4}, \ldots\right\}$
(c) $\{1-.9,1-.99,1-.999,1-.9999, \ldots\}$
2. Let $A=\left\{\sin (x) \left\lvert\, \frac{\pi}{4} \leq x \leq \frac{7 \pi}{4}\right.\right\}$
(a) Show that A is bounded above and below.
(b) Find $\sup (A)$ and $\inf (A)$. Show your work.
(c) Is $\sup (A)$ a member of A ? Is $\inf (A)$ a member of A ?
3. Let A be a non-empty subset of \mathbb{R} which is bounded above.
(a) Show that $-A$ is bounded below, where $-A=\{-a \mid a \in A\}$.
(b) Let $w=\sup (A)$. Prove that $\inf (-A)=-w$.
4. Suppose $A \subset \mathbb{R}$ and $B \subset A$ is non-empty. What can you conclude about $\inf (A)$ and $\inf (B)$? Prove your result.

Part B

5. Find the least integer k such that $4^{k}>k^{4}$ for all $n \geq k$. Prove by induction that your answer is correct.
6. Consider the set $A=\{2.1,-2.3,2.11,-2.33,2.111,-2.333, \ldots\}$.
(a) Write a general expression for the $2 n^{t h}$ and $(2 n+1)^{s t}$ elements.
(b) Find the set B of upper bounds of A and the set C of lower bounds of A.
(c) What is $\inf (A)$? Prove your answer is correct.
(d) What is $\sup (A)$? Prove your answer is correct.
(e) Find $r \in \mathbb{R}$ such that $r \notin B \cup C$.
7. Let $a>0$. What is $\inf \left\{\left.\frac{a}{n} \right\rvert\, n \in \mathbb{N}\right\}$? Prove that your answer is correct.
