DEFINITIONS AND NOTATIONS

Definition 1.1 (operation). For a set A, an operation on A is a function $\circ : A \times A \to A$. We usually denote $\circ(a,b)$ by $a \circ b$.

Definition 1.2 (associativity, commutativity). Let $\circ : A \times A \to A$ be an operation on A.
- We say that \circ is associative if for any $a,b,c \in A$, we have $(a \circ b) \circ c = a \circ (b \circ c)$.
- We say that \circ is commutative or abelian if for any $a,b \in A$, we have $a \circ b = b \circ a$.

Definition 1.3 (identity, inverse). Let $\circ : A \times A \to A$ be an operation on A.
- We say that $e \in A$ is the identity of (A,\circ) if for any $a \in A$ we have $a \circ e = e \circ a = a$.
- If $e \in A$ is the identity of (A,\circ), then for $a,b \in A$ we say that b is an inverse of a if they satisfy $a \circ b = b \circ a = e$.

Definition 3.1 (group). Let G be a set with an operation $\circ : G \times G \to G$. Then (G,\circ) is called a group if
 a) \circ is associative,
 b) the identity element exists in G, and
 c) for any $g \in G$, its inverse exists in G.

Definition 3.2 (abelian group). A group (G,\circ) is called commutative or abelian if \circ is commutative.

Definition 3.3 (set automorphism group). For a set A, define $\text{Aut}_{\text{set}}(A)$ to be the group of bijections $f : A \to A$ whose operation $\circ : \text{Aut}_{\text{set}}(A) \times \text{Aut}_{\text{set}}(A) \to \text{Aut}_{\text{set}}(A)$ is given by composition of functions.

Definition 3.4 (group of integers modulo n). For $n \in \mathbb{Z}_{>0}$, \mathbb{Z}_n is defined to be a group \{0,1,2,\ldots,n−1\} whose operation is given by $a \circ b = a + b \pmod{n}$.

Definition 4.1 (subgroup). Let $(G,*)$ be a group and $H \subset G$ be a subset. Then H is said to be a subgroup of G if $(H,* : H \times H \to H)$ is a group.

Definition 4.2 (subgroup generated by a subset). Let $(G,*)$ be a group and $A \subset G$ be a subset. We define $\langle A \rangle$ to be the smallest subgroup of G containing A, called the subgroup generated by A. Also we say that $\langle A \rangle$ is generated by A.

Definition 4.3 (cyclic group). A group \((G, \ast)\) is called a **cyclic group** if there exists \(g \in G\) such that \(\langle \{g\} \rangle = G\).

Definition 5.1 (symmetric group). Let \(A = \{1, 2, \ldots, n\}\) for some \(n \in \mathbb{Z}_{>0}\). Then we define \(S_n\) to be \(\text{Aut}_{\text{set}}(A)\), called the symmetric (or permutation) group on \(n\) elements.

Definition 5.2 (cycles, transposition). Let \(\alpha \in S_n\).

- \(\alpha\) is called a **cycle** if there exist pairwise different elements \(a_1, a_2, \ldots, a_r \in \{1, 2, \ldots, n\}\) such that \(\alpha(a_1) = a_2, \alpha(a_2) = a_3, \ldots, \alpha(a_{r-1}) = \alpha(a_r), \alpha(a_r) = a_1\), and \(\alpha(b) = b\) if \(b \notin \{a_1, a_2, \ldots, a_r\}\). In this case we usually write \(\alpha = (a_1 \ a_2 \ \cdots \ a_r)\).
- \(\alpha\) is called a **transposition** if \(\alpha = (a \ b)\) for some \(a, b \in \{1, 2, \ldots, n\}\) such that \(a \neq b\).
- \(\alpha\) is called an **adjacent transposition** if \(\alpha = (a \ a + 1)\) for some \(1 \leq a \leq n - 1\).

Definition 5.3 (notation of permutations). Let \(\alpha \in S_n\).

- The **two-line array notation of** \(\alpha\) is the two-line array \(\begin{pmatrix} 1 & 2 & \cdots & n \\ \alpha(1) & \alpha(2) & \cdots & \alpha(n) \end{pmatrix}\)
- The **cycle notation of** \(\alpha\) is the expression of \(\alpha\) as a product of disjoint cycles.

Definition 5.4 (even, odd permutation). Let \(\alpha \in S_n\).

- \(\alpha\) is called **even** if it is equal to a product of even number of transpositions.
- \(\alpha\) is called **odd** if it is equal to a product of odd number of transpositions.

Definition 5.5 (alternating group). Let \(A_nS_n\) be a set of even permutations in \(S_n\). Then \(A_n\) is in fact a subgroup of \(S_n\), called the **alternating group**.

Definition 6.1 (order). Let \(G\) be a group and \(g \in G\) is an element.

- The **order of** \(G\), denoted \(|G|\), is the cardinal of \(G\).
- The **order of** \(g\), denoted \(\text{ord}(g)\) or \(|g|\), is the smallest \(m \in \mathbb{Z}_{>0}\) such that \(g^m\) is equal to the identity, or \(\infty\) if such \(m\) does not exist.

Definition 7.1 (homomorphism). Let \(G, H\) be groups. Then a function \(f: G \to H\) is called a **homomorphism** if for any \(a, b \in G\) it satisfies \(f(ab) = f(a)f(b)\).

Definition 7.2 (kerner, image). Let \(G, H\) be groups and \(f: G \to H\) be a homomorphism.

- The **kernel of** \(f\) is \(f^{-1}(e) \subset G\).
- The **image of** \(f\) is \(f(G) \subset H\).
Definition 7.3 (various homomorphisms). Let G, H be groups and $f : G \to H$ be a homomorphism.

- f is called a **monomorphism** if f is injective.
- f is called an **epimorphism** if f is surjective.
- f is called an **isomorphism** if f is bijective. If so, we say that G and H are **isomorphic**.
- f is called an **endomorphism** if $G = H$.
- f is called an **automorphism** if f is a bijective endomorphism.

Definition 7.4 (automorphism group). For a group G, define $\text{Aut}(G)$ to be the set of automorphisms of G. Then it is naturally a group whose operation is given by composition of functions and called the **group of automorphisms of G**.

Definition 8.1 (equivalence relation). Let A be a set. Then a relation \sim on A is called an **equivalence relation on A** if

- for any $a \in A$, $a \sim a$,
- for any $a, b \in A$, if $a \sim b$ then $b \sim a$, and
- for any $a, b, c \in A$, if $a \sim b$ and $b \sim c$ then $a \sim c$.

If $a \sim b$, we say that a is **equivalent to b**.

Definition 8.2 (equivalence class). For a set A with an equivalence relation \sim and for $a \in A$, the set $\{b \in A \mid a \sim b\}$ is called the **equivalence class of a**.

Definition 8.3 (partition). For a set A, a **partition of A** is a set P consisting of subsets of A such that for any $B, C \in P$, either $B \cap C = \emptyset$ or $B = C$.

Definition 8.4 (coset). For a group G and its subgroup $H \subset G$, the set aH (resp. Ha) for some element $a \in G$ is called the **left (resp. right) coset of H in G**.

Definition 8.5 (coset). For a group G and its subgroup $H \subset G$, the **index of H in G** is the cardinal of (left) cosets of H in G, denoted $(G : H)$.

Definition 9.1 (dihedral group). For $n \in \mathbb{Z}_{\geq 2}$, the **dihedral group D_n** is the group of isometries of a plane which stabilize a regular n-gon.
Definition 9.2 (quaternion group). The quaternion group Q_8 is a group $\{\pm 1, \pm i, \pm j, \pm k\}$ whose operation is given by

\[
\begin{array}{cccccccc}
\circ & 1 & -1 & i & -i & j & -j & k & -k \\
1 & 1 & -1 & i & -i & j & -j & k & -k \\
-1 & -1 & 1 & -i & i & -j & j & -k & k \\
i & i & -i & 1 & -1 & k & -k & -j & j \\
-j & -i & i & 1 & -1 & k & k & j & -j \\
k & k & -k & j & -j & -i & i & -1 & 1 \\
-k & -k & k & -j & j & i & -i & 1 & -1 \\
\end{array}
\]

Definition 10.1 (normal subgroup). Let G be a group and H is a subgroup of G. Then H is called a normal subgroup of G if for any $g \in G$, we have $gHg^{-1} \subseteq H$.

Definition 10.2 (quotient subgroup). Let G be a group and H is a normal subgroup of G. Then G/H, the set of left cosets of H in G, inherits a natural group structure from G and is called the quotient group (factor group) of G by H.

Definition 11.1 (finitely generated group). A group G is called finitely generated if there exists a finite subset $A \subseteq G$ such that $G = \langle A \rangle$.

Definition 11.2 (p-group). A group G is called a p-group for some prime number p if the order of any element in G is a power of p.

Definition 12.1 (group action). Let G be a group and X be a set. Then we say that G acts on X, there is an action of G on X, or X is a G-set, and write $G \curvearrowright X$, if there is a homomorphism $G \to \text{Aut}\set(X)$. In this case, for any $g \in G$ and $x \in X$ we denote by $g \cdot x$ the image of x under the image of g under $G \to \text{Aut}_{\text{set}}(X)$.

Definition 12.2 (faithful action). Suppose that G acts on X. Then we say that G acts faithfully on X if the corresponding homomorphism $G \to \text{Aut}_{\text{set}}(X)$ is injective.

Definition 12.3 (transitive action). Suppose that G acts on X. Then we say that G acts transitively on X if for any $x, y \in X$ there exists $g \in G$ such that $g \cdot x = y$.

Definition 12.4 (transitive action). Suppose that G acts on X. For $x \in X$, the set $\{g \in G \mid g \cdot x = x\}$ is naturally a subgroup of G, called the isotropy subgroup (or stabilizer) of x. We denote it by G_x or $\text{Stab}_G(x)$.

Definition 12.5 (fixed point). Suppose that G acts on X. For $g \in X$, the set $\{x \in X \mid g \cdot x = x\}$ is called the set of fixed points by g, denoted by X_g or X^g.
Definition 12.6 (orbit). Suppose that G acts on X.

- For $x \in X$, the set $\{g \cdot x \mid g \in G\}$ is called the orbit of x, denoted $G \cdot x$.
- A subset $Y \subset X$ is called an orbit in X under G if $Y = G \cdot x$ for some $x \in X$.
- For $g \in G$, an orbit of g is an orbit of X under $\{g\}$.

Definition 13.1 (ring). Let A be a set with two operations + and ·. Then $(A, +, ·)$ is called a ring (or more precisely a ring with unity) if

- $(A, +)$ is an abelian group,
- · : $A \times A \to A$ is associative,
- for any $a, b, c \in A$, we have $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(b + c) \cdot a = b \cdot a + c \cdot a$, and
- there exists $1 \in A$ such that $1 \cdot a = a \cdot 1 = a$ for any $a \in A$.

We call $1 \in A$ the multiplicative identity of A or the unity of A.

Definition 13.2 (zero-divisor, nilpotent element, and unit). Let A be a ring. Then,

- $a \in A$ is called a zero-divisor if $a \neq 0$ and there exists $b \in A$ such that $b \neq 0$ and either $ab = 0$ or $ba = 0$.
- $a \in A$ is called a nilpotent element if $a^n = 0$ for some $n \in \mathbb{Z}_{>0}$.
- $a \in A$ is called a unit if there exists $b \in A$ such that $ab = ba = 1$. We denote by A^\times the subset of A consisting of all units of A.

Definition 13.3 (commutative ring, integral domain, and field). Let A be a ring. Then,

- A is called a commutative ring if · : $A \times A \to A$ is commutative.
- A is called an integral domain if A is commutative and A does not contain any zero-divisor.
- A is called a field if A is commutative and $A^\times = A - \{0\}$.

Definition 13.4 (module). Let $(A, +, ·)$ be a ring and $(M, +)$ be an abelian group. Then M is called an A-module if there exists a map · : $A \times M \to M : (a, m) \mapsto a \cdot m$ such that

- for any $a \in A$ and $m, n \in M$, we have $a \cdot (m + n) = a \cdot m + a \cdot n$,
- for any $a, b \in A$ and $m \in M$, we have $(a + b) \cdot m = a \cdot m + b \cdot m$,
- for any $a, b \in A$ and $m \in M$, we have $(a \cdot b) \cdot m = a \cdot (b \cdot m)$, and
- for any $m \in M$, we have $1 \cdot m = m$.

Definition 13.5 (vector space). Let M be an A-module. Then M is called an A-vector space if A is a field.
Definition 13.6 (algebra). Let A be a commutative ring and B is a ring. Then B is called an A-algebra if B is an A-module and for any $a \in A$ and $x, y \in B$ we have $a \cdot (x \cdot y) = (a \cdot x) \cdot y = x \cdot (a \cdot y)$.

Definition 14.1 (subobject).
\begin{itemize}
 \item Let A be a ring. Then a subset $B \subset A$ is called a subring of A if B is a ring with respect to $+$ and \cdot inherited from A and B contains the unity of A.
 \item Let A be a ring and M be an A-module. Then a subset $N \subset M$ is called an A-submodule of M if N is an A-module with respect to $+$ and scalar multiplication inherited from M.
 \item Let A be a commutative ring and B is an A-algebra. Then a subset $C \subset B$ is called an A-subalgebra of B if C is both a subring and an A-submodule of B.
\end{itemize}

Definition 14.2 (homomorphism).
\begin{itemize}
 \item Let A and B be rings. Then a function $f : A \to B$ is called a ring homomorphism if $f(1) = 1$ and for any $x, y \in A$ we have $f(x + y) = f(x) + f(y)$ and $f(xy) = f(x)f(y)$.
 \item Let A be a ring and M, N be A-modules. Then a function $f : M \to N$ is called an A-module homomorphism if for any $a \in A$ and $x, y \in M$ we have $f(x + y) = f(x) + f(y)$ and $f(ax) = af(x)$.
 \item Let A be a commutative ring and B, C be A-algebras. Then a function $f : B \to C$ is called an A-algebra homomorphism if f is both a ring homomorphism and an A-module homomorphism.
\end{itemize}

Definition 14.3 (center of a ring). Let A be a ring. Then the center of A, denoted $Z(A)$, is defined to be $Z(A) := \{ a \in A \mid ab = ba \text{ for any } b \in A \}$.

Definition 14.4 (ideal). Let A be a ring. Then a subset $I \subset A$ is called an ideal of A if $(I, +)$ is an abelian subgroup of $(A, +)$ and “I absorbs products in A,” i.e. for any $x \in I$ and $a \in A$ we have $ax, xa \in I$.

Definition 14.5 (quotient).
\begin{itemize}
 \item Let A be a ring and I be an ideal of A. Then A/I is called the quotient of A by I. Its ring structure is defined such that $A \to A/I : a \mapsto a + I$ is a ring homomorphism.
 \item Let A be a ring, M be an A-module, and $N \subset M$ be an A-submodule of M. Then M/N is called the quotient of M by N. Its A-module structure is defined such that $M \to M/N : m \mapsto m + N$ is an A-module homomorphism.
\end{itemize}

Definition 14.6 (ideal generated by a subset, principal ideal). Let A be a ring.
\begin{itemize}
 \item For a subset $S \subset A$, we call (S) the ideal of A generated by S, defined to be the smallest ideal of A containing S.
\end{itemize}
• If I is an ideal of A generated by a single element, then we say that I is a principal ideal.

Definition 14.7 (module generated by a subset, cyclic submodule). Let A be a ring and M be an A-module.

• For a subset $S \subset M$, we call $\langle S \rangle$ the A-submodule of M generated by S, defined to be the smallest A-submodule of M containing S.

• If N is an A-submodule of M generated by a single element, then we say that N is cyclic.

Definition 14.8 (prime and maximal ideal). Let A be a commutative ring and $I \subset A$ be an ideal of A.

• I is called a **prime ideal of A** if for any $a,b \in A$, if $ab \in I$ then either $a \in I$ or $b \in I$.

• I is called a **maximal ideal of A** if $I \neq A$ and any ideal of A containing I is equal to either I or A.

Definition 15.1 (finite dimensional vector space). Let F be a field and V be an F-vector space. Then V is called finite-dimensional (or finitely generated) if $V = \langle S \rangle$ for some finite subset $S \subset V$ as an F-vector space.

Definition 16.1 (Euclidean domain). Let A be an integral domain. Then A is called an Euclidean domain (abbreviated **ED**) if there exists a function $d : A - \{0\} \to \mathbb{N}$ such that

• $d(a) \leq d(ab)$ for any $a,b \in A - \{0\}$ and

• for any $a \in A$ and $b \in A - \{0\}$, there exists $q,r \in A$ such that $a = bq + r$ and either $r = 0$ or $d(r) < d(b)$.

Definition 16.2 (Principal ideal domain). Let A be an integral domain. Then A is called a principal ideal domain (abbreviated **PID**) if every ideal of A is principal.

Definition 16.3 (prime and irreducible element). Let A be an integral domain.

• $p \in A$ is called a **prime element of A** if $p \neq 0, p \not\in A^\times$ and $\langle p \rangle$ is a prime ideal of A, i.e. if $p|ab$ for some $a,b \in A$, then either $p|a$ or $p|b$.

• $p \in A$ is called an **irreducible element of A** if $p \neq 0, p \not\in A^\times$ and if $p = ab$ for some $a,b \in A$ then either $a \in A^\times$ or $b \in A^\times$.

Definition 16.4 (unique factorization domain). Let A be an integral domain. Then A is called a unique factorization domain (abbreviated **UFD**) if

• for any $a \in A$ such that $a \neq 0$, there exists $u \in A^\times$, $r \in \mathbb{N}$, and irreducible elements p_1,p_2,\ldots,p_r such that $a = up_1p_2\cdots p_r$, and
• if \(up_1p_2 \cdots p_r = vq_1q_2 \cdots q_s \) for some \(u, v \in A^\times, \ r, s \in \mathbb{N}, \) and irreducible elements \(p_1, p_2, \ldots, p_r, q_1, q_2, \ldots, q_s \in A, \) then \(r = s \) and one can reorder \(q_1, q_2, \ldots, q_s \) such that \(p_i = u_iq_i \) for some \(u_i \in A^\times \) for \(1 \leq i \leq r = s. \)